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ABSTRACT: Environmental epidemiological studies of the health effects of air pollu-
tion have been major contributors to the understanding of such effects. The chronic
effects of atmospheric pollutants have been studied, but, except for the known res-
piratory effects of particulate matter (PM), they have not been studied conclu-
sively. There are ongoing studies of the chronic effects of certain pollutant classes,
such as ozone, acid rain, airborne toxics, and the chemical form of PM (including
diesel exhaust). 

Acute effects on humans due to outdoor and indoor exposures to several gases/fumes
and PM have been demonstrated in epidemiological studies. However, the effects
of these environmental factors on susceptible individuals are not known conclu-
sively. These acute effects are especially important because they increase the human
burden of minor illnesses, increase disability, and are thought to decrease produc-
tivity. They may be related to the increased likelihood of chronic disease as well.
Further research is needed in this latter area, to determine the contributions of the
time-related activities of individuals in different microenvironments (outdoors, in
homes, in transit). Key elements of further studies are the assessment of total expo-
sure to the different pollutants (occurring from indoor and outdoor sources) and
the interactive effects of pollutants. 

Major research areas include determination of the contributions of indoor sources
and of vehicle emissions to total exposure, how to measure such exposures, and how
to measure human susceptibility and responses (including those at the cellular and
molecular level). Biomarkers of exposures, doses and responses, including immuno-
chemicals, biochemicals and deoxyribonucleic acid (DNA) adducts, are beginning
to promote some basic knowledge of exposure-response, especially the mechanisms.
These will be extremely useful additions to standard physiological, immunological,
and clinical instruments, and the understanding of biological plausibility. The out-
comes of all this work will be the management of risks and the prevention of res-
piratory diseases related to air pollution.
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This review of epidemiological studies of the respira-
tory effects of exposures to air pollutants follows excel-
lent reviews of experimental studies in animals and humans
that have recently appeared in the Journal [1–3]. It has
relied both on prior reviews of the topic and on the exten-
sive literature of the major research reports. It includes,
as requested, evaluations of the exposure-response rela-
tionships for different respiratory effects and some risk
assessment, and also attempts to look at the important
issues and hypotheses awaiting further research.

Historically, the clearest evidence for an association
between air pollution and health outcomes in populations
was from acute mortality epidemics. There were a num-
ber of well-known acute air pollution episodes [4–10].
These episodes had greatly increased concentrations of
sulphur oxides (SO2) and particulate matter (PM), and
often increased acidity, usually due to unfavourable meteo-
rological conditions and air stagnation. A very signifi-
cant increase in daily mortality occurred, primarily among
persons with prior cardiac and respiratory disease. These

epidemics led to the subsequent epidemiological inves-
tigations of environmental health effects. 

Some guidelines for epidemiological investigations

In order to understand exposures to contaminants and
the resulting health impacts, it has been suggested [11,
12] that one needs to evaluate: 1) the type of viable and
nonviable particles; 2) the various sources of contami-
nants and the physicochemical factors leading to expo-
sures; 3) the chemical nature of the complex mixtures in
the air and the atmospheric physical (including meteo-
rological) interactions; 4) the nature and mechanisms of
the morbidity effects associated with the contaminants,
including the range and distribution of sensitivity in the
population; and 5) the methods of evaluation. Epidemio-
logical methods provide the opportunity to study pollu-
tants and interactions in complex environments within
this framework. Assessments differ with the different
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mechanisms (allergic, infective or irritant/toxic). Epidemio-
logical investigators can study effects of real-life expo-
sures in various population subgroups, even though it
may be difficult to attribute the specific adverse health
effects observed to concentrations of any one pollutant.
Epidemiology also needs to resolve the methodological
problems relating to the measures of exposure, the mea-
sures of effect (and avoidance of bias), and the use of
covariables and confounding variables [4–6, 12–14].

Without adequate exposure data, epidemiological stud-
ies may be of little use in studying such refined issues
[8, 15, 16]. Personal exposure factors, including time-
activity patterns, may cause a given subject to experi-
ence pollution levels very different from those measured
at a nearby fixed monitoring station [8, 12, 15]. For
instance, exposure to sources of indoor pollution may
be critical, given that the majority of time is spent in-
doors, and those exposures may have deleterious respi-
ratory health effects, as will be discussed [8, 10, 16].

The epidemiological evaluation of the pathogenesis
and natural history of respiratory diseases requires exami-
nation of human susceptibility and sensitivity of speci-
fic subgroups to air pollution [4, 5, 7, 11–15, 17–24].
Susceptibility may have been innate (e.g. genetic) and/
or induced by events/exposures (infectious, allergenic
and/or irritant); physiological and immunological mark-
ers of susceptibility and sensitization continue to be found.
Those who are susceptible usually hyperrespond when
exposed. Asthmatics are excellent examples of indivi-
duals who were susceptible to air pollutants; and once sen-
sitized or inflicted with the disease, they are susceptible
to the effects of many environmental (and nonenvironmen-
tal) triggers.  Furthermore, differences between smokers
and nonsmokers suggest that smokers are less responsive
than nonsmokers. Smokers have altered lung function
and an increase in mucus, both of which could influence
dose in the different regions of the lung. They also have
smaller airway calibre, predisposing them to bronchial
responsiveness. Age also determines susceptibility; chil-
dren appear to be more susceptible. The elderly may be
more susceptible, due mainly to existing disease. Pre-
existing conditions are often manifestations of susceptibi-
lity, which typically implies that the individual is endowed
with some physiological or biochemical characteristic
that may lead to an enhanced response. The underlying
characteristic is not usually idiosyncratic, but shared by
others, usually a small fraction of the population. Like-
wise, it is possible that some subgroups have host char-
acteristics that protect them or permit them to adapt to
exposures. Also, factors associated with lower socioe-
conomic status, including crowding and nutrition, may
predispose individuals or increase risk. Even without
obvious susceptibility, approximately 10–20% of healthy
subjects will have symptomatic or lung function respons-
es to irritants [5, 13, 14]. 

