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ABSTRACT: Airway smooth muscle cells produce extracellular matrix proteins, which in turn can

promote smooth muscle survival, proliferation and migration. Currently available therapies have

little effect on airway smooth muscle matrix production and migration. Peroxisome proliferator-

activated receptor (PPAR) ligands are reported to decrease migration and matrix production in

various cell lines. In this study, we examined the effect of PPAR ligands on human airway smooth

muscle (HASM) matrix production and migration.

PPAR expression was examined by RT-PCR and Western blotting. Endogenous PPAR activity

was examined by transfecting cells with a PPAR response element–luciferase reporter plasmid.

We observed that HASM cells express PPARa, b and c. A six-fold induction of luciferase activity

was observed by stimulating cells with a pan-agonist, indicating endogenous PPAR activity. The

PPAR ligands ciglitazone, 15-deoxy-D12,14-prostaglandin J2 and WY-14643 decreased migration

towards platelet-derived growth factor receptor. This was not mediated by inhibiting Akt

phosphorylation or promoting PTEN activity, but partly through cyclooxygenase-2 induction

and prostaglandin E2 production that increased cyclic AMP levels in the cells. All three ligands

also caused an inhibition of collagen and fibronectin secretion by cultured smooth muscle cells.

We conclude that PPAR ligands decrease HASM migration and matrix production and are,

therefore, potentially useful for modulating airway remodelling.

KEYWORDS: Airway smooth muscle migration, asthma, extracellular matrix, peroxisome

proliferator-activated receptor, prostaglandin E2

T
wo conspicuous features of the airway walls
of patients with severe asthma are an
increased quantity of smooth muscle cells

and extracellular matrix (ECM) components [1].
The increased smooth muscle mass is more likely
to be due to increased number (hyperplasia) than
size of the cells (hypertrophy) [2, 3]. One of the
mechanisms of smooth muscle accumulation in the
remodelled airway may be by migration from
deeper smooth muscle bundles in the submucosa
[4, 5], which, in turn, is partly regulated by ECM
proteins such as collagen and fibronectin [6]. Both
these structural changes, which contribute to
airflow limitation in asthma [7], are not effectively
reversed by currently available asthma medica-
tions. Thus, it would be attractive to identify
mechanisms or strategies that would inhibit both
smooth muscle migration and matrix production.

Peroxisome proliferator-activated receptors (PPARs)
are a family of hormone receptors that belong

to the steroid receptor superfamily [8]. The PPARa
and c isoforms are reported to be expressed on
airway smooth muscle cells [9, 10], and their
activation by ligands such as the thiazolidinedione
rosiglitazone have anti-inflammatory properties
that are superior to corticosteroids [11]. PPAR
ligands can decrease human vascular smooth
muscle migration [12] and matrix production by
renal mesangial cells [13]. Proposed mechanisms
include: direct transcriptional activation or sup-
pression of target genes [14]; antagonism of other
signal-dependent transcription factors, such as
nuclear factor-kB, activator protein-1 or CAAT/
enhancer binding protein; activation of signalling
pathways that involve phosphoinositide 3-kinase
(PI3K), Src or mitogen-activated protein kinase
[15]; inhibiting signals such as PTEN (phosphatase
and tensin homologue) by modulating activation
of cyclooxygenase (COX) and increasing intracel-
lular cyclic AMP (cAMP) [16]; or by decreasing or
interrupting transforming growth factor (TGF)-b1
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level [17] or signalling [18]. Activation of other nuclear hormone
receptors, such as the liver X receptor, has been demonstrated to
decrease human airway smooth muscle (HASM) migration
towards chemotactic stimuli [19, 20].

In this study, we investigated: the expression of PPAR
isoforms on HASM cells; the effects of their ligands on smooth
muscle migration, and production of collagen and fibronectin;
and some mechanisms of these effects. Specifically, we
examined the role of Akt, Src, PTEN and COX signalling to
offer some explanations for the phenomena that we set out to
explore. We used four different agonists (WY-14643 for the
PPARa, GW501516 for the PPARb, and ciglitazone/troglita-
zone and 15-deoxy-D12,14-prostaglandin J2 (15d-PGJ2) for
PPARc) and three antagonists (MK866 against PPARa,
sulindac against PPARb and GW9662 against PPARc) to study
the role of specific PPAR isoforms. We demonstrate that PPAR
ligands, similarly to other nuclear hormone receptor ligands,
inhibit the migration of HASM cells towards platelet-derived
growth factor (PDGF) and attenuate collagen secretion from
HASM cells.

