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ABSTRACT:  One critical event of tumour invasion that signals the initiation of
the metastatic cascade is thought to be interaction of the tumour cell with the
basement membrane.  Basement membranes may also pose as barriers to tumour
cell invasion at multiple points later in the metastatic cascade, including during the
processes of vascular infiltration and extravasation.  Thus, an important proteo-
lytic event in the metastatic cascade, and also angiogenesis, appears to be degra-
dation of basement membrane components.

A specific class of extracellular matrix degrading metalloenzymes, the matrix
metalloproteases, and their endogenous inhibitors, the tissue inhibitors of metal-
loproteases, are thought to have a role in the creation of the proteolytic defect in
basement membrane type IV collagen.  We will review the evidence which indi-
cates that matrix metalloproteases and tissue inhibitors of metalloproteases are
essential for tumour cell invasion and angiogenesis.  The regulation of matrix
metalloproteases will be discussed, including gene activation and transcription,
messenger ribonucleic acid (mRNA) stability, binding of proenzymes to cell mem-
branes and/or matrix components, proenzyme activation, and inactivation by
endogenous inhibitors.  We will also discuss the mechanism for tissue inhibitor of
metalloproteases–mediated inhibition of tumour invasion and angiogenesis. This
appears, at least in part, to be through inhibition of protease activity required
for cellular invasion, although recent observations suggest that tissue inhibitors
of metalloproteases affect other distinct groups of biological activities through
mechanisms other than matrix metalloprotease inhibition.
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Tumour invasion and metastases are the major causes
of morbidity and death for cancer patients.  The exact
mechanisms responsible for the formation of metas-
tases are not fully understood.  However, several gener-
al principles have been elucidated.  The critical event
of tumour invasion that signals the initiation of the
metastatic cascade is thought to be interaction of the
tumour cell with the basement membrane [1, 2].
There are at least three critical steps involved in this
process.  The first is attachment to the extracellular
matrix (ECM), which may be mediated by pre-existing
or newly formed contact sites.  The second is creation
of a proteolytic defect in the ECM.  The final phase is
migration through the proteolytically modified matrix.

Tumour cell interactions with the ECM, and in par-
ticular with the basement membrane, occurs at multiple
stages throughout the metastatic cascade.  No matter how
extensive the architectural disorganization, benign dis-
orders are always characterized by a continuous base-
ment membrane separating the "tumorigenic" epithelium
from the stroma.  In contrast, invasive carcinomas pos-
sess a discontinuous basement membrane with zones of
matrix loss surrounding the invading tumour cells.  Thus,
a critical proteolytic event early in the metastatic cas-
cade appears to be the degradation of basement membrane

components.  Basement membranes may also pose as
barriers to tumour cell invasion at multiple points later
in the metastatic cascade, including vascular infiltration
and extravasation.  Basement membranes contain type
IV collagen as well as laminin and heparan sulphate pro-
teoglycan as major components.  Studies suggest that
type IV collagen may form the basement membrane
scaffolding on which laminin, heparan sulphate proteo-
glycan and minor components of the basement mem-
brane are assembled [3].  Much attention has focused on
the ability of metastatic tumour cells to degrade type IV
collagen.

There is abundant evidence, both direct and by corre-
lation, which implicates the specific class of extracellu-
lar matrix degrading metalloenzymes known as the
matrix metalloproteases (MMPs) in the creation of the
proteolytic defect in basement membrane type IV colla-
gen that appears essential for cellular invasion [4, 5].

