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ABSTRACT: The lung contains a host of extracellular matrix components 
that comprise the supporting and adhesive elements of conducting air
ways, alveoli and the vascular tree. While none of these components Is 
unique to the lung, their peculiar distribution determines the architecture 
and function of this gas exchange organ. Cells and tissues or the lung 
Interact wlth the matrix through a variety of surface receptors, especially 
the lntegrlns and adhesive molecules, some of wblcb may play Important 
roles in lung Injury and repair. Collagen type I is the predominant deter
minant of tenslle strength, but as many as 11 other genetic types of collagen 
with specialized adhesive and connecting functions can be found In various 
lung structures, Including cartllage and basement membranes. Excessive 
matrix accumulation In the lung Is the result of a complex set of Influences 
on gene regulation, part of which may be due to the presence of 
Inflammatory cytoklnes that directly stimulate matrix synthesis. However, 
degradation and turnover of the matrix are also critical processes 
Influenced by many of the same mediators. Collagenase and gelatinase 
(type IV collagenase) are tightly-regulated metalloeQlymes that, together 
with a set of specific Inhibitors of metaUoprotelnases, determine the net 
abundance and distribution of collagen. Elastases of several biochemical 
types are also under tight regulation by proteinase Inhibitors. Elastin Is 
essential to lung function at the level of alveolar wall resiliency and pat
ency, and loss of elastin In emphysema appears to be due to uncontrolled 
degradation of the embryologlcally-establlshed pattern or elastic nbres 
accompanied by nonfunctional replacement as a response to Injury. Injury 
to the vascular endothelium of the lung, as well as other physiological 
Insults that elevate pulmonary blood pressure, can lead to the excessive 
accumulation of collagen and elastin In the conductance and resistance 
arteries of the pulmonary circulation. Mechanical stress and endothelial 
Injury may mediate the medial hypertrophy or these vessels. Extracellular 
matrix components are critically Involved In every stage of lung biology: 
development, normal function and acute and chronic disease states. To 
date, only glucocortlcoids, cross-linking Inhibitors, and protease Inhibitors 
have been used In a general attempt to suppress either excessive matrix 
accumulation or loss. More detailed understanding of the regulation and 
specific Interactions of matrix components Is central to the analysts of 
disease states and the development of appropriate therapeutic strategies. 
Eur Respir J., 1990, 3, 1048-1063. 

Depanment of Pathology, Vanderbilt University 
School of Medicine and Research Service 
Dept of Veterans Affairs Medical Center, Nashville. 
1N, USA. 

Correspondence: J.M. Davidson, Dept of Pathology 
C-3321 MCN, Vanderbilt University School of 
Medicine, Nashville, 1N 37232-2561, USA. 

Keywords: Collagen; elastin; emphysema; extracellu
lar matrix.; pulmonary hypertension. 

Received: January 29, 1990; accepted after revision 
June 18, 1990. 

Supported in part by National Institutes of Health 
grants AG06528 and GM37387 and the Dept of 
Veterans Affairs. 

Collagens The biomechanical properties of the lung are largely 
dependent on the correct distribution and abundance of 
interstitial connective tissue components. [1, 2] In 
addition, connective tissues are critical to the maintenance 
of the polarity and differentiated state of numerous 
epithelial cell layers lining the airways, [3] blood vessels, 
lymphatic walls, and pleural surfaces. This brief, general 
review is intended to remind the reader of the complexity 
of the connective tissue biochemistry of the lung as well 
as the recent advances made in the descriptive and 
experimental infonnation available on a variety of matrix 
macromolecules. 

The most abundant macromolecules in the lung are the 
interstitial collagens the fibrillar nature of which confers 
tensile strength properties to all of the distensible surfaces 
of the tissue: large airways, blood vessels and alveolar 
interstitium. However, there is a wide variety of 
collagen molecules, currently, as many as 13 genetically 
distinct types, some of which have multiple isofonns 
[4-6]. The majority of these molecules are 
immunologically distinct and can be specifically stained 
in tissues at the light and electron microscopic levels [7]. 
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Interstitial collagens 