METHODS

Airway smooth muscle culture
Portions of human lungs that were resected at St Joseph’s
Healthcare (Hamilton, ON, Canada) were obtained from 16
patients (table 1) undergoing surgery for lung cancer with
their informed consent and approval from the hospital
Research Ethics Board. Smooth muscle tissue was isolated
from macroscopically disease-free areas of human bronchi.
HASM cells were grown to confluence as described previously
[4, 6]. The cells were passaged between two and five times and
used for the experiments.

Detection of PPAR transcripts
Total RNA was isolated from HASM cells and 1 mg was
reverse-transcribed using Quantitect Reverse Transcription
according to the manufacturer’s instructions (QIAGEN, Toronto,
ON, Canada). PPAR isoforms were then amplified using
gene-specific primers in an Applied Biosystems 7900HT
machine (Applied Biosystems, Carlsbad, CA, USA). Briefly,
reactions contained 12.5 mL SYBR Green PCR supermix
(Invitrogen, Burlington, ON, Canada), 10.5 mL H2O, 1 mL
primer sets (10 mM each) and 1 mL cDNA. PCR amplification
was carried out for 28 cycles with the following parameters:

denaturation at 95uC for 15 min; 30 cycles at 95uC for 30 s; and
60uC for 1 min. Products were separated on 2% agarose gels,
stained with SYBR Green and imaged on a Typhoon 9200
Variable Mode Imager (Amersham Biosciences, Baie D’Urfe,
QC, Canada).

The primer sequences were as follows (all presented as 59–39).
PPARa: forward primer, AGCCTAAGGAAACCGTTCTG;
reverse primer ACGATCTCCACAGCAAATGA. PPARb/d:
forward primer, TCACACAACGCTATCCGTTT; reverse pri-
mer, GGCATTGTAGATGTGCTTGG. PPARc: forward primer,
ACCAGCTGAATCCAGAGTCC; reverse primer, CGAATGG-
TGATTTGTCTGTTG.

PPAR transfections and reporter gene assay
HASM cells were transfected with 0.4 mg of a PPAR response
element (PPRE)–luciferase reporter gene in six-well dishes at
,75% confluence using Effectene (QIAGEN) according to the
manufacturer’s instructions. Briefly, per well, 0.4 mg of a PPRE–
luciferase reporter plasmid, which contains three copies of the
murine PPRE from acyl-coenzyme A oxidase, was incubated for
5 min at room temperature with 95 mL enhancer reagent and
3.2 mL enhancer. 10 mL Effectene was then added for an
additional 10 min followed by 600 mL RPMI medium supple-
mented with 10% fetal bovine serum (FBS) and incubated
overnight. Following transfection, the cells were incubated
overnight in Dulbecco’s modified Eagle’s medium lacking
phenol red supplemented with 10% charcoal-stripped FBS, 1%
L-glutamine and 1% penicillin/streptomycin with 1 mM pan-
agonist (Full 2; obtained from J. Berger, Merck Frosst, Montreal,
QC, Canada) alone or in combination with PPARa antagonist
(MK866, 10 mM), PPARb/d antagonist (sulindac, 10 mM),
PPARc antagonist (GW9662, 10 mM) or all three together for
an additional 48 h (fresh ligand was added after 24 h). Control
cells received an equivalent amount of vehicle. Luciferase
activity was assayed as described previously [19].

Migration assay
Migration experiments were performed using 6.5-mm
Transwell culture plates with 8.0-mm pores that were collagen
I-coated with a polycarbonate membrane separating the inner
and outer chambers (Fisher Scientific Limited, Nepean, ON,
Canada), as previously described [4, 6]. Assays were per-
formed in duplicate using tissues from six different lung
specimens. Migration was studied by adding PDGF-BB
(20 ng?mL-1; Invitrogen) to the outer well. The effects of
PPAR ligands were studied by treating the cells with various
concentrations (0.1–100 ng?mL-1) of the ligands for 30 min
prior to adding PDGF. The viability of cells treated with
various agonists was checked by confirming that the cell
numbers under the various conditions were between 93% and
151% of the untreated controls using an MTT assay.

