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ABSTRACT Diagnosis of obstructive sleep apnoea syndrome (OSAS) is technically demanding, cost-

intensive and time-consuming. The measurement of volatile organic compounds by an electronic nose is an

innovative method that determines distinct molecular patterns of exhaled breath in different patient groups.

We addressed the following questions: What is the diagnostic accuracy of an electronic nose in the detection

of OSAS and the ability to detect effects of standard therapy in patients with OSAS? Are these results related

to changes in distinct markers of airway inflammation and extracellular remodelling?

We included 40 OSAS patients and 20 healthy controls. Exhaled breath of all participants was analysed

using the Cyranose 320 electronic nose. Pharyngeal washings were performed to sample the upper airway

compartment. For statistical analysis linear discriminant analysis was employed.

We identified a linear discriminant function separating OSAS from control (p,0.0001). The

corresponding area under the receiver-operating curve was 0.85 (95% CI 0.75–0.96; sensitivity 0.93 and

specificity 0.7). In pharyngeal washing fluids of OSAS patients, we observed higher levels of a1-antitrypsin

and markers of extracellular remodelling compared to controls.

The electronic nose can distinguish between OSAS patients and controls with high accuracy.
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Introduction
Obstructive sleep apnoea syndrome (OSAS) is a common disease [1] associated with an increased risk for

cardiovascular disorders [2, 3]. The current gold standard to confirm OSAS is multichannel

polysomnography (PSG) [4]. This is technically demanding, time-consuming, and labour- and cost-

intensive with limited availability.

Different screening tools have been developed to reduce the number of patients requiring PSG but most of

them lack sensitivity and/or specificity. Clinical parameters such as the Epworth Sleepiness Scale, neck

circumference and a composite clinical score show a large overlap between healthy controls and OSAS

patients [5–7].

Technical tools sensing a change of body position as a surrogate for respiratory movements [8], sound

analysis [9] and complex computerised analyses of ECG recordings [10] have been evaluated with different

success rates. A novel screening tool predicting OSAS with acceptable accuracy and without overnight

measurements could improve the OSAS screening algorithm.

Several studies have revealed that OSAS is associated with increased oxidative stress [11], as well as systemic

and local inflammation [12], as indicated by increased concentrations of pro-inflammatory cytokines and

other markers in the exhaled breath condensate (EBC) and serum [11]. The serum level of a1-antitrypsin

(a1-AT), an acute phase reactant playing a major role in the control of inflammation [13], also seems to be

elevated [14]. Other compounds such as matrix metalloproteases (MMPs) and tissue inhibitor of matrix

metalloproteases (TIMPs) might also be involved in the disease process as mediators of the ongoing airway

remodelling [15].

Exhaled breath contains hundreds of volatile organic compounds (VOCs), as demonstrated by mass

spectrometry [16], and its analysis can provide information about systemic or local inflammation. Instead of

identifying single compounds, the assessment of exhaled breath can also be performed by devices enabling the

recognition of patterns of VOCs [17]. Indeed, such devices can distinguish between a number of diseases via

their VOC profiles [18–20]. A recent review article summarising potential medical applications has been

published elsewhere [21]. To our knowledge, VOC profiles have not been assessed in patients with OSAS.

Our hypothesis was that a pattern-recognising electronic nose is capable of distinguishing between OSAS

patients and healthy controls. In addition, we assumed that therapy with continuous positive airway

pressure (CPAP) has a detectable effect on airway inflammation and consequently the VOC profile. To

substantiate the data by direct measurement of biochemical compounds, we assessed whether markers of

inflammation and airway remodelling differ between healthy controls and OSAS before and/or after CPAP

treatment. For this purpose we selected pH and conductivity of EBC, and MMP-9, TIMP-1 and a1-AT in

pharyngeal washing fluids.