The matrix metalloprotease family

Many biological processes involving ECM turnover
have been linked with expression of matrix metalloprotease
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(MMP) enzymes.  The MMPs are a family of zinc atom-
dependent endopeptidases with specific and selective
activities against many components of the extracellular
matrix [2, 4, 6–9]. This family currently consists of 11
enzymes, which are secreted as zymogens that must be
activated extracellularly.  They have been classified into
three subgroups based on substrate preference:  the inter-
stitial collagenases, stromelysins and gelatinases (type
IV collagenases); although, all of the enzymes have
overlapping substrate specificity.  The primary amino
acid structure of the family consists of five modular
domains, including a signal sequence; a profragment
activation locus; a Zn atom-binding, catalytic domain;
a proline-rich hinge region; and a haemopexin- or vit-
ronectin-like C-terminal domain (fig. 1).  The gelatinases
contain an additional fibronectin-like gelatin-binding
domain immediately upstream of the Zn-binding domain
[9].  MT-MMP and stromelysin-3 contain a 10 amino
acid insertion, which has homology to recognition se-
quences for furin-like enzymes [10].  Gelatinase B and
MT-MMP both have an insert that is similar to the type
V collagen α-chain [15].  MT-MMP also contains a
small, unique insertion inside the catalytic domain and
a potential transmembrane domain [16].

Regulation of MMPs

Malignant tumour cells exhibit repeated attachment
and release from the ECM, as well as enhanced proteo-
lysis and migration through matrix barriers that results
in a sustained invasive capacity.  In order to maintain
the balance of the components necessary for optimal
invasion, these processes must be tightly regulated both
temporally and spatially.  The role of MMPs in ECM
degradation can be regulated at many stages, including
gene activation and transcription, messenger ribonucleic
acid (mRNA) stability, translation and secretion of lat-
ent proenzymes, binding of proenzymes to cell mem-
branes and/or ECM components, proenzyme activation,
inactivation by endogenous inhibitors and degradation
or removal of active or inactive enzyme species [17].

At the level of transcription, many of the MMPs ap-
pear to be regulated by similar mechanisms.  MMPs are
responsive to cytokines and growth factors and hor-
mones.  In general, most of the MMPs are induced by
interleukin-1β (IL-1β), tumour necrosis factor−α (TNF−
α), platelet derived-growth factor (PDGF), transforming
growth factor-a (TGF−α), epidermal growth factor (EGF),
basic fibroblast growth factor (bFGF) and nerve growth
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Fig. 1.  –  The domain structure of the matrix metalloproteinase family.   Progelatinase A and B, pro-MT-MMP, prostromelysin-3, prostromelysin-
2 and prostromelysin-1, prointerstitial collagenase, proneutrophil collagenase, prometalloelastase, and promatrilysin are represented diagrammati-
cally and aligned to show regions of protein sequence homology [7–14].  Procollagenase-3, the newest number of this family is not shown.  The
various patterns represent different protein sequence domains encoded by separate exons.  The figure demonstrates the relative size and the con-
servation of domains between the family members.  There are four functional domains:       : signal peptide domain;      : propeptide domain;  

: catalytic domain;       : haemopexin/vitronectin domain.  Gelatinase A and B contain a cysteine-rich gelatin-binding domain  (     ) which
shows homology to fibronectin, but is absent from the other matrix metalloprotease enzymes.  MT-MMP and stromelysin-3 contain a 10 amino
acid insertion        , which has homology to recognition sequences for furin-like enzymes.  Gelatinase B and MT-MMP both have an insert that
is similar to the type V collagen α-chain [15].  MT-MMP also contains a small, unique insertion inside the catalytic domain and a potential trans-
membrane domain.  Below are the conserved amino acid sequences for the activation locus and the metal-binding atom domain of the active site.
X: any amino acid; P: proline; R: arginine; C: cysteine; G: glycine; D: aspartic acid; H: histidine; E: glutomic acid; A: alanine.



factor (NGF) and are repressed by transforming growth
factor-β (TGF−β) (reviewed in [9]).  Interleukin-1α (IL-
1α) appears to be acting as an obligatory intermediate
regulator for stimulation of interstitial collagenase ex-
pression [18].  Sensitivity of individual MMPs to these
factors varies from enzyme to enzyme, and is tissue-
specific.  Specificity is maintained by induction and
repression of distinct MMP family members.  Also,
many factors must be integrated to elicit a response that
is cell-specific.  MMP production has also been found
to be regulated by the pericellular environment, cell
matrix interactions, and components of the ECM [19–
26].  For example, a number of diverse agents have
been found to stimulate production of interstitial colla-
genase by macrophages or epidermal keratinocytes, in-
cluding calcium influx [27], ultraviolet light [28], and
cell shape [29].  IL-1α and other cytokines have also
been shown to stimulate interstitial collagenase release
from fibroblasts in response to interaction between
extracellular matrix and cell surface receptors [22,
30].  Interestingly, gelatinase A exhibits only a slight
response to cytokine and growth factors [31–33], and
calcium influx suppresses gelatinase A mRNA and
protein synthesis [11].  This may indicate a unique role
for gelatinase A in matrix homeostasis.