This term is used to refer to the classic, fibril-forming 
collagen molecules [8) known as types I, 11, Ill, V and 
XI collagen. Every collagen molecule consists of three 
a-chains, and they may consist of homotrimers or 
heterotrimers of al, o.2, and even a3 chains, coded 
by separate genes. Each of these molecules consists of 
long , continuous triple helical domains containing 
a regular repeat of Gly-X-Y triplets (about 330) where 
X and Y are frequently proline, and the pralines in 
the Y position are frequently hydroxylated [9] to 
hydroxyproline. Each molecule begins to form as three 
a-chains are wound into a left-handed helix, while still 
being translated on membrane-bound polysomes. 
eo-translational hydroxylation of proline by prolyl 
hydroxylase [10] in the endoplasmic reticulum is essen
tial to thermal stability of the collagen helix and requires 
several eo-factors: ascorbic acid, oxygen and 
a-ketoglutarate. Nonhelical molecules are largely 
degraded intracellularly as part of an error correction 
mechanism [11-13]. Hydroxyproline is also found in 
non-collagenous lung proteins such as elastin and the 
apoprotein of lung surfactant, but at much lower 
concentrations. An amino acid unique to collagen is 
hydroxylysine, which, together with lysine, plays a role 
in the formation of certain intermolecular cross-links 
between collagen chains [14]. In addition, collagen 
contains a further unusual modification of this residue 
due to o-galactosylation of hydroxylysine and 
glycosylation of this glycopeptide to produce 
glucosylgalactosylhydroxylysine [15]. Each of the 
fibrillar collagens is synthesized as a larger precursor, 
procollagen, which contain both amino and carboxy-ter
minal extensions or propeptides. These extensions serve 
a number of roles, including initiation of chain 
association, stabilization of nascent helical molecules and 
retardation of molecular aggregation. Cleavage of each 
terminus is catalysed by separate metalloproteinases 
[16-18). Failure to cleave precursor regions of the mol
ecule or imperfections in the helix formation due to 
mutations result in either partial or complete inhibition 
of fibrillogenesis (19-21] . Collagen synthesis is under 
complex regulation by many factors including cytokines, 
steroid hormones and matrix components [22-25]. 

"Minor" collagens 

In the last decade, an increasing number of collagenous 
proteins have been discovered that are collectively termed 
minor collagens because of their low abundance in 
connective tissue [26]. Their actual biological roles may 
be quite critical, however. Many of this class fall into 
the category of non-fibrillar collagens, largely due to the 
fact that the helical regions of the constituent chains are 
interrupted at one or more positions, thus introducing 
regions of increased flexibility between rodlike 
triple-helical domains, those globular domains perhaps 
also serving other functional roles. A very ex tensive 
description of the diversity of collagens has recentJy been 

published by MAYNE and BURGESON [4) and should be 
referred to for much greater detail on the structure and 
biology of the minor collagens. With the exception of 
type X collagen, all of these molecules are likely to occur 
in lung tissue. Best understood of this class is type IV 
collagen, which appears to be exclusively a constituent 
of basement membranes below epithelial surfaces and 
the pericellular matrix of mesenchymal cells such as 
vascular smooth muscle. Type IV collagen, the mol
ecules of which are composed of three different alpha 
chains in varying proportions, is the principal collagen 
of basement membranes. Type IV is not organized in 
parallel fibrillar arrays, but is arranged in a loose 
meshwork within the basal lamina along with several 
other glycoproteins. This mode of assembly is based in 
part on the molecular arrangement of type IV molecules: 
two triple-helical segments of unequal length connected 
by a hinge region and a relatively large, globular domain 
at the carboxyl (COOH)-terminus that promotes end-to
end chain associations rather than lateral aggregation. 
Protein and deoxyribonucleic acid (DNA) sequence 
analysis as well as rotary shadowing studies have led to 
the proposed "chicken wire" model of molecular ar
rangement. 

Type VI collagen is another species with a short, 
central helix containing two imperfections and N- and 
C-terminal globular ends that appear to promote linear 
aggregation of tetrameric aggregates that predominantly 
assemble by end-to-end association, to produce linear 
microfibrillar aggregates. Type VI is distributed widely 
in interstitial tissues. and its biological role is largely 
unknown. The al and a2 chains of type VI collagen are 
hybrid molecules, containing type A repeat units 
representative of von Willebrand factor [27]. A third, 
less homologous and much larger (250--350 kDa) a3 chain 
has recently been described in the chick. This is an 
unusually large and heterogeneous molecule, containing 
peptide domains resembling the platelet glycoprotein Ib, 
the type 11 domain of flbronectin, and a motif 
characteristic of Kunitz-type proteinase inhibitors. Both 
a collagen-binding domain and an arg-gly-asp cell 
adhesion are present, suggesting that this chain may be 
a multifunctional adhesive protein [28]. Type VI has been 
suggested to form a microfibrillar connection between 
other extracellular matrix components. 