ELISA
Collagen and fibronectin

HASM cells were plated at 104 cells per well in 96-well plates.
After 4 days, they were growth-arrested for 48 h with 0.3%
bovine serum albumin (BSA) in RPMI then treated with various
concentrations of the PPAR ligands for 48 h. ECM was harvested
from the plates by incubating with 0.02 M ammonium
hydroxide for 5 min at room temperature. The plates were

TABLE 1 Clinical characteristics of subjects who donated
airways

Subjects 16

Males 12

Age yrs 52¡22

Smokers 11

Atopy 6

FEV1 L 1.9¡1.5

FEV1 % pred 68¡23

FEV1/VC % 64¡33

Data are presented as n or mean¡SD. FEV1: forced expiratory volume in 1 s; %

pred: % predicted; VC: vital capacity.
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stored at -70uC until the assays were run. Primary antibodies to
fibronectin (1:5,000 dilution; BD Biosciences, Oakville, ON,
Canda) and collagen (1:2,000 dilution, Sigma, Oakville, ON,
Canada) were added to the plates and then incubated with
secondary antibody (goat anti-mouse) in 200 mL blocking buffer.
The colour was developed with 100 mL p-nitrophenyl phosphate
solution (Sigma) and the absorbance was read at 405 nm.

Prostaglandin E2

Prostaglandin (PG)E2 levels in smooth muscle culture super-
natants were measured by a sensitive enzyme immunoassay
according to the manufacturer’s instructions (Assay Designs, Ann
Arbor, MI, USA). The limit of detection for PGE2 was 13.4 pg?mL-1.

Cyclic AMP
HASM cells were grown to confluence, growth-arrested for 24 h,
treated with the various agonists for the same duration as the

migration assay (5 h) and cAMP was assayed in the supernatant
using a sensitive immunoassay according to the manufacturer’s
instruction (R&D Systems Inc, Minneapolis, MN, USA).

Western blotting
HASM cells were cultured in six-well plates and grown to
,90% confluence. The cells were then serum-starved in 0.2%
BSA in RPMI for 24 h. The cells were then pre-treated with the
PPAR agonists for 1 h followed by treatment with PDGF
(20 ng?mL-1) for the indicated times. Cells were then lysed in
0.1% Triton X-100 detergent containing protease and phospha-
tase inhibitors, and extracts (20 mg) were separated by sodium
dodecylsulfate–polyacrylamide gel electrophoresis and blotted
onto nitrocellulose. Membranes were blocked with 5% milk
powder in Tris-buffered saline–Tween-20 (TBS-T) for 1 h and
were first probed with antibodies for phosphoSrcY416 (1:1,000),
phosphoAktS473 (1:1,000), PTEN (1:1,000) (Cell Signaling,
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FIGURE 1. a) A representative gel of PCR products demonstrating expression of peroxisome proliferator-activated receptor (PPAR)a, c and b expression on cultured

human airway smooth muscle (HASM) cells. b) Western blotting demonstrating that HASM cells from four different donors express PPARa, b and c. c) HASM cells transfected

with a PPAR response element (PPRE)–luciferase reporter gene demonstrates endogenous PPAR activity when stimulated with a pan-PPAR agonist (six-fold induction

compared with control). DMSO: dimethylsulfoxide. *: p,0.05. d) PPAR antagonists repress PPRE reporter genes in the presence of a PPAR pan-agonist. HASM cells were

transfected with a PPRE–luciferase reporter gene and treated with pan-agonist (1 mM) alone or in combination with PPARa antagonist (MK866, 10 mM), PPARb antagonist