Activation of MMPs

Under some conditions, transcriptional activation of
the MMP genes may be a requirement for ECM turn-
over.  Current evidence also suggests that transcriptional
activation alone may not be sufficient.  Activation of
proenzyme forms of these proteases is required for ini-
tiation of matrix degradation and acquisition of the in-
vasive phenotype.  The balance of activated proteases
and endogenous inhibitors is crucial for determining
the extent of ECM turnover [4, 17].

The biochemistry of MMP activation has been well-
characterized through many in vitro studies.  The me-
chanism for mammalian MMP activation is referred
to as the "cysteine switch".  In this mechanism, an unpaired
cysteine residue in the profragment co-ordinates with
the active site zinc atom and maintains the latency of
the enzyme [34].  When this cysteine-zinc atom inter-
action is interrupted by chemical or physical means a
conformational change occurs and subsequent proteo-
lytic cleavage of the amino-terminal profragment en-
sues (reviewed in detail in [9]).

An understanding of the biological activation of the
MMPs has not yet been fully elucidated, although a
growing body of work has been put forth to understand
the cellular and in vivo mode of activation.  So far,
two possible pathways for in vivo activation of MMPs
have been proposed.  Latent interstitial collagenase,
stromelysin-1 and gelatinase B may be activated by the
plasmin cascade.  These events occur either at the cell
surface via urokinase plasmin activator (uPA) receptor
or distant from the site of secretion of the enzyme [35,
36].  Briefly, the zymogen plasminogen is cleaved by
uPA or tissue plasmin activator (tPA) into plasmin.  PA

may be inhibited by an endogenous PA inhibitor (PAI)
[37].  Plasmin cleaves 84 amino-terminal amino acids
from latent fibroblast stromelysin to form activated
stromelysin, and cleaves 81 amino-terminal amino acids
from latent interstitial collagenase to form partially
activated interstitial collagenase.  Activated stromelysin
may sub-sequently increase the activity of the partially
activated interstitial collagenase 5–8 fold by clipping an
additional 15 amino acids from its carboxy-terminus
[36].

In contrast, activation of gelatinase A appears to occur
in a cell-mediated fashion, although the exact mechan-
ism of this activation is controversial.  Plasmin/PA-
mediated activation of insoluble gelatinase A has been
reported [38, 39], whilst others have reported that puri-
fied progelatinase A and progelatinase A/tissue in-
hibitor of metalloprotease-2 (TIMP-2) complex are
degraded, not activated, by plasmin [40].  A third series
of publications demonstrate that serine proteases, such
as plasmin and uPA, are not responsible for cell-
mediated activation of gelatinase A [41–43].  In these
experiments, serine protease inhibition failed to block
cell-mediated activation of progelatinase A.  Phorbol-
ester or concanavalin A treatment of tumour cells en-
hances the expression of a cell membrane-associated
activator of gelatinase A.  Activation of latent gelatinase
A or gelatinase A/TIMP-2 complex can be inhibited by
addition  of exogenous TIMP-2 or by chelating agents.
Carboxy-terminally  truncated gelatinase A is not activated
by a similar mechanism, and therefore the carboxy-
terminus appears to be necessary for activation [42].  The
cell-surface associated activator has recently been iso-
lated and shown to be an integral membrane matrix
metalloprotease,  referred to as MT-MMP [16].  Immuno-
histochemical studies have localized this MT-MMP to
the surface of invasive tumour cells, but not surrounding
fibroblasts.  Further characterization of the role of this
protease in tumour cell invasion is ongoing.