Type VII collagen is localized to anchoring fibrils and 
thus plays a critical role in the attachment of epithelial 
sheets to underlying connective tissue (29]. Blistering 
diseases such as recessive dystrophic epidermolysis 
bullosa can arise as a result of the destruction or im
paired synthesis of this collagenous protein. Although 
this unusually long (180 kD) collagen aggregates later
ally into fibrils, ultrastructure suggests that these fibrils 
then associate in antiparallel pairs; thus, type VII occurs 
as short bundles of fibres which appear to interlace in the 
upper dermis with other matrix components, particularly 
type I collagen. Type vm collagen is incompletely 
characterized but is synthesized by endothelial cells in 
an unusual trimeric form and is located in some basement 
membranes. Type IX collagen is unusual in that it is 
also a proteoglycan, containing one glycosaminoglycan 
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side chain. It is eo-distributed with type II collagen in 
cartilage, possibly more closely associated with the 
surface of type 11 fibrils. An alternate (shorter form of 
type IX is expressed in cornea, due to use of a second 
transcription start site [30]. Also associated with the 
cartilage collagens is type XI collagen, which has a strong 
homology to type 11 (a3[XI] is identical to the al[II] 
chain). Like type IX, type XI is apparently a minor 
component of most type 11 fibrils. In bone, type X 
collagen is associated with the hypertrophic zone, of 
ossifying cartilage, and is thus not likely to exist in the 
lung. The status of type Xll is still somewhat uncertain, 
but it has been proposed to be a minor component of the 
type I fibre, somewhat analogous to the proposed role of 
type IX collagen in type II fibres of cartilage. Type XIII 
collagen appears to be a member of the basement 
membrane family. Type V collagen also is frequently 
located in pericellular sites, but it fulfils all the criteria of 
a fibrillar collagen: both N- and C-termini are processed 
and it consists of an approximately 1000-amino acid 
continuous triple helix. Type XIII collagen is listed as 
pericellular only because of its partial sequence 
homology with type IV collagen [31]. This protein is 
only identified from its complementary DNA (cDNA) 
sequence, and its pattern of synthesis or tissue distribu
tion is presently under investigation. 

Elastic fibres 

Lung compliance is largely governed by the abundance 
and arrangement of interstitial collagen and elastin [32]. 
Collagen fibres determine the maximal limits of expansion 
of the various lung structures, including alveoli, 
bronchioles and blood vessel walls, while elastic fibres 
provide the resiliency needed to restore the lung structures 
to their original shape and volume after inspiration. 
Increased elastic fibres in peripheral arterioles are 
characteristic of pulmonary hypertension. Elastin also 
increases in pulmonary fibrosis. Loss of elasticity is a 
feature of pulmonary emphysema. Both the destruction 
of elastic fibres and lack of their functional replacement 
contribute to this pathology. Therefore, it is important to 
consider their composition and biology. 

Elastin 

Elastin is a biological rubber [33). It is synthesized as 
a soluble precursor called tropoelastin (MR=70,000), 
which is rapidly cross-linked after secretion into a highly 
polymerized and randomly oriented network of elastin 
molecules [34]. The cross-linking process is initiated by 
the same mechanism in collagen and elastin: oxidative 
deamination of epsilon amino groups of lysine to form 
reactive aldehydes (alpha-amino adipic-semialdehyde) 
through the action of lysyl oxidase [35) in the presence 
of copper and oxygen and the co-factor paraquinoline 
quinone. Unlike collagen, paired lysine residues are 
frequently found embedded in sequences such as 
ala-lys-ala-ala-lys-ala, and elastin cross-links are 

frequently formed between four lysyl residues on at least 
two tropoelastin molecules to form a cyclic condensation 
product termed desmosine or isodesmosine. These two 
cross-links are virtually unique to elastin and can be used 
as a measure of elastin concentration or elastin breakdown, 
since they are resistant to hydrolysis or proteolysis [36]. 