Pollutant factors of importance

The deposition of gaseous pollutants depends on their
reactivity, whether they are freely gaseous or adsorbed
on particles, and whether they are inhaled through the
nose or mouth. Highly reactive-hydroscopic gases (e.g.
SO2) are absorbed almost entirely in the nose during

normal nasal breathing; on the other hand, ozone (O3)
readily can reach the alveoli. Exercise during exposure
increases the pollutant effect on ventilatory function.
Deposition also depends on enlargement of aerosols and
any neutralization that occurs in the airways. Meta-
bolism will also determine the fate of some gaseous pollu-
tants [8, 10, 14, 25]. Deposition of PM and associated
effects depend on the size of particles as well as on the
type of breathing; tracheobronchial deposition occurs with
a fraction of 0.14–0.36 for 10 µm aerodynamic diame-
ter (Dae) particles, 0.09–0.27 for 12 µm Dae; it is 0.12
under maximally deep inhalation of 16.4 µm Dae. "...
there can be a significant deposition of particles >10 µm
Dae" [5]. Lesser deposition can occur even with larger
particles, including pollen [26]. 

Short-term exposures and acute effects

Mortality

Acute mortality responses appear to occur in nonepi-
demic conditions as well as epidemic. Table 1 provides
a compendium of the studies of short-term mortality asso-
ciated with air pollutants and meteorology.

Sulphur oxides and particulates. The best-known episode
of mortality associated with sulphur oxides (SOx) and
PM was the London fog of December 1952. About 4,000
excess deaths occurred, predominantly attributed to bron-
chitis/pneumonia [4, 5, 10]. Subsequent episodes in
London were also documented (table 1), and multiple re-
analyses have occurred and been reviewed [5, 10, 29,
30, 42, 50]. Some analyses indicate that acidic sulphur
may have played a role [10] (Environmental Protection
Agency (EPA), in press). A study of the Donora episode
of 1948 also found excess mortality in those with exist-
ing disease [51]. There may also have been effects in
children (op cit. [18]).

In New York City, excess deaths were also found in
some episodes, mostly among persons 45 yrs of age and
older, due to influenza, pneumonia and cardiopulmonary
causes; these studies, negative studies, and reanalyses
have been presented and reviewed [4–6, 9, 10, 32].  Simi-
lar analyses have been conducted at other times in other
cities under conditions of lower pollution; the quantita-
tive studies are presented in table 1 and the qualitative
studies have been reviewed previously [53]. Episodes
of the duration and intensity reported before the early
1960s no longer seem to occur in the cities of the United
States and Western Europe, but probably occur in Eastern
Europe.

As noted above, not all quantitative studies agree on
results even with the same or similar data bases for the
same locations. This occurred even with inclusion of
weather variables, lag effects, and controls for effects of
other pollutants in the analyses of the death certificate
files. Some studies, as noted, have found PM to be the
remaining significant pollutant, whilst others have found
SOx to be more important; some have found sulphate
(the particulate SOx) to be the key pollutant [53]; and
conflicting results concerning the effects of acidity con-
tinue to appear [46, 54]. Some qualitative studies using
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different general linear models (GLMs) also demonstrate
some disagreement of results for the same cities, though
most are in agreement when PM or SO2 concentrations
are above the World Health Organization (WHO)/Euro-
pean (EURO) [10] lower limits of such effects, shown
in table 1, which are similar to those shown by EPA [4].
However, current estimates include estimates below the
current standards and guidelines (table 2), which deserve
further discussion.

The studies by certain groups using Poisson & GEE
statistical methods appear to give consistent estimates of
mortality excesses related to exposure to PM, as seen in
table 2. The use of these methods as well as other GLMs
in theoretically similar data sets which did not yield simi-
lar results (table 1), has raised questions about the use
of certain models [42]. Disagreements have also arisen
as to the biological plausibility of the results as well as
aspects of causality [55–57], and the appropriateness of
the exposure assessments. Current discussions have fav-
oured the likelihood that the elderly, cardiopulmonary
cases are the most likely to be affected.

The associations may not be simple linear relation-
ships, and other determinants of day-to-day changes in
mortality make it difficult to specify a pollutant con-
centration at which excess deaths begin to occur [4, 12,
57]. Many intervening factors, such as temperature ex-
tremes, influenza epidemics, holiday weekends, and sea-
son of the year, have strong effects on the day-to-day
number of deaths and may enhance or minimize the effect
of air pollution [12, 31, 57–60]. Thus, there is still no
agreement as to how many deaths may be attributed
specifically to the air pollutants [4, 5, 61]. There is little
disagreement that the effects of temperature still pre-
dominate.

Ozone/oxidants, nitrogen dioxide and carbon monoxide.
Temporal analyses of mortality associated with ozone
(O3) or total oxidants (Ox) have been less frequent, though
ozone has been incorporated in some of the PM studies.
In these latter studies, the effect of ozone is often as
strong as that of PM [52]. Studies in various locales
have found high temperatures to be the primary source
of mortality, though O3 is sometimes concurrent in lin-
ear model solutions with temperature and other pollu-
tants [10, 13, 37, 41, 62]. There has been a study in Los
Angeles that showed significant associations both of O3

and nitrogen dioxide (NO2) with total and cause-specific
mortality [42]; PM was not significant. No lowest obser-
ved effect levels (LOELs) have been defined for acute
mortality associated with O3 or NO2.

Two studies have shown associations of carbon mon-
oxide (CO) with mortality in the Los Angeles area; both
controlled for temperature and other pollutants. The first
[63] showed only the effect of CO on cardiovascular
mortality. The second [40] showed effects both of CO
and PM on total and cardiovascular mortality.

Summary of current knowledge. Air pollutants together
with temperature can cause increases in short-term mor-
tality. The issues of such mortality increases have been
discussed frequently in the past few years (e.g. [52]).
Recent findings have generated hypotheses, and there has
been agreement that further studies are needed using
appropriate exposure and response measures, and that
statistical analyses have to be replicated using the same
data sets as used in the prior analyses and investigations.
The major statistical issues addressed have indicated that
none of the methods utilized were invalid per se. Use of
any of the methods needs to include their appropriate
use, the nature and number of variables and of cases,
and the nature of temporal trends.  Independence and co-
linearity of observations and confounding need to be
addressed further, as should testing of assumptions, het-
erogeneity, and "sensitivity" (ibid.). As prior differences
in results could be related to any of these factors (ibid.,
[6, 55–57]), reanalyses are underway to examine such fac-
tors; preliminary results differ quantitatively but not qua-
litatively from prior results [64]. New study designs
should have the ability to explore nonlinear threshold
models [55]. Evaluation continues of mortality effects in
those (especially the elderly) with existing cardiopul-
monary diseases; it is likely that some small shortening
of life (or increased morbidity and disability) could occur
under the circumstances described in studies showing
significant associations.