Methods
Subjects and study design
20 healthy volunteers were recruited from the hospital staff and 40 OSAS patients from a sleep apnoea

outpatient clinic before receiving CPAP therapy. Inclusion criteria for healthy controls were the ability and

willingness to participate. Volunteers with any known chronic disease or any acute disease in the last

4 weeks before study entry or any medication taken on a regular basis were excluded. OSAS was defined as

an apopnoea/hypopnoea index (AHI) .5 events?h-1 in combination with clinical signs of obstructive sleep

apnoea. We excluded patients with any other chronic and/or acute respiratory disease of the upper and/or

lower airways (e.g. asthma and chronic obstructive pulmonary disease (COPD)). These diseases were

assessed by a questionnaire (patient-reported). In any case of doubt, lung function testing was performed.

The following comorbid conditions were documented systematically: coronary heart disease, diabetes and

arterial hypertension. Disease-specific medical therapy was allowed and left unaltered in the course of the

study. The study was approved by the local ethics committee (Marburg Ethics Committee AZ 59/06

Amendment 3; Marburg, Germany) and written informed consent was obtained from each subject.

All participants had sleep studies and answered a questionnaire regarding symptoms, smoking habits, health

status, medication and medical history. In addition, the following examinations were performed: collection

of pharyngeal washing fluid, collection of EBC, measurement of exhaled breath with the Cyranose 320

electronic nose (Smiths Detection Group Ltd, Watford, UK). The first 20 of the 40 OSAS patients were

examined again after 3 months of CPAP therapy.

Polysomnography/polygraphy
Patients with suspected OSAS underwent an overnight PSG (Embla N7000; TNI Medical AG, Bad Ems,

Germany). Electroencephalogram, electrooculogram and electromyogram were measured using established
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procedures. Furthermore, thoracic and abdominal respiratory excursions, breath sounds, nasal airflow, ECG

and oxygen saturation were recorded. In healthy controls, home polygraphy (SOMNOcheck2 R?

Weinmann, Hamburg, Germany) was used to exclude OSAS. An AHI ,5 events?h-1 was defined as the

absence of OSAS.

Pharyngeal washing fluid
All participants had to have been fasting for at least 2 h, including no chewing gum or any kind of candy,

and no tobacco smoking. They washed out their mouth with water before rinsing the throat with 25 mL of

water by gargling. The fluid was stored at -80uC for ELISA-based analysis of TIMP-1 and MMP-9 (R&D

Systems, Minneapolis, MN, USA), which were conducted according to the manufacturer’s suggested routine

procedure. a1-AT was measured by ELISA as described previously [22]. The sensitivity of the ELISAs for

TIMP-1, MMP-9 and a1-AT was 30 pg?mL-1, 30 pg?mL-1 and 40 pg?mL-1, respectively.

EBC
EBC was collected by tidal breathing over 15 min using the ECoScreen Turbo (VIASYS; CareFusion

Germany 234 GmbH, Höchberg, Germany) as described [23].

Electronic nose
The exhaled breath was assessed with the Cyranose 320 electronic nose. The participants breathed medicinal

air (Aer medicinalis Linde; Linde Gas Therapeutics GmbH, Unterschleibheim, Germany) and exhaled for

10 s at a flow rate of 100–200 mL?s-1 into a disposable collection bag, which then was assessed within 60 s.

This medicinal air was also used as reference air for the 60-s baseline, followed by a 60-s sample draw from

the collection bag, and completed by a 60-s purging of the electronic nose. These measurements were

performed in triplicate [20].

Data analysis
The three data sets obtained by the electronic nose were averaged by taking their arithmetic mean for each

individual. Principal component analysis was performed on these data. The resulting transformed data were

fed into a linear discriminant analysis. The linear discriminant analysis results were then used for further

analyses, including nonparametric statistical significance tests. The Mahalanobis distance between the

groups was determined and a leave-one-out cross-validation of the data was performed to calculate the

cross-validation value as described previously [24]. Additionally, a receiver operating characteristic (ROC)

curve using the linear discriminant as a discriminative variable was constructed to determine the area under

the curve (AUC). The values for sensitivity and specificity were derived from linear discriminant analysis

‘‘self-prediction’’ [25], meaning that the complete data set was used to calculate the values. To support this

analysis we additionally performed a split-half analysis using the first 20 patients as the training set and the

second half as the test set (and vice versa). Sensitivity and specificity were reported at the specific cut-off

level, where the sum of the sensitivity and the specificity (Youden score) was highest [26].