The rubbery properties of elastin [37] derive from its 
unusual primary structure which consists of alternating 
cross-link domains and hydrophobic domains containing 
repeating units of small, hydrophobic amino acids. 
Although structural models of elastin can be built from 
synthetic peptides resembling elastin [38) there is little 
evidence for structure in the protein itself, and the 
elasticity of the protein can be more easily understood as 
deriving from random coil behaviour of a heavily 
cross-linked material. 

Elastin is the product of a single gene (39) located on 
human chromosome 7 but evidence from cDNA cloning 
[40] and biosynthetic studies [41) suggests that there is 
considerable protein polymorphism due to alternative 
splicing [42]. This could contribute to the randomness 
of tropoelastin chain association or signify distinct forms 
of the protein for either tissue specific or developmentally
related functions. 

Microfibrillar components 

The other morphological component of the elastic fibre 
is the so-called microfibrillar component, a 10-14 nM 
aggregation of filaments, the deposition of which at sites 
of elastic fibres precedes the accumulation of amorphous 
elastin [43]. The principal component of these fibres 
appears to be a 350 kDa glycoprotein, fibrillin [44). 
This molecule is relatively insoluble, cysteine-rich (10-
12%), and extensively cross-linked by disulphide bonds. 
Although all normal elastic fibres contain microfibrils, 
fibrillin is distributed more widely in structures such as 
the ciliary zonules of the eye. The microfibril may well 
consist of more than one structural protein [45). 

Adhesion molecules 

In the past decade, the roles of cell attachment factors, 
or adhesive proteins, have expanded. These molecules, 
all glycoprotein in nature, are involved in cell-matrix 
interaction by virtue of the fact that they act as ligands 
for cell surface receptors, as well as possessing binding 
sites for various components of the extracellular matrix. 
These molecules would appear to be crucial in processes 
such as cell attachment/detachment, cell migration, 
morphogenesis and matrix organization. 

Fibronectin 

The best studied adhesion protein is fibronectin, a 
440,000 dimer of a large glycoprotein with binding sites 
for many components including collagen, fibrinogen, 
heparan sulphate (heparin), streptococcal walls and its 
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cell surface receptor [46, 47]. The protein molecule is 
divided into a number of functional and structural 
domains. A single fibronectin gene encodes multiple 
forms of the protein through an elaborate mechanism of 
alternative splicing [48]. The same mechanism is 
responsible for differences between cellular and plasma 
forms of the glycoprotein, which had been originally 
identified as the circulating molecule, cold-insoluble 
globulin [49]. Fibronectin is critical in mediating cellular 
attachment to fibrillar collagen; however, it also appears 
to be involved in opsonization of denatured collagen, as 
its affinity for gelatin is substantially higher. Fibronectin 
can also bind to the collagenous domain of complement, 
Clq [50]. 

Primary sequence analysis and peptide mapping stud
ies lead to the definition of the cell binding region of the 
fibronectin molecule, which is surprisingly small, 
consisting of an arg-gly-asp-ser (RGDS) sequence [51]. 
Several other attachment factors, including vitronectin 
and even type I collagen, contain the RGD sequence, 
indicating that these attachment factors can use the same 
type of cell surface receptor. The receptors for fibronectin 
and vitronectin are members of a growing family of 
integrins [52] transmembrane complexes that possess sites 
which interact with the cytoskeleton on their cytoplasmic 
face. This structural arrangement probably forms the 
basis for the coupling of the cytoskeleton with the 
extracellular matrix [53]. 