(sulindac, 10 mM), PPARc antagonist (GW9662, 10 mM) or all three together, as indicated. Cells were incubated for 24 h and luciferase activity was measured. Data are

presented as the mean¡SD of three experiments, with pan-agonist alone taken as 100%. Compared with the pan-agonist alone, all of the three specific antagonists and the

three antagonists in combination significantly reduced PPRE–luciferase gene expression (p,0.05 for all).
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Danvers, MA, USA), or COX-1 and -2 (1:2,000) (Millipore,
Billerica, MA, USA) in 5% BSA in TBS-T overnight followed by
secondary anti-rabbit antibody (1:2,000) (anti-goat, 1:2,000 for
COX-2) in 5% milk–TBS-T for 1 h. Membranes were washed
extensively and proteins were detected with a standard
chemiluminescence kit (Amersham Canada, Oakville, ON,
Canada). The blots were then stripped in a low-pH glycine
solution and re-probed with total Src (1:1,000) or total Akt
(1:1,000) antibodies (BioSource International, Camarillo, CA,
USA). PPAR isoforms on untreated HASM cells were detected
by using anti-mouse polyclonal antibodies (1:1,000) (R&D
Systems) and sheep anti-mouse secondary antibody (1:2,000).

Phosphatase assay
PTEN activation was also assessed by a phosphatase assay.
PTEN was immunoprecipitated from 500 mg protein lysate
using 1 mg mouse anti-PTEN (Cell Signaling Technology),
protein G agarose (Invitrogen) in immunoprecipitation buffer
(50 mM Tris, pH 7.5; 100 mM NaCl; 15 mM EGTA; 0.1% Triton
X-100). The beads were rocked overnight at 4uC, washed with
100 mM Tris (pH 8.0), resuspended in phosphatase buffer

(100 mM Tris, pH 8.0; 10 mM dithiothreitol) in 96-well plates,
and incubated with 5 mL diC8–phosphatidylinositol-3,4,5-tri-
sphosphate (Echelon Biosciences Inc., Salt Lake City, UT,
USA), 15 mL phosphatase buffer and 100 mL Biomol Green
(Biomol International, Plymouth Meeting, PA, USA). The free
phosphate was measured at 630 nm.

Statistical analysis
Statistical analysis was performed by ANOVA using the
different time points or experimental conditions as within-
subject factors. The source of significant variation was iden-
tified by predefined contrasts. p,0.05 was considered significant.
All analyses were performed using SPSS version 13.0 (Statistical
Package for Social Sciences, Chicago, IL, USA).

RESULTS
PPAR expression and activation
HASM cells express PPARa, b and c mRNA (fig. 1a) and
protein (fig. 1b). A six-fold induction of luciferase activity was
observed by stimulating cells with a pan-agonist, indicating
endogenous PPAR activity (fig. 1c). This was attenuated by
specific inhibitors of the three isoforms (fig. 1d).
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FIGURE 2. Migration of human airway smooth muscle cells towards platelet-derived growth factor (PDGF) was inhibited by peroxisome proliferator-activated receptor
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Migration
All four PPAR ligands, ciglitazone, 15d-PGJ2, WY-14643 and
GW501516, decreased migration towards PDGF (fig. 2). The
specificity of the isoforms is suggested by the ability of the
specific PPAR antagonists to reverse the inhibitory effects.

Matrix production
All three PPAR ligands that we tested (ciglitazone, 15d-PGJ2 and
WY-14643) inhibited collagen and fibronectin production by
cultured smooth muscle cells (fig. 3). The effect on fibronectin
was statistically significant only with 15d-PGJ2. The effect on
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collagen was significant for all three concentrations of all the
three agonists.

Signalling
PPAR ligands, except for 15d-PGJ2, did not inhibit PDGF-
induced increase in Akt or Src phosphorylation (fig. 4a and b)
or increase PTEN activity (fig. 4c) in HASM cells. 15d-PGJ2

attenuated Src phosphorylation (fig. 4a). In the presence of
indomethacin, the inhibitory effects of 15d-PGJ2, ciglitazone
and GW501516 on smooth muscle migration towards PDGF
were attenuated. This was not observed on the inhibitory effect
of WY-14643 (fig. 2). We also observed that 15d-PGJ2 and
ciglitazone increased PGE2 (fig. 5a) and cAMP levels (data not
shown) (1.6- and 1.2-fold, respectively) in cultured smooth
muscle supernatant. Consistent with this, we observed activa-
tion of COX-2, but not COX-1, at 4 and 24 h after stimulation
with 15d-PGJ2 and ciglitazone (fig. 5b). WY-14643 did not
increase PGE2 levels or induce COX-1 or COX-2 (data not
shown).