Prior to the statistical comparisons, the data were checked for normal distribution by the Kolmogorov–

Smirnov test. For data not normally distributed, nonparametric tests were used (Mann–Whitney U-test for

unpaired and Wilcoxon matched-pairs signed-rank test for paired data), otherwise a t-test (unpaired or

paired). To determine the correlation between the linear discriminant analysis and parameters of

inflammation, the Spearman’s rank correlation coefficient was calculated. Data are presented as mean¡SD

unless stated otherwise. The software GraphPad Prism 5.00 (GraphPad Inc., San Diego, CA, USA) and SPSS

Version 20 (SPSS Inc., Chicago, IL, USA) was used for all statistical analyses.

Results
Patients versus controls
Baseline characteristics of the 40 OSAS patients and 20 healthy volunteers are shown in table 1.

The linear discriminant analysis scores of OSAS patients and healthy controls differed statistically

significantly from each other (p,0.0001; Mann–Whitney U-test) (fig. 1a). The Mahalanobis distance

between the two groups was 1.88 and the cross-validation value 79.5%. When using a split-half analysis,

80% of the ‘‘second half’’ was correctly predicted to have OSAS. Conversely, when predicting the ‘‘first half’’

after having used the second half as training set, 85% were correctly predicted to suffer from OSAS. The

corresponding area under the ROC curve was 0.85 (95% CI 0.745–0.960) (fig. 1b), indicating a sensitivity of

0.93 and a specificity of 0.70. Furthermore, the linear discriminant analysis was significantly correlated with

the AHI (Spearman’s r50.58, p,0.001), indicating a ‘‘dose–response’’ relationship. There was no

significant correlation between the linear discriminant analysis and the other measured markers (EBC pH,

EBC conductivity and inflammatory markers in pharyngeal washings).
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EBC pH values (8.16¡0.47 in OSAS versus 8.09¡0.40 in healthy controls; p50.27; t-test) and EBC

conductivity (175.5¡292.9 mS?cm-1 in OSAS versus 93¡33.36 mS?cm-1 in healthy controls; p50.17; t-test)

of both groups did not differ significantly (fig. 2).

The a1-AT concentrations in pharyngeal washing fluids were significantly higher in OSAS patients compared

with healthy controls (60.6¡52.0 mg?mL-1 versus 25.3¡21.7 mg?mL-1; p50.007; t-test) (fig. 3a). In contrast,

TABLE 1 Baseline characteristics of obstructive sleep apnoea syndrome (OSAS) patients and
healthy controls

OSAS patients Healthy controls p-value

Female/male n 3/37 8/12 ,0.001#

Age years 55¡10 40¡8 ,0.001"

Height cm 175¡7 175¡8 0.888
Weight kg 99¡15 78¡14 ,0.001"

BMI kg?m-2 32.00¡4.5 25.4¡4.1 ,0.001"

AHI events?h-1 33.65¡22.00 2.7¡1.7 ,0.001"

AI events?h-1 11.9¡16.7 0.6¡1.1 ,0.001+

HI events?h-1 22.6¡19.5 2.1¡1.5 ,0.001"

SO2 % 92.8¡2.7 95.5¡1.1 0.01"