Interpretations have too often depended on data from
stationary monitors when individuals' exposures are not
reflected by such measurements. Furthermore, the size
and species of the particulate should be critical aspects
of the exposure measurements, especially as different
particles produce different physiological and pathologi-
cal responses. It was concluded that one needed epide-
miological studies that utilized appropriate monitors (with

M.D. LEBOWITZ1032

Table 2.  –  PM10-acute respiratory and cardiovascular mortality effects studies based on various PM measures*

Original PM           Mean           % change         95% CI
measurement        equivalent      per 10 µg·m-3

Health outcome                           Location                          (lag)                PM10 PM10 equivalent     

Respiratory mortality Birmingham, AL, USA PM10 (3 day) 48 1.5 -5.8–9.4
Utah Valley, UT, USA PM10 (5 day) 47 3.7 0.7–6.7
Philadelphia, PA, USA TSP (2 day) 40 3.3 0.1–6.6
Santa Clara, CA, USA COH 35 3.5 1.5–5.6

Cardiovascular mortality Birmingham, AL, USA PM10 (3 day) 48 1.6 -1.5–3.7
Utah Valley, UT, USA PM10 (5 day) 47 1.8 0.4–3.3
Philadelphia, PA, USA TSP (2 day) 40 1.7 1.0–2.4
Santa Clara, CA, USA COH 35 0.8 0.1–1.6

*: EPA Summary, unpublished, 1995. PM: particulate matter; PM10: particulate matter with aerodynamic diameter ≤10 µm; 95%
CI: 95% confidence interval; TSP: total suspended particulates; COH: hydrocarbon; EPA: Environmental Protection Agency; lag:
number of days between air pollution and increase in mortality.
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respect to simplicity, reliability and quality of data) for
personal exposure assessments within studies designed
to focus on the dose-response nature of the PM and other
pollutant effects [52, 56]. 

Exacerbations of chronic respiratory diseases

PM/SOx and chronic obstructive pulmonary disease
(COPD). Some studies of the daily symptom status of
patients with COPD show relationships between disease
status and air pollution concentrations at relatively high
concentrations of sulphur dioxide and particulates [4, 5,
65–68], as seen in table 3. Low temperatures can exert
a greater effect than air pollution [98]. An extensive series
of studies on the effects of air pollution on bronchitic
patients was conducted in the UK between 1955 and
1970 [65–68]. They showed that exacerbations of dis-
ease were associated with high concentrations of smoke
(>250 µg·m-3) and SO2 (>500 µg·m-3), although they
were associated with relative increases rather than abso-
lute concentrations. Furthermore, in the UK, examina-
tion of sickness absence records, of rates of physician
consultation and of daily records of hospital admissions
through the emergency service, showed associations with
periods of heavy air pollution [4, 5]. With decreasing con-
centrations of pollutants in the UK, it has been diffi-
cult (since 1969) to relate bronchitics' symptom status to
variations in air pollution (Waller, personal communi-
cation).

In Barcelona (Spain), SUNYER et al. [99] demonstra-
ted that patients with COPD had significantly increa-
sed frequencies of visits to emergency rooms related to
PM and SO2 during winter, and SO2 predominantly in
summer; the increases in visits related to 25 µg·m-3 SO2
were 6 and 9%, respectively; other variables were con-
trolled in analyses, and the reliability of diagnoses was
confirmed. In Ontario (Canada), BURNETT et al. [100]
found increases for respiratory hospital admissions in
those aged over 65 yrs of 2.8–3.2%, related to 13 µg·m-3

increases in sulphate, after controlling for O3, tempera-
ture and season. (A reliability study of COPD hospital
admissions in nearby Quebec [101] found a 75.5% cor-
respondence with national health insurance data). Only
studies covering an entire catchment area are considered
to show an accurate relationship between admission rates
and air pollution, and clinical studies in general do not
appear to represent events in an entire community. The
reliability of the diagnosis in USA hospitals is usually
considered to be less than elsewhere [5, 13].

Higher annual sulphate levels in the USA have also
been associated with increased symptoms in cardiopul-
monary patients, and symptoms of acute and chronic res-
piratory diseases in children and adults [102]. Children
with chronic respiratory disease symptomatology in The
Netherlands had decreased peak flow, increased wheeze
and increased bronchodilator use associated with total
suspended particulates (TSP) >110 µg·m-3 in winter
[89–90].

PM/O3 and COPD. Various studies in the USA of res-
piratory disease hospital admissions have shown rela-
tionships with particulate matter with an aerodynamic
diameter ≤10 µm (PM10) and often with O3 after con-
trolling for temperature; increases ranged 1.2–13% in the

elderly per 50 µg·m-3 PM10, and 3.5–57% for COPD per
100 µg·m-3 PM10 [103–106]; the lack of known catch-
ment areas for the hospitals weaken such findings (see
below). In a field study of adults with symptoms of COPD
[21], O3 was significantly related to peak expiratory flow
(PEF) after adjustment was made for smoking, relative
humidity, TSP, and gas-stove use, as was TSP after all
adjustments; and there was an substantial O3-TSP inter-
action.

Asthma. Asthmatics appear to be more susceptible to
short-term peak concentration of air pollutants, although
there is a broad range of sensitivity [4, 17, 107, 108].
Oral breathing produces larger and quicker effects, as
does exercise. Air pollution may also enhance the asth-
matic patient's reactivity to other stimuli. Recent studies
have reported a pollutant-induced enhancement of the
effect of pharmacological bronchoconstricting agents at
relatively low concentrations of NO2, O3, and SOx, alone
or together (ibid; [11, 85, 109]). Sulphate, sulphuric acid
and nitrate affect asthmatics more in experimental stud-
ies, especially as potentiators of exercise or bronchocon-
strictor challenges; other chemicals may also act as
potentiators. In addition, these pollutants may act as pot-
entiators for exposure to allergens and their effects in
allergic asthmatics [8, 11, 85, 110, 111]. Thus, the sen-
sitivity of asthmatics to external stimuli, indicates that
various air pollutants, allergens, and weather conditions
are important classes of the many that can precipitate
attacks.