Tissue inhibitors of metalloproteases

The MMP family is further defined by the fact that
all members are inhibited by a group of related endoge-
nous inhibitors known as the tissue inhibitors of metal-
loproteases (TIMPs) [4–6].  The balance between the
levels of activated MMPs and free TIMPs determines
the net MMP activity.  Altering this equilibrium affects
the process of cellular invasion.  Three distinct TIMP
molecules have been isolated, cloned and characterized
from several species [44–52].

TIMP-1 is a 28.5 kDa glycoprotein that preferent-
ially forms a 1:1 complex with activated interstitial
collagenase, stromelysin-1, and both the latent and active
forms of the 92 kDa  type IV collagenase (progelatinase
B) [15, 53, 54].  Interaction of TIMP-1 with activated
gelatinase B results in protease inhibition, whereas inter-
action with latent gelatinase B blocks stromelysin-
mediated activation of this enzyme [55].  In addition to
its role as a MMP inhibitor, TIMP-1 is also considered to
function as a metastasis suppressor gene [56, 57].
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TIMP-2, a nonglycosylated 21 kDa protein, has a high
affinity for progelatinase A [58], and will form a 1:1
complex with either the latent or activated forms of the
enzyme.  TIMP-2 has also demonstrated inhibitory
activity against other members of the MMP family.
TIMP-2 inhibits both the type IV collagenolytic and
gelatinolytic activities of gelatinase A [59], and blocks
the hydrolytic activity of all activated MMPs [58–61].

TIMP-3, the newest member of the TIMP family, was
initially isolated from SV-40 transformed chick embryo
fibroblasts [62].  Recently, the murine and human timp-
3 complimentary deoxyribonucleic acids (cDNAs) have
also been cloned [49, 50, 52].  Unlike the other family
members, which are secreted from cells and remain
soluble, TIMP-3 is localized to the ECM and shows
preferential binding to ECM components.

Although they have overlapping inhibitory activities,
the proteins are immunologically distinct, they are en-
coded by genes located on different chromosomes, and
their expression is independently regulated [45, 47, 60,
61, 63, 64].  The timp-1 gene has been mapped to the
p11 region of human chromosome X [64, 66].  The
timp-2 gene is located on chromosome 11 in the mouse
and on human chromosome 17q25 [64, 67].  The timp-
3 gene is localized on human chromosome 22 [49].
Northern blot analysis of timp-1 reveals a single 0.9 kb
transcript, while there are two timp-2 transcripts of 3.5
and 1.1 kb, and a strong 2.4 kb timp-3 transcript, as
well as other transcripts at 5, 2.7, 1.6 and 1.1 kb for
this inhibitor.  Comparison of the human TIMP-1 and
TIMP-2 amino acid sequences shows 37% identity and
66% homology (fig. 2a).  There is 40% identity between
human TIMP-1 and TIMP-3, and 45% identity bet-
ween TIMP-2 and TIMP-3.  The 12 cysteine residues
are conserved among all members of the family [52],
and similar disulphide bridges forming six peptide loops
and two knots are expected for TIMP-1 and TIMP-2
(fig. 2b) [68].  These loops are thought to be responsible
for inhibiting MMP activity, and residues beween
cysteine-3 and cysteine-13 are critical for inhibition of
MMP activity [69–71].

Studies on the regulation of individual timp gene ex-
pression indicates that each inhibitor may have specific
and distinct physiological functions.  Transcription of
timp-1 is responsive to the tumour promoter phorbol
12-myristate 13-acetate (PMA) [72, 73], hormones, [74,
75], and a variety of cytokines [72, 76].  Mouse and
chicken timp-3 transcription are also inducible by a vari-
ety of agents, including cytokines, tumour promoters
and anti-inflammatory agents [50, 57].  In contrast, timp-
2 gene expression is primarily constitutive, and when
sensitive reacts in a manner opposite to that of timp-1
[47, 51, 78].