Data are presented as mean¡SD, unless otherwise stated. BMI: body mass index, AHI: apnoea/hypopnoea
index; AI: apnoea index; HI: hypopnoea index; SO2: oxygen saturation. #: Fisher’s exact test; ": t-test; +: Mann–
Whitney U-test.
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FIGURE 1 a) Linear discriminant
analysis of sleep apnoea patients and
healthy controls differ statistically
significantly. b) The area under the
receiver operating characteristic curve
equals 0.85, resulting in a sensitivity of
0.93 and a specificity of 0.70. OSAS:
obstructive sleep apnoea syndrome; HC:
healthy control. #: p,0.0001, Mann–
Whitney U-test.
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the difference in concentrations for MMP-9 (OSAS 5077.3¡9104.5 pg?mL-1 versus healthy controls

1008.6¡872.9 pg?mL-1; p50.06; t-test) and TIMP-1 (OSAS 7918.9¡7075.7 pg?mL-1 versus healthy controls

6961.6¡11 412 pg?mL-1; p50.16; Mann–Whitney U-test) did not reach statistical significance. However, the

MMP-9/TIMP-1 ratio showed a significant difference between groups (OSAS 0.69¡1.11 versus healthy

controls 0.24¡0.25; p50.02; Mann–Whitney U-test) (fig. 3b). Compared with the VOC analysis, any other

marker (EBC pH, EBC conductivity and any marker in pharyngeal washing fluid) was inferior in predicting

OSAS (AUC of the ROC curves ranged from 0.59 to 0.71; data not shown). However, the combination of

inflammatory markers in pharyngeal washings and EBC pH/conductivity with the linear discriminant analysis

increased the diagnostic accuracy to 100% (AUC of the ROC 1, 95% CI 0.94–1.00).

Patients before and after 3 months of CPAP therapy
The characteristics of the first 20 OSAS patients measured before and after initiation of CPAP therapy are

listed in table 2.

The linear discriminant analysis values of before and after initiation of standard CPAP therapy differed

significantly (p50.0003; Wilcoxon test) (fig. 4a). The Mahalanobis distance between the two groups was

1.83, the cross-validation value 63.1% and the corresponding area under the ROC curve 0.82 (95% CI

0.6825–0.9475) (fig. 4b), with a sensitivity of 0.80 and a specificity of 0.65.

EBC pH values of both visits were similar (pre- 8.08¡0.52 versus post-initiation 8.05¡0.85; p50.63,

Wilcoxon test) (fig. 5a); however, conductivity differed (pre- 186.7¡303.6 mS?cm-1 versus post-initiation

97.9¡59.35 mS?cm-1; p,0.05, Wilcoxon test) (fig. 5b).

Moreover, the a1-AT concentration decreased significantly after CPAP treatment (pre- 66.3¡48.4 mg?mL-1 versus

post-initiation 42.8¡36.3 mg?mL-1; p50.017, paired t-test) (fig. 6a). For MMP-9 (pre- 7785.6¡10 500 pg?mL-1
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FIGURE 2 The exhaled breath condensate
values of a) pH and b) conductivity do
not differ statistically significantly
(p50.27 and p50.17, respectively, t-
test). OSAS: obstructive sleep apnoea
syndrome; HC: healthy controls.
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versus post-initiation 9185.8¡11 003 pg?mL-1; p50.421, Wilcoxon test) and TIMP-1 (pre-

8344.7¡7201.1 pg?mL-1 versus post-initiation 13 201¡13 151 pg?mL-1; p50.314, Wilcoxon test) there was

no significant difference. The same applied to the MMP-9/TIMP-1 ratio (pre- 0.87¡1.2 versus post-initiation

0.98¡0.97; p50.37, Wilcoxon test) (fig. 6b).