Laminin 

Laminin is a distinct attachment factor for epithelial 
and endothelial cells. It is a very large, trimeric glyco
protein consisting of three genetically distinct chains: A, 
Bl and B2 [54]. The A chain of laminin is about 400 
kDa in size, while the two B chains are somewhat smaller, 
around 280 kDa. Laminin molecules consist of combi
nations of these three chains that assemble into a cruciate 
structure with binding sites for the cell surface, type IV 
collagen, and heparan sulphate proteoglycan. Laminin is 
a component of all basement membranes [55] and 
presumably acts as a bridge between epithelial cell plasma 
membranes and the pericellular matrix (basal lamina). 
Two cell surface receptors for laminin have been char
acterized. The larger species is a member of the integrin 
family [56, 57] and is thus likely to be involved in 
cell-substrate interactions via an arg-gly-asp (RGD) 
domain present in the laminin A chains. The smaller 
receptor molecule is a 67 kDa moiety [58, 59] which 
also appears to interact with elastin, possibly through a 
Ieu-gly-thr-ile-pro-gly sequence [60] and may be involved 
in chemotactic or phagocytic responses. A smaller 
laminin-binding molecule (32 kDa) has also been 
identified in tumour tissue [61]. The 67 kDa laminin
binding protein is also a galactose lectin, and sugar 
binding apparently displaces th~ glycoprotein from its 
binding site. Different regions of laminin have been 
shown to promote neurite outgrowth [62], heparin 
binding [63], and cell adhesion [64]: one of the cell 
adhesion sequences, tyr-ile-gly-ser-arg; (YIGSR), can 

also modulate the metastatic potential of certain melanoma 
cell lines [65]. 

Nidogen 

This protein (MR=150,000), also known as entactin, is 
present as a complex with laminin, binding in equirnolar 
quantities to the so-called "cross" region of the molecule 
[66). 

Vitro nee tin 

Subsequent to the characterization of fibronectin, a 
second attachment factor was described in serum [47]. 
Because this molecule promotes the attachment of cells 
to glass and other non-proteinaceous surfaces, it was 
termed serum-spreading factor or vitronectin. This 
glycoprotein has an apparent molecular weight of 78 kDa 
and binds to cell surfaces through the same arg-gly-asp 
sequence via a distinct member of the integrin receptor 
system. 

Thrombospondin 

Platelets contain significant quantities of this adhesive 
glycoprotein, which shows specificity of binding for the 
platelet glycoprotein GP IIIb and sulphated glycolipids. 
Thrombospondin is also elaborated as a matrix 
component by various mesenchymal cells and acts as an 
adhesion molecule. In the lung, thrombospondin is 
located beneath the glandular epithelium [67]. 

Cell surface receptors 

Collagen recognition 

Every component of connective tissue is likely to 
encounter and interact with a variety of cells during its 
lifetime in the extracellular matrix. Recognition of each 
of the matrix components occurs through cellular 
receptors, some of which are rather specific for their 
ligands [68]. Several collagen receptors have been 
described [69, 70]. Another functional receptor is 
implied from observations on fibroblast and mononuclear 
cell chemotaxis to collagen or collagen fragments [71, 
72]. Since the recognition system is present on phagocytic 
cells, this receptor could be involved in scavenging of 
collagen degradation products. A third recognition 
complex is present on the surface of platelets [73] where 
it provides a trigger for the discharge of the platelet when 
it comes into contact with exposed connective tissue as 
the result of traumatic injury [74]. In the lung fibroblast, 
interferon-y is reported to increase the efficiency of 
collagen deposition by increasing the number of collagen 
receptors [75]. Recognition molecules for each of the 
thirteen collagen types have not been discovered, although 
anchorin [76] has specificity for binding of type II 
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collagen on the chondrocyte cell surface. However, it is 
conceivable that the nonhelical portions of some of the 
other, nonfibrillar collagens might have unique epitopes 
recognized by yet another receptor class. Epithelial cells 
possess a unique transmembrane proteoglycan that acts 
as a matrix receptor, discussed below. 

Elastin receptors 

An elastin receptor associated with fibroblast plasma 
membranes has recently been characterized [77, 78]. 
Although its recognition site appears to be an unusual 
hydrophobic sequence in elastin (val-gly-val-ala-pro-gly), 
the same molecule apparently binds to laminin as well. 
This receptor may be present on monocytes, which arc 
specifically attracted to elastin peptides [79]. The 
so-called receptor molecule is not an integral membrane 
protein, but it appears to exist in a complex with two 
other transmembrane components. An unusual feature 
of this binding protein is its lectin properties. It appears 
to be related to another galactose-binding lectin (galaptin, 
14 kDa lectin) described by others [80]. Possible 
functions include chemotactic response, scavenging of 
degradation products, organization of elastic fibres in the 
matrix, and cell attachment. The role of this molecule is 
still controversial [81]. Another protein, termed 
elastonectin [82], has been implicated in attachment of 
elastic fibre fragments to cell surfaces. Elastonectin 
activity is reported to be induced by the presence of 
elastin peptides [83]. Elastin itself is not known to be a 
good substrate for cell attachment, probably because of 
its highly hydrophobic character. Despite this fact, cells 
such as smooth muscle are intimately entwined in an 
elastic fibre network and elastic fibres can be visualized 
very near the plasma membrane [84]. Thus, other 
pericellular molecules may facilitate the association of 
cells with surrounding elastic fibres. 