In addition to their role as inhibitors of MMPs, the
TlMPs may also have other functions critical for reg-
ulation of the ECM.  The binding of TIMP-1 and
TIMP-2 to progelatinase B and A, respectively, may
be important for controlling the activation of the la-
tent enymes [15, 60, 79–81].  TIMP-1 has been found
to be a serum mitogen in vitro [82, 83].  Chicken
TIMP-3 (ChIMP-3) promotes detachment of cells that

are  acquiring the transformed phenotype from the
ECM, and has growth stimulatory activity under low
serum conditions [84].  TIMP-3 is thought to be invol-
ved in tissue specific, acute matrix remodelling [50,  52].

MMPs and cancer

A variety of studies have indicated a role for MMP
enzymes in tumour invasion and metastasis.  A num-
ber of methods have been utilized for assessing the
presence of MMPs in human tumour tissues and serum
from cancer patients.  These include localization of
MMPs in human tumour tissue by immunoperoxidase
staining (IPS) of tissue sections, Northern blot analysis
of MMP transcripts in riboneucleic acid (RNA) sam-
ples isolated from human tumour samples, localization
of MMP transcription in tissue sections by in situ hy-
bridization (ISH), and measurement of MMP levels in
the body fluids of cancer patients.  Positive correlations
have been demonstrated between MMP expression and
tumour invasion and metastasis in vitro [8, 85–87] as
well as in in vivo animal models [88–90].  MMPs have
been associated with the malignant phenotype in a
wide variety of human tissues, including lung, prostate,
stomach, colon, breast, ovaries and thyroid, as well as
squamous carcinoma of the head and neck [8, 85–87].

Interstitial collagenase, which degrades the triple heli-
cal domains of the fibrillar collagens (types I, II, III,
VII, VIII and X) into 1/4 amino-terminal and 3/4
carboxy-terminal fragments, is enhanced in a variety of
human tumours.  Statistically significant correlations
have been found between the degree of histological dif-
ferentiation in human colorectal tumours and the level
of proteolytic activity of interstitial collagenase against
soluble type I collagen [91].  In colorectal tumour sam-
ples, IPS analysis revealed enhanced staining for inter-
stitial collagenase in the stromal cells and collagen
fibres adjacent to the malignant nests of tumour cells,
whilst normal, benign or malignant epithelium did not
stain for the enzyme [92].  Augmented interstitial col-
lagenase transcripts have been observed in 40% of pri-
mary pulmonary malignancies, but not in samples
from adjacent normal lung tissue [93].  A number of
studies using ISH demonstrate elevated transcripts for
interstitial collagenase in squamous cell carcinomas of
the head and neck that localized to the stromal fibro-
blasts adjacent to the malignant tumour masses [94–
96].

The stromelysins are composed of stromelysins-1, 2
and 3, as well as matrilysin, and proteolyse laminin,
fibronectin, proteoglycans, and nonhelical domains of
type IV collagen.  In addition, matrilysin cleaves uroki-
nase to separate the catalytic and receptor-binding do-
mains, which may have implications for the regulation
of the functional activity of this plasminogen activator
[97].  Stromelysin-1 and 2 mRNA production  correlates
with increased local invasiveness of head and neck
carcinomas, and transcripts localize to the fibroblasts
of the tumour stroma immediately adjacent to areas of
basement membrane disruption [96].  ISH studies
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Fig. 2.  –  a) Alignment of amino acid sequences using single letter amino acid abbreviations for family members of the human tissue inhibitor
of metalloproteases.  The amino acid sequences of TIMP-1 [44], TIMP-2 [59], and TIMP-3 [49, 52] were extracted from the Swiss-Prot database.
Optimal alignment was performed with a protein alignment program contained in Geneworks version 2.2.1 software package from intelligenetics
(Mountain View, CA, USA).  Residuels which are identical in all three sequences are shaded.  The 12 conserved cysteines are denoted by bold
italic C's (C).  b) Disulphide bond pattern of TIMP-2.  This figure depicts the predicted six loops numbered 1–6, and two knots (A and B) formed
by the characteristic disulphide-bonding pattern of the TIMP family.  The amino-terminal domain consits of loops 1, 2 and 3, and represents the
domain responsible for binding and inhibiting the catalytic activity of the MMPs.  The carboxy-terminal protein domain consits of loops 4, 5 and
6 and represents the domain that associates with the carboxy-terminus of gelatinase A.