PM/SOx and asthma. In Donora, during the 1948 air pol-
lution episode, 88% of those persons with asthma repor-
ted respiratory symptoms during the episode, a rate twice
that of the general population [51].  Increased hospitali-
zation was found to be related to SO2 in Vancouver,
Canada [112]. In Seattle, PM was found to be similarly
related [44], but not in Detroit [105]. SAMET et al.
[113] also found very little effect of air pollutants on
asthma Emergency Room (ER) visits. Other studies have
recorded increased ER visits for persons with asthma
during air pollution episodes and during other times of
increased air pollution concentrations ([4, 5].

Increased rates of asthma attacks and reduced lung
function were noted in epidemiological studies during
episodes, or days of higher levels of sulphur oxides/PM
(tables 3 and 4). Lagged effects of outdoor PM and tem-
perature in asthmatics have been seen in various loca-
les. Sulphates are more likely than sulphur dioxide alone
to be responsible for many of the adverse health effects
typically associated with SO2, even after rates were adjust-
ed for temperature. The studies conducted in several US
cities suggest that even 8–15 µg·m-3 (for 24 h) is asso-
ciated with the acute effects [102]. COHEN et al. [73]
found such relationships for asthma attack rates (repor-
ted and confirmed) in all physician diagnosed asthma-
tics in one town. Temperature and pollutants also had a
synergistic relationship to attacks. Suspended sulphate
showed the strongest relationship; however, suspended
nitrate, SO2 and TSP individually, as well as in combi-
nation, explained a significant portion of the residual.
MOSEHOLM et al. [147] also reported the effects of NO2,
SO2 and weather in Denmark; medication use was also
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considered. WHO environmental health criteria (EHCs)
have also documented responses related to metal partic-
ulate (especially in those sensitized) and to pesticides.

PM and O3/NO2/organics and asthma. BATES and SIZTO

[148] found highly significant associations between ex-
cess respiratory admissions, especially asthma (and espe-
cially in the young), and average maximum hourly SO4
and O3 concentrations, and temperature in Southern
Ontario. There appeared to be 24–48 h lags for effects.
These correlations were consistent in other years. Other
studies in the USA confirmed this association with ozone
[149–152]. In Helsinki, a combination of temperature
and ozone, as well as other gaseous pollutants, was asso-
ciated with increased asthma admissions to hospitals
[153], and a combination of temperature and NO2 was
associated with ER visits in northern Finland [154]. In
Birmingham (UK), location near roadways (a surrogate
for NO2) was also associated with hospital admissions
for childhood asthma [155]. In Mexico City, ER visits
for childhood asthma increased by 43% per 98 µg·m-3

(50 ppb) increase in ozone, and by 68% if O3 exceeded
216 µg·m-3 (110 ppb) for two or more days, controlling
for other pollutants, weather and other factors [156].
Asthma attendance was also correlated with spore and
pollen counts along with weather factors [157].

Increased rates of asthma attacks and reduced lung
function were noted in epidemiological studies during
episodes, or days of higher levels of photochemical oxi-
dant air pollution (tables 3 and 4). (Experimental stu-
dies also show increased bronchial responsiveness with
ozone [17]).

WHITTMORE and KORN [81] found significant increa-
ses in the probability of asthma attacks in asthmatics in
Los Angeles associated with increases of 0.10 ppm (range
0.03–0.15 ppm) in oxidant levels; attacks increased on days
with high TSP, and also cooler temperature. ZAGRANISKI

et al. [75] reported an increased prevalence rate for res-
piratory symptoms at about 0.08 ppm (range 0.004–0.235
ppm) O3 in patients with asthma in New Haven.

Studies in Tucson [21, 83, 86] showed effects in asth-
matics, related to temperature, O3 (0.052–0.12 ppm), and
the two together (clinically significant reductions of 15–
24% in PEF); these were related to time-activity (time
spent in/out of doors), controlling for other factors. Medi-
cation use confirmed the changes. More severe symp-
toms usually occurred 1–3 days after significant PEF
declines. These time-lag effects of ozone (and tempera-
ture) have been shown by some other studies [115, 121],
but not all [83]. Both 1 and 8 h concentrations of O3
have been shown to have significant effects, and to inter-
act with PM10 and temperature in producing reductions
in PEF [83]. However, temperature effects were always
more important. In addition, the low humidity in some
environments probably had a major influence on the
effects seen at concentrations below 120 ppb [86]. This
general interactive type of relationship has also been seen
for outdoor NO2 and either an indication of gas stove
usage or measured indoor NO2 in asthmatic adults and
children, in which time spent outdoors was an important
factor, and medication usage did not prevent the effects
[84, 87].

Different forms of particulate, including environmen-
tal tobacco smoke (ETS) (and ETS-organic compounds)

indoors also have effects on symptoms and PEF in asth-
matics, especially in children [84, 115, 158–161]. It has
also been demonstrated that there were influences of
indoor particulate matter with an aerodynamic diameter
≤2.5 µm (PM2.5) and cigarette smoking on morning PEF
in asthmatic children when including previous days' asth-
matic medications, an inhibitor of adverse effects on phy-
siological status. Thus, nocturnal asthma may well have
significant physiological decrements associated with en-
vironmental stimuli, for which there can be only partial
protection. Indoor formaldehyde (HCHO) exposures have
effects on symptoms and PEF in asthmatic children; there
also appears to be avoidance of high exposures to HCHO
by asthmatics [160]. The impact of bioaerosols (indoors
and outdoors) has also been substantial [8, 16, 162–164],
as will be discussed further. The effects of other meteo-
rological phenomena have been reviewed previously [17,
165].

Summary. Several studies have shown that daily tem-
perature variations were often more strongly correlated
with attack rates, but air pollution still exerted a signifi-
cant effect even when temperature-adjusted rates were
computed. Examination of tables 3 and 4 vis-a-vis asth-
matics indicates the LOEL for symptoms and significant
PEF reductions of: 157 µg·m-3 (0.08 ppm) O3 based on
several studies; about 200 µg·m-3 SO2 based on two stu-
dies; TSP approximately 80–120 µg·m-3 based on four
studies; PM10 >50 µg·m-3 based on 1–2 studies; PM2.5
>25–75 µg·m-3 based on three studies, but less if pri-
marily SO4 effects (as low as 10 µg·m-3 SO4) based on
three other studies. The evidence for NO2 is too con-
flicting to determine any LOEL.