Jntegrins 

Integrins are a family of transmembrane glycoproteins 
involved in recognition of matrix components and some 
other circulating elements [51, 52]. Integrins were also 
independently revealed as a group of Very Late Antigens 
(VLA) appearing on the surface of cultured T-cells [85], 
apparently involved in lymphocyte homing to target 
organs [86, 87]. They each consist of a heterodimer of 
alpha and beta subunits that are each representatives of 
gene families. Thus, the fibronectin and vitronectin 
receptors appear to share the same beta subunit and both 
recognize the same arg-gly-asp sequence in their 
respective ligands, but the alpha subunits are each unique 
and specific for the ligand. The vitronectin receptor is 
apparently identical to the platelet surface glycoprotein 
gpllb/IIIa. Laminin and type IV collagen, in contrast, 
have recently been shown to bind to a distinct integrin 
with a 140-180 kDa alpha subunit and an 120 kDa beta 
subunit on the surface of epithelial cells. Integrins are 
membrane-embedded bridges between the actin 

cytoskeleton and fibrous elements of the extracellular 
matrix [88]. However, the exact linkage mechanism is 
not known; both vinculin and talin have been shown to 
rapidly redistribute at focal contacts induced by 
attachment of cells to substrates containing fibroncctin 
or vitronectin. While integrins are not classical signal 
transducers, interactions of fibronectin with its integrin 
receptor can alter protease production [89]. 

Proteoglycans 

In the lung, these molecules are most prominent in the 
cartilaginous elements of the bronchial tree, but their 
distribution is ubiquitous. Proteoglycans consist of 
families of core proteins (90] that can be extensively 
modified by the addition of glycosaminoglycan 
polysaccharide side-chains at serine residues via a 
xyloside linkage [91]. Numerous glycosaminoglycans are 
distinguished by their repeating disaccharide subunits, 
each consisting of an amino sugar and a uronic acid. 
Sulphation of these sugars also varies as a result of post
translational modification. Because of the high density 
of charged sulphate and carboxylate groups, the resultant 
hybrid structures are extremely hydrophilic. 
Proteoglycans are likely to have a very extended con
formation in tissues to maintain their hydration. In 
cartilage, proteoglycans associate with long chains of 
hyaluronic acid in co-operation with a link protein to 
form enormous multimolecular complexes. 

Cell surface receptors for hyaluronate have been 
identified [92}, and one species of heparan sulphate 
proteoglycan can exist as a transmembrane glycoprotein 
with adhesive activity. The membrane-bound form of 
this molecule is referred to as syndecan [93], and 
possesses binding activity for interstitial collagens [94], 
fibronectin [95] and thrombospondin [96} . 
Syndecan expression on developing epithelia has 
been noted in association with mesenchymal expression 
of a large, adhesive, matrix glycoprotein variously termed 
tenascin, cytotactin or hexabrachion [97], that is 
involved in early morphogenetic interactions 
between epithelium and mesenchyme such as seen in 
lung development as well as sites of tissue repair 
[98]. Heparan sulphate proteoglycan is also a 
characteristic component of basement membranes together 
with laminin and type IV collagen. Proteoglycans 
have the capacity to bind other macromolecules, 
including collagen and growth factors such as fibroblast 
growth factor [99] and transforming growth factor-S 
[100]. 

Matrix turnover 

Matrix turnover is a critical element of lung biology. 
The net accumulation .and distribution of any matrix 
component is governed by a dynamic balance between 
synthesis and degradation [101, 102]. Many of the 
pathological processes in pulmonary tissue result from 
the expression and discharge of matrix-degrading enzymes 
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into the extracellular space. This proteolysis can pro
duce irreversible damage to lung architecture and, thereby, 
lung function. 