TABLE 2 Characteristics of the subgroup of obstructive sleep apnoea syndrome (OSAS)
patients with measurements at baseline and after 3 months of continuous positive airway
pressure therapy

OSAS patients

Pre-initiation After 3 months

Female/male n 1/19
Age years 57¡9
Height cm 175¡7
Weight kg 101¡15
BMI kg?m-2 32.9¡4.4
AHI events?h-1 32.0¡22.8 2.9¡3.4
AI events?h-1 9.4¡17.4 1.3¡2.8
HI events?h1 22.6¡21.7 1.7¡2.1
SO2 % 92.5¡2.5 94.4¡1.5

Data are presented as mean¡SD. BMI: body mass index; AHI: apnoea/hypopnoea index; AI: apnoea index; HI:
hypopnoea index; SO2: oxygen saturation.
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Discussion
This study shows that the Cyranose 320 electronic nose can distinguish the pattern of VOCs present in the

exhaled breath of patients with OSAS from that of healthy subjects. A significant correlation between the

linear discriminant and the AHI could be observed. Furthermore, the electronic nose could discriminate the

state before and after treatment with CPAP. This indicates that specific VOC patterns in exhaled breath are

associated with untreated OSAS.

Exhaled breath analysis for VOCs is a relatively novel option to obtain information about diseases. Gas

chromatography and mass spectrometry have been used in the past [16]. The simpler, pattern-recognising

electronic noses allow the rapid recognition of VOC mixtures in terms of ‘‘smellprints’’ [27], but not the

identification of individual molecular components [17].

Electronic noses of various sophistications have been tested in a variety of respiratory diseases. In principle,

the diagnosis of ear, nose and throat infections [28] or pneumonia [29] is possible. Moreover, patients with

lung cancer [30], asthma [31], COPD [18] or a1-AT deficiency [20] could be recognised when compared

with healthy controls or individuals with other respiratory diseases. In our study, we aimed to test the

hypothesis that OSAS could be recognised by its VOC profile and that the profile would change after CPAP

treatment. To our knowledge, this is the first study in which the smellprints of OSAS patients have been

compared with healthy subjects.

Our results might be of interest, as nearly all screening tools for OSAS require overnight measurements.

Although the available devices are easy to handle, some of the recordings exhibit poor quality, thus limiting

their diagnostic value. Furthermore, some patients are unwilling to sleep while ‘‘connected to an electronic

device’’. Conversely, overnight polygraphy with a limited number of channels does not require expensive

medical staff, simply two patient visits to the clinic. Thus a diagnosis from other sources, e.g. ‘‘within a

breath’’, would be desirable.
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One might wish that single substances could be described to predict differences in the exhaled breath profile

of different patient groups. While gas chromatography and/or mass spectrometry could achieve that, due to

the tremendous costs and time-consuming data analysis, these methods would not be feasible in a clinical

setting. The idea to describe (on a computational level) patterns without knowing the disease-specific

substance is a promising new attempt with a clinically directed on-site approach.

It could be argued that an AUC of 0.85 is not sufficient for a diagnostic tool. However, diagnostic tests are

used in specific clinical situations. The electronic nose could be useful on two occasions. First, to rule out

the disease in a low prevalence population, e.g. in a general practitioner’s office where the prevalence of

OSAS is ,2–4% [1]. A negative result would have a negative predictive value of 99.6% (95% CI 90.3–100%)

and thus provide a high degree of certainty. Secondly, the device could be a decision aid with which to

conduct overnight PSG. In a population with a high prevalence of OSAS (as high as 35% in obese, snoring

subjects), a positive result would have a positive predictive value of 62.4% (95% CI 43.3–79.1%) and would

pave the way towards overnight PSG. Conversely, a negative result would have a negative predictive value of

94.5% (95% CI 78.9–99.6%), thus drawing the attention to diagnoses other than OSAS. Furthermore, a

value of 0.85 for an AUC is in the range of other diagnostic tests that are used in daily clinical practice, such

as troponin for the diagnosis of myocardial infarction (AUC of 0.87 [32]).

To reveal whether there would be specific chemical or physicochemical alterations in OSAS patients, we also

analysed EBC, focussing on easily accessible markers such as pH and electrical conductivity, which we have

recently found to be robust and reproducible markers unaltered by respiratory manoeuvres [24]. EBC pH

values were in the range of 8, which is comparable with what has been reported before [33–35]. However,

we did not find major differences in these measures, which might be too unspecific for the disease.