The major problems in most studies of exacerbations
of asthma have been the lack of information on time-
activity patterns, the possible effects of medications, and
the absence of records for all days on which symptoms
could have occurred. Investigators who have been able
to control some of these variables have found consistent
effects of O3 (as well as other pollutants) on asthma and
other airway obstructive disease (AOD), though con-
trolled exposure studies have not [13, 17]. However, even
the lack of records for all days, and the presence of medi-
cation information implying very good management,
have not interfered with the occurrence of effects rela-
ted to air pollutants in asthmatics ([88, 83]; Daumer, per-
sonal communication). Experimental evidence suggests
a continuum in the dose-response relationship. Peak flow
measurements have been shown to be most responsive
to pollutant and meteorological exposures as well as to
beneficial effects of medications [166], as also described
above.

There are some possible long-range effects of bronchial
responsiveness (BR) produced by pollutants (and tem-
perature). Several studies [167–169] have shown detri-
mental longitudinal effects of BR on lung function,
either reduced growth or increased decline. The long-
range implications of BR and immunological status have
also been discussed at length [8, 11, 16, 162, 170–172].

In conclusion, a variety of indoor and outdoor pollu-
tants, including bioaerosols, have been shown to affect
lung function in those with pre-existing disease [8, 10,
11, 16, 23, 83–86, 89, 111, 159, 160, 162–164, 166,
173–176] as well as symptoms; PEF appears to be a
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more sensitive instrument for detecting such changes
[166, 177, 178]. 

Respiratory infections. Air pollution and impaired resis-
tance to respiratory infection, shown in animals, has also
been seen in studies of humans; a greater incidence of
acute respiratory illness (ARI) supports a probable asso-
ciation between increased acute lower respiratory tract
disease (acute bronchitis, pneumonia, other acute chest
illnesses) and air pollution [4, 5, 10, 14]. Although im-
portant, excess acute lower respiratory illness rates in
children cannot be accounted for by social class or area
differences in residential mobility (ibid.).

Atopic status appears to be an additional risk factor
for respiratory illnesses associated with air pollution [179,
180]. The role of air pollution as adjuvants to altered
immunological status, for infections and allergic sensiti-
zation, has also been seen in animal models ([181–183];
Kagawa, personal communication).

PM/SOx. Several epidemiological studies have obser-
ved the increased incidence of acute respiratory illness
(spatially and temporally) in populations living in com-
munities with more sulphur oxides and particulates [4,
6, 69, 102, 184–190]; the quantitative studies are found
in table 3. The frequency and severity of acute lower
respiratory disease increased with the degree of air pol-
lution (ibid.), and appeared to diminish when air qua-
lity was improved in the UK [186, 191]. Several recent
studies confirm the effect of various outdoor pollutants
on respiratory illnesses and symptoms, especially in chil-
dren: PM effects in children in Switzerland [192] and
in the US [71]. Several metals have also been associa-
ted with acute respiratory infections (ARIs) [25]. Indoor
PM has been shown to be a special problem for such ill-
nesses in the developing world [193].

Environmental tobacco smoke (ETS). Multiple studies
have found the relationship between ETS and ARIs [159].
(There have also been numerous studies showing other
respiratory effects of ETS in children [159], which are
not discussed here).

NO2. Elementary schoolchildren and infants living in a
high-exposure community for two or more years also
experience increased bronchitis morbidity; this has sug-
gested an adverse effect in areas with average NO2 con-
centrations of 150–282 µg·m-3 (0.08–0.15 ppm), confirmed
by subsequent years of study and analyses by EPA [70,
194–197]. In Switzerland, increases in ARIs were found
with 24 h exposures to ambient NO2 of 150–282 µg·m-3

(NO3 of 3.8 µg·m-3) and no other associated pollutants,
adjusting for other factors [192]. QUACKENBOSS et al. [84,
176] have found increased respiratory illnesses related
to monitored PM and NO2, indoors and outdoors, as well
as ETS, controlling for other indoor pollutants and fac-
tors. NEES and co-workers [198, 199] found a 40% increase
in childhood lower respiratory illnesses (LRIs) per 28
µg·m-3 (15 ppb) increase in NO2 in the six city study in
the USA. Some studies [200] have not found such effects,
though their NO2 concentrations are often lower.

MELIA and co-workers [201, 202] reported a greater
incidence of lower respiratory illnesses in British chil-
dren residing in homes using gas versus electricity for

cooking, in which NO2 monitoring occurred. Illness rates
were adjusted for other significant factors (ETS, age, sex)
and other potentially confounding factors. This study and
others have led to major re-evaluations of the role of
NO2, including a meta-analysis by HASSELBLAD et al. [203]
confirming the effects in humans [14]; these effects
mirror those found in animal studies [4, 14].

Ozone. Respiratory illness effects have been seen in
schoolchildren in Mexico City [204], and adults in Los
Angeles (together with sulphate but not particulate haze)
[53].

Risk assessments. ARIs appear to be increased by 1.5–2.0
times with exposures to PM (including ETS), SO2, NO2.
Early childhood LRIs increased by 1.5 (19.4 to 30–34%),
2.5 if from the lower socioeconomic status (SES), rela-
ted to SO4 and SO2 of 190 µg·m-3, hospitalizations by
1.5–2.8 (0/1.1 to 1.0/1.8% for bronchitis or pneumonia,
1.1–3.1% for LRIs) with similar concentrations. The level
of NO2 reported to produce acute respiratory illnesses is
about 137 µg·m-3 (1 h) [10].

Implications. These relationships are of particular pub-
lic health significance because infections and allergies
of the respiratory tract account for a major portion of
total acute illness in the general population and exact a
large economic toll in terms of time lost from school or
work, visits to doctors, and admissions to hospitals. The
sum of the studies supports an association with increased
acute lower respiratory illness. The pollutants, or con-
centrations, which increase risk of acute illness have usu-
ally not been established; though some estimates have
been made [61]. However, this is difficult given the many
environmental and personal factors that contribute to such
risk [4]. The other reason for concern is that these ill-
nesses appear to be related to BR, reduced airway cali-
bre, and subsequently to airway obstructive diseases [18,
23, 86, 170, 186, 205–211]. The role of ventilatory im-
pairment, and BR, cannot be underemphasized [22, 167,
169, 170]. 