Collagen degradation-neutral meta//oproteinases 

Initial degradation of fibrillar collagen is initiated by a 
very specific enzyme expressed by fibroblasts and 
mononuclear cells [103, 104]. Cleavage of collagen 
triple helices in a unique locus partially denatures the 
triple helix and allows access by other general proteinases. 
Thus, collagenase activity is the rate-limiting step in 
degradation of collagen types I, II and Ill. Activity of 
the enzyme is in turn regulated at at least three levels: 
expression of the proenzyme, activation by autocatalytic 
or endoproteolytic mechanisms and the relative 
abundance of inhibitor species. Other collagens with 
either less thermostable triple helices or intervening 
non-helical domains may be degraded by other, more 
generalized, proteinases. Collagenase is synthesized as a 
zymogen that can be activated in vitro by limited 
proteolysis with serine proteases such as trypsin or 
plasmin [105]. The enzyme is also capable of 
autoactivation without scission of any peptide bonds or 
by mercurial compounds such as aminophenyl mercuric 
acetate, presumably through a conformational change. It 
has been suggested that plasminogen activator might be 
the physiological activator of collagenase [106]. 

Metal/oproteinase inhibitors. Inhibition of collagenase 
is likely to be a critical means of controlling enzyme 
activity. Tissue inhibitor of metalloproteinases (fiMP, 
MR=25,000), [107, 108] irreversibly binds to and 
inactivates all classes of metalloproteinases with high to 
moderate affinity. Its expression is frequently co
ordinate with collagenase expression, leading to the 
concept that TIMP may act as a scavenger of stray 
enzyme molecules and thereby allow only focal, 
pericellular digestive activity. TlMP levels in amniotic 
fluid may be an indicator of lung maturity [109]. Alpha-
2 macroglobulin is also capable of inhibiting collagenase, 
although it is less likely that this high molecular weight 
serum factor is present in the interstitium except after 
traumatic injury. 

Gelatinases. Native interstitial collagen molecules are 
only degraded by vertebrate or bacterial collagenases, 
but another metalloproteinase secreted by a variety of 
cells can further degrade the denatured collagen molecule. 
Gelatinase has a fairly broad spectrwn of substrates but 
has a preference for denatured collagen [110]. As 
implied by the name, this class of metalloproteinases is 
capable of cleaving denatured collagen molecules. Since 
the initial scission of native, fibrillar collagen by 
collagenase reduces the thermostability of the triple helix 
below body temperature, it is reasonable that this class 
of enzymes acts in the second phase of collagen degra
dation to smaller peptides. The 72 kDa gelatinase is 
synonymous with type IV collagenase, which cleaves 
native type IV collagen molecules in a specific fashion. 

Another 92 kDa gelatinase is also produced by a variety 
of cell types. Many of the collagen molecules with 
discontinuous helices (types IV, VI, VIII, IX) show 
fragmentation with a variety of nonspecific proteases, 
including elastase and trypsin. Gelatinase has recently 
been cloned, [111]. and sequence data show strong 
homology with the other metalloproteinases, collagenase 
and stromelysin. A new metalloproteinase inhibitor with 
greater affinity for gelatinase has recently been described 
[112]. 

Stromelysin. The third, significant metalloenzyme family 
[113] member is stromelysin, initially cloned as a gene 
the expression of which was induced in CHO cells by 
epidermal growth factor. It was subsequently identified 
as a distinct protease activity in a variety of mesenchy
mal cells. This enzyme degrades a broad range of 
substrates, including proteoglycan core protein, elastin, 
and other globular proteins. It has the broadest spectrum 
(i.e. lowest substrate specificity) of action of any of the 
neutral metalloproteases. 

Elastin degradation 

The reappearance of elastin at sites of injury is often 
very protracted [114], although acute destruction of 
pulmonary elastin in experimental models can elicit a 
rapid rebound in elastin accumulation [115]. More 
importantly, replacement of functional elastic fibres 
appears to be virtually impossible once the architecture 
of the alveolar wall is destroyed. Thus, control of elastin 
degradation is of key importance in managing pulmonary 
disease. The enzymes that degrade elastin are termed 
elastases [116], but it must be remembered that they are 
all very broad in their substrate specificity, unlike 
collagenase. The prototype for elastin degradation has 
been the elastases expressed in the pancreas, but the 
elastases involved in lung pathology are genetically and 
biochemically distinct molecules. 