b)
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demonstrate the matrilysin transcripts, but not stromelysin-
1 and 2, are augmented in human gastric and colonic
carcinomas [98].  ISH has also been used to localize
expression of matrilysin in the epithelial cells of pri-
mary prostrate adenocarcinoma and in some foci of ep-
ithelial dysplasia, but not in the stroma.  Matrilysin
transcripts were present in 14 of 18 RNA samples
from human prostate adenocarcinoma, but in only 3 of
11 normal prostate biopsy samples [99].

Stromelysin-3 has been studied only at the mRNA
level, and its protease activity and substrate specificity
has not yet been elucidated.  Its message levels corre-
late with human breast cancer progression [12] and
localize to the stromal cells surrounding invasive breast
carcinoma.  Other studies demonstrate association of
stromelysin-3 with the invasive and malignant poten-
tial of primary pulmonary carcinomas [93], squamous
cell carcinomas of the head and neck [100, 101] and
basal cell carcinomas [100].

As was noted previously, there is consistent expres-
sion of stromelysins and interstitial collagenase in the
stromal fibroblasts adjacent to the malignant epithe-
lium of many human tumours.  This suggests that release
of soluble factors from invasive tumour cells may be
stimulating production of these MMPs by fibroblasts.
A collagenase stimulatory factor has been isolated and
partially sequenced from a human lung carcinoma cell
line [102].  The sequence data indicates that the protein
is novel, and has no homology to any growth or motil-
ity factors.  The factor is released into the tumour cell  me-
dia and associates with tumour cell membranes.  Recent
data demonstrate that this factor may co-ordinate syn-
thesis and secretion of several MMPs (notably intersti-
tial collagenase, gelatinase A and stromelysin-1) [103].

The gelatinases degrade denatured collagens (gelatin)
in addition to a number of native collagen types that
contain helical disruptions.  Numerous IPS studies de-
monstrate expression of gelatinase A in many types of
human tumours that is limited to the malignant epithe-
lial cells.  Two variants of bronchioalveolar carcinoma,
sclerosing and mucinous, exhibit gelatinase A staining,
which may contribute to the poor prognoses of these
subgroups [104].  Elevated gelatinase transcripts have
been identified from primary human pulmonary carci-
nomas [93], although gelatinase A transcripts were occa-
sionally present in normal uninvolved lung tissue.  Gelatinase
B was also found in 5 of 9 pulmonary tumours.  Recently,
ISH has been used to characterize gelatinase B mRNA
expression in squamous cell and adenocarcinomas [105].
All 12 squamous cell carcinomas express this enzyme.
Gelatinase B mRNA was found both in the tumour cells
and in the host stromal cells surrounding the tumour, but
not in normal lung fibroblasts.  Gelatinase B expression
was not found in the adenocarcinomas of the lung or in
the stroma surrounding these tumours.  Low levels of
gelatinase B expression was seen in a variety of normal
tissues, including bronchial epithelium, basal cell hy-
perplasia of bronchial epithelium, alveolar macrophages,
and in bronchial mucous glands.  Expression of gelati-
nase B is also evident in squamous cell carcinomas of
the skin and colon [106, 107].  

Primary breast cancers [12], prostate, and colon car-
cinomas [87] also contain elevated gelatinase A mRNA.
In both the breast and prostate tissues examined there
was a gradual increase in the immunohistochemical
reactivity for human gelatinase A as the lesions pro-
gressed from atypical hyperplasia to carcinoma in situ,
with frankly invasive carcinoma showing the strongest
levels of gelatinase A staining.  This evidence strongly
supports a specific role for gelatinase A in most human
tumours studied.  It also suggests that tumour cells may
begin to produce progelatinase A very early in their pro-
gression.  Furthermore, this suggests that whereas pro-
duction of progelatinase A is necessary, it is not sufficient
for attainment of the invasive phenotype.  Thus, critical
points in the evolution of invasive carcinomas may be
the activation of latent enzyme and the down regulation
of active enzyme by specific inhibitors.  Direct demon-
stration of the role of MMPs in general, and specific-
ally gelatinase A, in cell invasion comes from studies
in which both TIMP-2 and antibodies to gelatinase A
were used to neutralize invasion of HT1080 human
fibrosarcoma cells across reconstituted basement mem-
branes [108, 109].