Other acute respiratory responses

Nonirritants. The effects of carbon monoxide (CO) stem
primarily from its affinity with oxygen-carrying haemo-
proteins, which causes a leftward shift and steeper slope
of the oxyhaemoglobin dissociation curve and decrea-
ses the amount of such haemoprotein available for oxy-
gen transport. The ultimate effect is a tissue deficit of
oxygen, such that normal function may not be sustained.
In the absence of CO exposure, carboxyhaemoglobin
(COHb) concentrations are approximately 0.5%. (A pack-
per-day cigarette smokers may achieve COHb saturations
of 4–7%). For nonsmokers, exposure to CO at a con-
centration of 10 mg·m-3 (9 ppm) for 8 h or to a con-
centration of 40 mg·m-3 (35 ppm) for 1 h (the present
US primary air quality standard) is calculated to cause
an increase in COHb concentrations to 1.5% during the
interval of exposure. At higher elevations, the oxygen
dissociation curve shifts further to the left. During heavy
muscular exercise, the oxygen consumption rate of the
whole body places maximal stress on the oxygen trans-
port system, and the ability of the cardiovascular system
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to transport oxygen to exercising muscles is a determi-
nant of the maximal sustained rate of work that a nor-
mal person can perform [212]. Thus, CO has been shown
to have predictable effects on healthy young men under-
going strenuous exercise; over the range of COHb concen-
trations of 5–20%, a linear relationship existed between
increasing COHb and decreasing maximal oxygen con-
sumption. Respiratory function may suffer. Nitrogen
oxides, specifically NO, can also diffuse into the circu-
latory system, form met-haemoglobin, and by further de-
priving cells of oxygen, can have similar effects; the
relative potency of met-Hb is about one-third that of
COHb [213].

Short-term irritant-related symptoms. In Donora, during
the 1948 air pollution episode, 43% of the general popu-
lation reported respiratory symptoms during the episode
[51]. Irritation of the nose and throat are the most com-
mon outcome of almost all air pollutants; cough can often
be induced, and sometimes wheeze [4, 5, 8, 13, 14, 25,
61]. The quantitative studies of effects on acute symp-
toms are displayed in table 3. Many qualitative studies
have been reported (ibid.). Symptoms may temporarily
impair performance of normal activities even in healthy
subjects. Wood smoke, indoors and out, other forms of
particulate indoors (especially ETS), and indoor formal-
dehyde (HCHO) exposures have acute effects on symp-
toms, especially in children [108, 115, 159, 161, 176,
214].

Short-term irritant-related reductions in function. A wide
variety of human airway responses to most of the pol-
lutants has been demonstrated, as seen in table 4. (These
reflect findings in controlled exposure studies of most of
the pollutants). There is evidence that they can also cause
bronchoconstriction (ibid.; [107]). In general, these effects
are reversible, and do not necessarily constitute a risk
of disease in healthy subjects.

Several field studies have also shown more prolonged
decreases in pulmonary function during and following
pollution episodes, mostly in children, when exposed to
relatively high levels of SO2 [24, 66–68, 122, 139, 140];
these exposures usually occur with the presence of some
PM, and temperature can also play an important role.
The levels of reduction can be clinically significant (more
than 15% decline), but reverse quickly when exercise is
stopped or the exposure is removed.

In general, decrements occur in normal children and
adults above 110 µg·m-3 PM10 (in the presence of SO2),
3,760 µg·m-3 of NO2 (560 µg·m-3 in asthmatics, thus the
1 h Air Quality Guideline (AQG) of 400 µg·m-3) [10,
71]; above 150–200 µg·m-3 of ozone for 1 h (above
100–250 for 8 h).

Decrements related to short-term (1 h) and longer (6–
8 h) ozone exposure have also been amply demonstra-
ted [4, 13, 61, 215, 216], and recent studies continue to
confirm these results (table 5). In general, these acute
functional changes in healthy children and young adults
occur with 1 h O3 concentrations of 0.08–0.15 ppm, and
less (>0.06 ppm) for the longer (6–8 h) exposures.

Tolerance and/or adaptation. Humans respond physio-
logically to complex environments containing pollutants
(exogenous stimuli which usually produce adverse changes)

by adaptive strategies that should be suitable, but may
not be under all circumstances. Recovery from irritant
exposures in healthy subjects is generally complete with-
in hours, although the recovery period may be longer for
subjects with the most severe responses, and some clini-
cally severe responses can occur at higher doses [58].
The susceptibility of the humans so exposed is of criti-
cal importance to early responses and adaptability, and
influence changes that help determine later physiologi-
cal responses to the same or similar stimuli. For many
of the current pollutants of concern, such as most volatile
organic compounds, either as gases or in particle form
(such as from solvents, cleaners and maintenance pro-
ducts, and sidestream tobacco smoke), the mechanisms
of response are so complex and poorly understood that
toxicological and also some controlled exposure studies
are required first. Furthermore, some pollutant classes
may be well-characterized, but occur in concentrations
sufficient for study only in occupational settings (e.g.
asbestos, some volatile organic compounds, some mine-
ral fibres); the adverse health effects of these pollutant
classes are, therefore, best characterized in occupational
studies [12, 171].

Although others have found adaptation to ozone in
controlled human exposure studies, no such changes have
been seen in epidemiological or physiological studies in
the field. This is probably due to prolonged exposure to
ambient ozone and/or other pollutants, and lagged effects
on lung function (supra vida). The studies described do
show some relative adaptation has occurred to high tem-
peratures and low relative humidity.

Sometimes, active smokers appear to have adapted to
the effects of irritants, as seen in their lesser reactivity
to ozone in chamber studies [5]. It may occasionally be
the case for passive smoking as well, since it appears to
inhibit the effects of ozone in children [121].

Chronic respiratory diseases

Mortality

Sulphur oxides and particulate matter. Non-time series
analyses of geographic differences in mortality have
favoured an association of sulphur oxides (including sul-
phates) and PM with mortality, although there has been
no general agreement from such studies [4, 5, 10, 25].
The nature of ecological analyses, and their fallacies and
biases, have been reviewed elsewhere [4, 8, 12, 25, 52,
279].

