Title: Effects of long and short acting β_2-agonists on respiratory muscles during hypercapnia

Dr. Masanori 13738 Yokoba myoko@kitasato-u.ac.jp MD 1,2, Mr. Tsuyoshi 13753 Ichikawa tsuyottz727@gmail.com 2,3, Dr. Naohito 13755 Ishii naohito3@ahs.kitasato-u.ac.jp 1, Dr. Akira 13754 Takakura takakura@kitasato-u.ac.jp MD 4, Dr. Masahiko 18695 Kimura ptkimura@kitasato-u.ac.jp 1, Prof. Atsuhiko 18689 Matsunaga m_atshiko@yahoo.co.jp 1, Prof. Dr Tadashi 13756 Abe tad-abe@is.icc.u-tokai.ac.jp MD 5, Prof. Dr Noriyuki 13757 Masuda masuda@med.kitasato-u.ac.jp MD 2,4, Prof. Dr Paul 13760 Easton eastonpa@telus.net MD 6 and Prof. Dr Masato 13761 Katagiri mkata@kitasato-u.ac.jp MD 1,2. 1 School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan, 252-0373 ; 2 Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa, Japan, 252-0373 ; 3 Rehabilitation Medicine, Tokai University Oiso Hospital, Oiso, Kanagawa, Japan, 259-0114 ; 4 School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan, 252-0374 ; 5 School of Medicine, Tokai University, Isehara, Kanagawa, Japan and 6 Department of Critical Care Medicine, University of Calgary, AB, Canada, T2N 4N1.

Body: Both short acting Salbutamol (Salb) and long acting Sameterol (Salm) β_2-agonists are widely used bronchodilators. Both significantly increase sniff nasal inspiratory pressure and inspiratory muscle EMG in humans (ERJ P2965,2003, P358s,2005). Do these β_2-agonists exert similar effects on expiratory muscles as on inspiratory muscles, during breathing? In 8 normal subjects, we inserted electrodes into parasternal intercostals (PARA) and transversus abdominis (TA) muscles using ultrasound. After baseline measurement, 20µg/min of Salb was administrated continuously in Salb group (n=4):, or 100µg of Salm was inhaled Salm group (n=4). Then, ventilation, as well as PARA and TA EMG were measured during resting and CO$_2$ stimulated breathing in both groups. Data was analyzed with and without β_2-agonist in four conditions (room air, Etco$_2$=50 Torr (CO$_2$Mild), 55 Torr (CO$_2$Mod) and 60 Torr (CO$_2$Hi)). Tidal EMG was expressed as percent maximum tidal EMG (%EMG$_{max}$). Compared to baseline, A) with Salb, 1) V_T increased significantly in all conditions, and V_t and f increased significantly in CO$_2$Mod and CO$_2$Hi. 2) PARA EMG increased significantly in CO$_2$Mod and CO$_2$Hi, 3) TA EMG decreased significantly in CO$_2$Hi. B) with Salm, 1) f and V_t increased significantly in CO$_2$Hi, but V_T did not increase in all conditions, 2) PARA EMG increased significantly in all conditions, 3) TA EMG did not change in all conditions. We conclude that during resting and CO$_2$ stimulated breathing β_2-agonists do affect both inspiratory and expiratory muscles, but there is a different effect on breathing pattern and muscle activation for short versus long acting β_2-agonists. This study was approved by Kitasato university human ethics committee.