DISCUSSION
We confirm previous observations of PPAR expression on
HASM cells and we report three novel observations. First,

PPAR agonists decrease airway smooth muscle chemotaxis
towards PDGF. Secondly, PPAR agonists also decrease
collagen and fibronectin secretion by airway smooth muscle
cells. Thirdly, the inhibition of migration seems to be mediated
partly through the secretion of PGE2 and an increase in
intracellular cAMP. These results suggest that PPAR agonists
may be able to reverse some of the structural changes seen in
the airway submucosa of patients with chronic severe asthma.

We confirm previous observations that HASM cells express the
PPARa and c isoforms [9–11]. In addition, they also express
the PPARb. We have confirmed this by demonstrating the
presence of both the mRNA and protein. It is not clear why
previous experiments using cultured smooth muscle cells did
not demonstrate the expression of the PPARb/d isoforms. It
may be related to the polyclonal nature of the antibody used
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) or the loss of
expression with advanced passage of the cells (two to five
passages in our experiments versus more than six passages in
previous experiments). PPARs are endogenously active, as
indicated by the PPRE–luciferase reporter assay. They are
known to have potent anti-inflammatory effects on HASM
cells. Here we report two additional biologically relevant
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effects of the molecule. Similarly to the observations in

vascular tissue [12], we demonstrate that PPAR ligands are

able to decrease airway myocyte migration towards PDGF. We

examined relevant signalling mechanisms to understand this

phenomenon. We did not observe inhibition of Src (except for

with 15d-PGJ2) or PI3K activity or an increase in PTEN activity

as potential mechanisms. However, we did observe that the

inhibitory effect was attenuated by indomethacin. PPARc

agonists also caused an increase in PGE2 release from HASM

cells and an induction of COX-2, and this is consistent with

reports of COX induction by PPARc agonists [16]. Thus, the

decrease in muscle migration by PPARc is most probably due

to an increase in intracellular cAMP facilitated by PGE2. This is

consistent with observations with other agents, such as b-

agonists, that increase intracellular cAMP and decrease airway

[21] and vascular [22] smooth muscle cell and fibroblast

migration [23]. It is likely that cAMP modulates the morphol-

ogy of smooth muscle cells by inhibiting a Rac-dependent

signalling pathway resulting in disassembly of actin stress

fibres and lamellipodia, loss of focal adhesions and the

formation of small F-actin rings [24], thus decreasing the

ability of cells to migrate. It is likely that PPARb also exerts its

inhibitory effect through the same pathway as the effect was

inhibited by indomethacin. We are unable to explain the

mechanism of inhibitory effect of the PPARa agonist. This is

unlikely to be due to the same pathway as we did not observe

either COX induction or an increase in PGE2 levels. This

requires further investigation.

Although a PPRE has not been found upstream of ECM genes,

there is evidence suggesting that PPAR may participate in the

regulation of ECM genes, especially that of type I collagen [25,

26]. We observed a small, but statistically significant, decrease

in collagen and fibronectin secretion from HASM cells. The

precise mechanism needs further investigation. Unlike the

effect on muscle migration, this does not appear to depend on

intracellular cAMP levels as the observed phenomenon was

not susceptible to inhibition by indomethacin. PPARc agonists

are reported to decrease TGF-b expression in mesangial cells

[13] and, since TGF-b increases fibronectin and collagen

secretion from airway smooth muscle cells [27], it is likely

that PPAR ligands may decrease TGF-b secretion by HASM

cells. This needs further exploration.

These observations are likely to have important clinical

relevance. Assuming that the chronic structural changes are

detrimental to asthma pathophysiology [28], treatment with

thiazolidinediones are likely to limit or even potentially

reverse the two components of the remodelling processes that

are currently not amenable to pharmacological therapy. This

needs further evaluation in a clinical trial. In conclusion, PPAR

ligands decrease HASM cell migration and matrix production,

and are therefore potentially useful for modulating airway

remodelling.
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increased prostaglandin (PG)E2 synthesis (measured by enzyme immunosorbent

assay) by human airway smooth muscle cells. b) The PPAR agonists ciglitazone

and 15d-PGJ2 induced cyclooxygenase (COX)-2, but not COX-1, expression at 4

and 24 h after stimulation. Data are presented as the mean¡SD of a) three or b) six

independent experiments. OD: optical density. *: p,0.05 compared with control.
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