A recent study of childhood mortality in different re-
gions of the Czech Republic [280] found a 3.16 excess
related to TSP, a 5.41 excess related to SO2, and a 2.73
excess related to NO2. A significant correlation between
bronchitis mortality and the acidity of precipitation (pH)
has been found in the UK [281]. A recent analysis of
longitudinal data on large populations in six US cities
in which individuals' data were utilized [54] found that
total and cause-specific mortality in the different cities
was related to the PM concentrations in those cities after
adjusting for personal factors. The consistency of the
findings for PM is significant, in spite of the fact that
other factors might have accounted for some of the
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observed association. In contrast to the six city study, in
the longitudinal study in California with data on indi-
viduals, including individual estimates of exposure [41],
no association was found with all cause or cause-spe-
cific mortality (table 1).

Though previous reviews did not conclude that air
pollution could cause lung cancer [4, 5, 12], two recent
studies have indicated an association [50, 282], raising
the issue once again.

Chronic respiratory morbidity

Only PM is definitely known to produce chronic res-
piratory disease, for which AQGs have been written [61,
39], but there is evidence that ozone [13], and NO2 [10]
may also produce such diseases. Table 5 presents the quan-
titative results concerning chronic effects, as obtained
when available from the multiple studies mentioned below.
It should be noted that the role of the indoor environ-
mental contaminants, especially due to combustion prod-
ucts and bioaerosols (including allergens), is also considered
quite substantial by itself [8, 16].

PM/SOx. Respiratory symptoms and deterioration in lung
function in populations (studied cross-sectionally or longi-
tudinally), and longitudinal changes, are greater in those
that reside in polluted areas than those residing in clea-
ner areas [4, 6, 8, 9, 12, 13, 15, 25, 41, 61, 102, 179,
186, 215, 218, 223–225, 228, 229, 235, 244, 263, 283–
288]. The pollutant mix invariably contains PM but also
often contains SO2, NO2, or O3. The effects of specific
species of PM have not been delineated, though SO4 and
H2SO4 have been implicated specifically in chronic obstruc-
tive lung disease (COPD) [10, 236, 243, 289].

Childhood chronic bronchitis was more associated with
typical SO2 and PM pollution in Germany [263], as had
been found in the UK [4, 5, 191, 244]. It is thought that
this may be the case in the parts of Central and Eastern
Europe that are still polluted primarily by PM and SO2.
Chronic lung conditions in children and adults in less-
developed countries are thought to be related to indoor
combustion products [12, 15, 17, 18].

PM/NOx. Geographic differences occur in the prevalence
rates of asthma as well, based on more recent studies [5,
13]. For instance, there is an increased level of asthma
even when risk factors for asthma in different commu-
nities may be similar, when there is more pollution from
power plants [290], or when there is more pollution from
auto exhaust [41, 235, 263]. The relationship of asthma
prevalence (and immunological changes) to auto exhaust
was also noted by ZWICK et al. [291]. These studies imply
some possible link to a PM-NO2 complex, and some pos-
sible role of hydrocarbons (as has been shown in min-
ing). There is an AQG for NO2 to avoid chronic effects
[61].

ETS. Passive smoking (ETS) has been found to be asso-
ciated with COPD [159, 292]. ETS in the presence of
formaldehyde has been shown to relate to increased preva-
lence rates of childhood asthma and bronchial respon-
siveness, whilst formaldehyde alone was also associated
with increased prevalence rates of childhood chronic



bronchitis [160]. INFANTE-RIVARD [242] reported that
monitored NO2 had a dose-response relationship with
asthma in a case-control study; she also showed that
questionnaire information on mothers' heavy smoking,
bedroom humidifiers, home heating, a history of pneu-
monia, a family history of asthma, and the absence of
breast-feeding might be important. Other questionnaire
surveys, with appropriate controls for these other vari-
ables, have yielded conflicting relationships with passive
smoking [159]. Many other surveys have not had appro-
priate controls, especially for family history, and have
not measured pertinant pollutants that might affect asth-
ma.

Other pollutants. The effect of other chemical pollutant
exposures on the incidence of asthma is not sufficiently
known. However, it is known that aeroallergens are stron-
gly associated [8, 249]. There are also some low mole-
cular weight chemicals [171, 172, 293] and certain metals,
such as chromium and nickel (WHO EHCs) which can,
with significant exposures, produce asthma. Chemical
pollutants can also act as adjuvants with allergens in the
development of asthma [8]. In addition, chronic expo-
sure to high levels of volatile organic compounds (VOCS)
and to NOx are related to chemical pneumonitis [25, 120].

Risk assessment. COPD appears to increase significantly
(relative risk (RR) of 1.5–2.5) as annual TSP increases
above 100 µg·m-3 and SO2 (concurrently). Chronic bronchi-
tis appears to increase linearly with SO4: every 2 µg·m-3

above 5.8 µg·m-3 adds 1.24% to the prevalence rate [289].
In urban areas, significantly more chronic COPD symp-
toms may occur with SO4 above 9 µg·m-3 in the pres-
ence of high SO2 and TSP, and 15+ without high TSP
[10]. In a Californian study [236], asthma was also found
to increase significantly with SO4 by about 2.9 times per
7 µg·m-3. The Cracow study found a 24% prevalence
rate of chronic bronchitis in males (11.5% in women)
[253, 254]. Many estimates have been made of excess
AOD in parts of Europe, due to the excessive PM/SOx
pollution in certain locales; they have been quite large
(e.g. 2–7 million cases). A 24 h guideline of 180 µg·m-3

of NO2 was also established by the WHO [61] to avoid
chronic effects of repeated exposures.

Lung function and particulates

Differences in lung function in children residing in
various areas have also been related to the many differ-
ences in air pollution in those areas [4–7, 13]. Fur-
thermore, TOYAMA [287] and WATANABE [294] showed
improvement in peak expiratory flow rates in children
living in more polluted communities when air pollution
concentrations decreased. In France, the PAARC study
[256] found differences in children but not in adult fe-
males related to SO2. The sulphate and nitrate particu-
late forms of SOx and NOx appear to have greater impact
on lung function in normals than the gaseous form because
they have greater airway penetration [4, 8, 25, 102].

Several studies of indoor pollution have shown rela-
tionships between monitored NO2 and PM and reduced
lung function [8, 11, 84, 85, 175, 199, 250]. Passive
smoking over long periods of time in susceptible chil-
dren leads to significantly slower and reduced lung growth

[295], and in children in the general population to a
reduction of 0.1–3% in FEV1 [159].