TIMPs and cancer

Numerous studies correlate low TIMP expression
with enhanced invasive and metastatic properties in a
number of murine and human tumour cell lines.  Over-
expression of TIMP-2 in ras transformed rat embryo
fibroblasts results in reduction of in vivo growth rate and
locally invasive character when the transfected cells pro-
ducing TIMP-2 are injected subcutaneously, as well as
loss of lung colony formation when these cells were
injected intravenously in nude mice [110].  TIMP-1 has
also been shown to inhibit in vitro invasion of human
amniotic membranes [111, 112], and in vivo metastasis
in animal models [112, 113].  Disruption of TIMP-1 by
homologous recombination results in increased inva-
sive behaviour in embryonic stem cells.  This effect was
reversed by the addition of exogenous TIMP-1 [114].  In
addition, downregulation of TIMP-1 using an antisense
construct transfected into NIH3T3 cells causes enhan-
ced invasion of human amniotic membranes and form-
ation of tumours in athymic mice [57].  Therefore,
both TIMP-1 and TIMP-2 may function as natural
suppressors of cellular invasion.

Angiogenesis, MMPs and TIMPs

Tumour cell invasion and angiogenesis share a
number of functional similarities.  Initiation of cellular
invasion in both processes requires attachment to a
basement membrane, followed by creation of a prote-
olytic defect in the basement membrane and migration
through this defect.  After the invading cell crosses this
connective tissue barrier, cell proliferation and con-
tinued invasive behaviour result in production of either
a new vessel lumen or metastatic foci.  In addition to
sharing these functional similarities, angiogenesis and
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tumorigenesis may be mutually stimulating.  Formation
of new blood vessels permits expansion of tumour foci
in three dimensions [5].  Prior to vascularization, tumour
foci exist as small, asymptomatic lesions restricted by
the limitation of passive oxygen and nutrient diffusion.
Following vascularization, the tumour foci undergo rapid
local expansion and acquire enhanced metastatic poten-
tial that correlates directly with the degree of vascular-
ization of the primary tumour [115].  Thus, tumour
invasion and metastasis formation are closely linked
to tumour-induced neoangiogenesis.

Evidence for the role of MMPs and TIMPs in angio-
genesis come from a number of studies.  Nanomolar
concentration of TIMP-2 will block the angiogenic res-
ponse to bFGF, a principal angiogenic cytokine prod-
uced by vascularized human tumours, in the chick
chorioallantoic membrane assay (Stetler-Stevenson,
un-published data).  TIMP-1 has also been shown to
inhibit endothelial cell invasion of human amniotic
membranes in vitro [111].  Cartilage-derived inhibitor
(CDI), a TIMP-related protein isolated from bovine artic-
ular cartilage, blocks endothelial cell proliferation and
angiogenesis [116, 117].  In addition, TIMP-1 and
TIMP-2 inhibit chick yolk sac vessel morphogenesis in
response to polyamines [118].