In contrast, a1-AT in pharyngeal washing fluid as a marker of inflammation showed elevated values in

OSAS patients and these were reduced after only 3 months of CPAP treatment. This could reflect the

response to the intermittent hypoxia and/or cyclic sheer forces that are alleviated by CPAP. Similar results
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visits do differ statistically significantly.
#: p50.63; *: p,0.05, both Wilcoxon
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have been shown for local and systemic markers of inflammation and/or oxidative stress [36, 37]. We used

MMP-9, TIMP-1 and their ratio MMP-9/TIMP-1 as further markers; the ratio showed elevated levels in

OSAS. To our knowledge, this is the first time that the MMP-9/TIMP-1 ratio has been examined in a local

compartment in OSAS. On a systemic level, increased MMP-9 concentration and activity have already been

described in OSAS and these alterations could be reduced by CPAP therapy [38]. This leads us to believe

that the increased ratio of MMP-9/TIMP-1 is an indicator of upper airway remodelling following chronic

intermittent hypoxia and sheer forces.

This study has a number of limitations. The groups were not matched for age and body mass index (BMI),

both of which are known to be potential confounders in exhaled breath analysis. To investigate whether age

and BMI were confounders for the altered VOC mixture, we performed a logistic regression analysis with

AHI as the dependent variable. The electronic nose-derived linear discriminant analysis was the best and

solely significant predictor of AHI (OR 3.03, 95% CI 1.41–6.51) compared with BMI (OR 1.17, 95% CI

0.99–1.37) and age (OR 1.05, 95% CI 0.98–1.12). This was also reflected in a significant correlation between

AHI and linear discriminant analysis (Spearman’s r50.58, p,0.001). Moreover, the significant change of

the VOC profile before versus after CPAP treatment suggests that the differences between groups in the

VOC profile were mainly due to the presence of OSAS. This represents a major advantage compared with

previous publications where the VOC profile was assessed only once and significant correlations to other

biological markers were not demonstrated.

Because of the high prevalence of comorbid conditions in OSAS patients, it could be argued that the altered

VOC mixture was mainly due to comorbidities and/or associated medication. However, looking at the

linear discriminant analysis graph (fig. 1a) and marking patients with coronary heart disease (n53),

diabetes (n55) and arterial hypertension (n527), there was no trend in the distribution of patients with

comorbidities (see online supplementary material).
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FIGURE 6 a) The a1-antitrypsin (a1-
AT) concentration in pharyngeal
washing fluids decreased significantly
after 3 months of continuous positive
airway pressure treatment. #: p50.017,
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The data on inflammatory markers in pharyngeal washing are limited by missing standardised procedures

to assess the absolute values of specific markers. HERR et al. [39] described defensin measurements in

smokers, and pharyngeal washings have been used for the detection of potential respiratory pathogens [40].

Irrespective of this, the data for a1-AT strengthen the assumption that a1-AT is upregulated in untreated

OSAS and pharyngeal washings are helpful to investigate this further.

Additionally, a sham CPAP and follow-up data would have strengthened our study and would have added

data about the repeatability of the breathprint over time. However, the focus of this proof-of-concept study

was on the diagnostic approach, with the goal of demonstrating the general possibility of the diagnostic

potential of exhaled breath analysis regarding OSAS. We used the limited before/after comparison of

exhaled breath to show that standard therapy changes the breathprint and to underline the assumption that

the observed exhaled breath profile differences of OSAS versus healthy controls were mainly due to the

presence/absence of obstructive episodes.

Most importantly, the results have to be validated in a separate cohort, possibly in an independent centre, in

line with the Standards for the Reporting of Diagnostic accuracy studies (STARD) statement for the

validation of diagnostic tests [41].

We conclude that the Cyranose 320 electronic nose is capable of distinguishing the exhaled breath of OSAS

patients and control subjects with high accuracy.
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