Significant decrements (3–8%) appear to be related to
ambient annual TSP above 180 µg·m-3 (PM10 about 110
µg·m-3) (also associated with SO2), or 100 µg·m-3 of SO4
and SO2 in children. Significant differences (<3%) occur
in children related to ETS (mostly PM2.5) differences of
60–100 µg·m-3 or more. Decreases occur more frequently
and are larger in those starting with low lung function,
bronchial responsiveness, and/or a chronic respiratory
disease.

Bronchial responsiveness is related to various contami-
nants. Increased bronchial responsiveness was found in
children in relation to O3, possibly related to T-lym-
phocyte changes but not to atopy or immunoglobulin E
(IgE), in an area of high ozone levels in Austria [291].
Increased BR has also been found in an urban-industrial
area in Latium, Italy, even though baseline lung func-
tion and atopy were not different, and after controlling
for ETS exposure and other risk factors [296]. It has also
been found that the relationship of BR (indexed by diur-
nal PEF) and PM2.5 occurred primarily in homes inde-
pendent of ETS, although rates of BR were higher in
homes with more PM10 and ETS; the rates of BR in chil-
dren were independently related to ETS [161]. Preval-
ence rates of BR are independently associated with
increasing exposure to HCHO, and to NO2 [176]; the
latter association has also been found experimentally
[109]. Several metals have also been associated with
increased bronchial responsiveness (nickel, chromium,
vanadium, platinum salts) [10, 12, 25, 171]. As discussed
previously, BR is longitudinally associated with reduced
lung function (op cit.). Both BR and asthma in child-
hood are associated with as much as a 25% decrement in
function at the onset of adulthood ([208]; S. Weiss, per-
sonal communication). 

Chronic outcomes of acute changes

Do acute morbidity effects lead to chronic effects?
Those with chronic obstructive airway disease have a
history of significantly more frequent and severe ARIs
[210, 279] and a significant history of childhood respira-
tory problems [205, 210]. It is also known that childhood
ARIs are longitudinally associated with a decrement of
lung function [208]. A study of acute pulmonary func-
tion changes in healthy children in a smelter town [19]
indicated significant acute reversible changes. A further
study of children in that town, another smelter town
and a control town [228, 229], indicated that pulmonary
function values were lower overall in the smelter towns
(even despite potential selective migration). Thus, there
are grounds for a possible relationship between acute and
chronic pulmonary function changes. Furthermore, it is
sometimes difficult to separate the acute (peak) exposure
effects from the chronic exposure effects ([84, 102, 176,
239]; M. Green, public comments at ERS, Firenze, 1993). 

Discussion

The separate effects of gases and PM, though diffi-
cult, have been investigated, both epidemiologically as
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well as in controlled human exposure studies. PM and
gases appear to have an interactive effect in clinical and
epidemiological studies (e.g. formaldehyde particles, radon
and particles, gases and particles in passive smoking,
ambient ozone and/or NO2 and PM). It is still difficult
to evaluate the impact of short-term exposures, includ-
ing peak exposures, on chronic conditions (SO2 as in-
termittent outdoor peaks, has also been associated with
acute and chronic respiratory conditions [5]). The role
of "peak" exposures to gases (NO2, O3, SO2) has also
been related to bronchial responsiveness (as discussed).

Factors affecting responses. It has been mentioned that
temperature is usually even more important than air pol-
lutants; humidity is also an important factor.  For instance,
heat and relative humidity (RH) may contribute to symp-
toms and physiological impairment. A hot (31–40°C)
and/or humid (85% RH) environment, combined with
exercise, has been shown to reduce forced expiratory
volume more than similar exposures (25°C, 50% RH)
[297, 298]. Modification of the effects by heat or humi-
dity stress may be attributed to increased ventilation as-
sociated with elevated body temperature but there may
also be an independent effect of elevated body tempera-
ture on pulmonary function. Also, increased ventilation
at altitude, as in exercise, increases doses of pollutants
in the lung (tracheobronchial and alveoli), as adequate
levels of ventilation are necessary to maintain sufficient
O2 partial pressures in alveolar and arterial blood. Thus,
all considerations of the effects of air pollutants must
take these factors into account.

Effect-modifiers and factors affecting confounding. Host
factors are significant effect modifiers. Immunological
and physiological status appear to be the most important
[8, 11, 12, 16, 22, 55, 175, 179, 208, 293, 295]. (As dis-
cussed above, prior ARIs and concurrent morbidity are
also of importance). These potential links require further
study.

Not all potential confounders are important per se [6].
Follow-up studies on a cohort started by DOUGLAS et al.
[186] did not confirm original social class differences to
be significant in accounting for health findings later in
life. MANFREDA et al. [285] did not find "urban" charac-
teristics to be relevant in explaining results. Thus, one
should not overemphasize the relative importance of
potential confounding or covariant factors when these
have not been specifically ruled out as alternative expla-
nations for specific results [6]. 

Conclusions

The most important aspects of this issue need to be
addressed [4–9, 17, 18, 22, 60, 299, 300]: 1) pollution
exposure is a cause, albeit with others (and not the most
potent) of chronic respiratory disease; 2) it is a major
cause of exacerbations of asthma and COPD. (both aspects
are responsible for major disability, cost, and reduction
in the quality of life); 3) it influences (and is part of) the
aetiological and natural history chain of chronic respira-
tory disease, which includes increased ARIs, increased
inflammation and bronchial reactivity, and reduced lung
function. The first two would also imply that at least

some pollutants alter immunological function in more
than one way, as found in animal studies [301], and pos-
sibly in human studies [302, 303]. Thus, further studies
of the epidemiology of air pollution and its control are
necessary [8, 10, 304–306].

With regard to asthma and chronic obstructive pul-
monary disease, we consider the following to be the future
epidemiological perspectives: methods of intervention
and associated studies; methods of ascertaining patho-
physiological and immunological changes, including bio-
markers of noncarcinogenic and of acute changes; further
studies of irritation and reactive airways dysfunction syn-
drome (RADS) (with respect to asthma and chronic
obstructive pulmonary disease), the study of the role of
acute effects in the aetiology and natural history of chro-
nic disease; and methods and studies to ascertain quan-
titative exposure dose-response relationships for individual
air pollutants and complex mixes.
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