SCHNAPER et al. [119] recently demonstrated the crit-
ical nature of the balance of MMPs and TIMPs in an in
vitro model of angiogenesis.  These experiments show
that addition of exogenous TIMPs inhibits endothelial
cell tube formation on the reconstituted basement mem-
brane matrix.  This effect was mimicked by the addition
of antibodies which neutralized gelatinase A.  Up to a
certain level, addition of increasing concentrations of
exogenous gelatinase A resulted in enhancement of
tube formation that was inhibited by addition of TIMP-
2.  However, addition of excess activated gelatinase
A beyond a critical level resulted in a decrease in tube
formation that was reversed by addition of exogenous
TIMP-2.  These results suggest that the early  stages of
endothelial tube formation are dependent on a critical
balance of active protease, gelatinase A, and inhibitor,
TIMP-2.  Excess protease activity, although initially
stimulatory, becomes inhibitory in higher concentra-
tions, and TIMP-2, can reverse this effect.  These results
demonstrate the critical nature of the balance between
active protease and protease inhibitor, but also demon-
strate that the balance can be altered by addition of ex-
ogenous protease inhibitors to block both endothelial
cell invasion in angiogenesis and tumour cell inva-
sion in metastasis.  This suggests that MMP inhibitors,
particularly gelatinase-A-specific inhibitors, may have
dual potential for clinical prevention of tumour cell
dissemination and tumour-associated neovasculariz-
ation.

Whilst the mechanism for TIMP-mediated inhibi-
tion of tumour invasion and angiogenesis appears, at
least in part, to be through inhibition of protease acti-
vity required for cellular invasion, recent observations
suggest that TIMPs affect other distinct groups of
biological activities through mechanisms other than
MMP inhibition.  These include biological activities

that are required for angiogenesis and tumour cell
invasion.  In fact, TIMP-1 was independently identi-
fied and cloned as having erythroid-potentiating activi-
ty (EPA) [120].  TIMP1/EPA augments red blood
cell colony formation by erythroid precursors (CFU-
E, BFU-E) and TIMP-2 has been shown to have similar
activity [121].  The growth-stimulatory activity in these
assays is thought to be due to a direct cellular effect me-
diated by a cell surface receptor and not through inhi-
bition of metalloproteinase activity, although the precise
mechanism is not yet known.  Recently, several labora-
tories have reported growth stimulatory effects of
TIMPs on a number of cell lines in vitro [83, 22].  The
mechanism of these effects and the requirement for met-
alloprotease inhibitory activity are unknown.

A novel growth-inhibitory activity of TIMP-2, which
is unique to this inhibitor and independent of its metal-
loproteinase inhibitory activity, was recently demon-
strated [123].  The ability of TIMP-1 and TIMP-2 to
inhibit endothelial cell growth in vitro was examined.
TIMP-2, but not TIMP-1, specifically inhibited the
proliferation of human microvascular endothelial cells
stimulated with basic fibroblast growth factor bFGF.
Also, a synthetic metalloproteinase inhibitor, BB94,
effective at nanomolar concentrations, did not mimic
the inhibitory effect of TIMP-2 on endothelial cell pro-
liferation.  Thus, the ability of TIMP-2 to block bFGF-
stimulated microvascular endothelial cell growth is
apparently not due to inhibition of matrix metallopro-
teinase activity.  This is the first demonstration that
TIMP-2 has growth-inhibitory properties that are un-
related to protease inhibitory activity.  These findings
suggest that, in addition to directly blocking tumour
cell and endothelial cell invasion, TIMP-2 can also block
bFGF- stimulated endothelial cell growth.  This further
suggests that TIMP-2 may have several activities that
could be exploited in the oncology clinic: blocking pri-
mary tumour growth through inhibition of bFGF-stimu-
lated angiogenesis as well as prevention of matrix
degradation necessary for cellular invasion, thus block-
ing infiltration of the primary tumour mass by new
blood vessels and tumour cell dissemination.  Recent
findings from ALBINI et al. [124] demonstrate that TIMP-
2 blocks cellular invasion and angiogenesis induced by
conditioned media from Kaposi's sarcoma cell condi-
tioned media.  The mechanism and potential clinical
utility of this effect are now under study.

Future directions

The emphasis of prior work has been on the role of
MMPs in ECM turnover associated with the pathology
of tumour invasion and arthritis.  In the future, studies
should also be directed towards understanding the
regulation of these enzymes and their inhibitors in
conditions of excess matrix accumulation.  This may
have important implications for a number of pulmonary
diseases, such as idiopathic pulmonary fibrosis, bron-
chopulmonary dysplasia and emphysema, to name but
a few.
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