Serine elastases. Neutrophil elastase is a relatively 
efficient protease for elastin [117]. It is stored in 
azurophilic granules and released from granulocytes on 
stimulation. It is a typical serine protease [118], and the 
enzyme is strongly inhibited by alpha-1-anliprotease · 
(a,PI) present in serum. In humans, monocytic cells are 
known to be able to take up the neutrophil enzyme [119], 
but they can also produce a distinct metalloenzyme un
der certain circumstances. Because of the severe risk of 
emphysema in individuals genetically deficient in all, 
neutrophil elastase has been implicated as the key de
structive element in the pathogenesis of pulmonary 
emphysema. This inhibitor is present in lungs and found 
in association with elastic fibres [120]. 

Meta//oelastases. Murine macrophages are known to 
express a biochemically distinct elastase which has 
considerable elastolytic activity. Although initial studies 
with human cells failed to identify a similar activity in 
human monocytic lines, this activity has been detected 
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under conditions wherein masking of activity by the 
eo-expression ofTIMP or other inhibitors [121] has been 
reduced in macrophage cultures. It is uncertain whether 
this metalloproteinase is a completely novel enzyme or 
related to stromelysin. In the mouse, these are two 
distinct activities, however [122]. Since elastolysis can 
be seen in the absence of large granulocyte infiltrates, 
macrophage (or fibroblast) elastase activity may turn out 
to have an important role in lung pathology. 

Pathologies of lung connective tissue 

It is not an exaggeration to state that lung connective 
tissue will be altered by virtually any pathological 
condition, because lung function and lung matrix are so 
intimately intertwined. However, this essay will be 
concluded with a discussion of only three broad 
categories of lung disease which are of particular interest 
because the primary effects appear to be at the level of 
connective tissue or connective tissue cells. Moreover, 
they are conditions which appear to produce irreversible 
structural changes in the lung architecture. 

Emphysema 

From the biochemist's perspective, pulmonary 
emphysema is a disease characterized by excessive or 
uncontrolled breakdown of interstitial elastin, leading to 
loss of lung compliance and adequate ventilation of 
airspaces. According to the proposals of Janoff and 
others, the defect is the result of an imbalance between 
elastase activity and inhibitory capacity of antiproteases 
[123], principally <X1PI. Oxidant injury [124] can com
pound the problem, flfStly by inactivation of a

1
PI [125] 

and, secondly, by stimulating proteolysis of connective 
tissue [126, 127). Clearest evidence for the role of enzyme 
inhibition in the aetiology of pulmonary emphysema 
comes from studies on the genetic deficiencies in a

1
PI. 

A large number of human mutations either have reduced, 
inactive, or no inhibitor produced by liver and other 
tissues, and these affected individuals are at great risk 
for development of the disease [128]. The inhibitor 
appears to work by acting as a surrogate substrate for 
many serine proteases but, upon cleavage, the enzyme 
becomes trapped in the complex as an inactive 
intermediary complex. The active site of the molecule 
contains a methionine which is shown to be readily 
oxidized by a variety of mechanisms, including cigarette 
smoke and the peroxide intermediates released by 
neutrophils during activation. Two therapeutic strategies 
are being tested for treatment of a

1
PI deficiency: direct 

replacement of the protein with natural or recombinant 
products and genetic therapy by direct introduction of a 
normal et1PI gene into the patient's cells. Other 
antiproteases are detected in lung tissue and lung 
secretions [129], and synthetic inhibitors may have 
therapeutic value [130]. Since a

1
PI-deficient patients 

develop overt emphysema over the course of many years, 
either activation of neutrophil elastase in the lung is a 

rare event or other protective mechanisms afford partial 
protection. 

Interstitial elastin is destroyed or damaged in 
emphysema, and the pathology is due to the failure of 
the interstitium to restructure in a fashion that results in 
functional air exchange units. Instead, elastin is 
nonfunctionally accumulated in lung tissue, and the sites 
of resynthesis are not clearly defined. Although models 
of emphysema that use intratracheal instillation of 
elastases can destroy elastic fibres, [131] neither 
experimental nor naturally emphysematous lungs show a 
net loss of total insoluble elastin [110]. Pulmonary 
architecture is the culmination of a precise sequence of 
morphogenetic events, leading from a coarse glandular 
arrangement to the delicate framework of alveoli and 
terminal airways. Although the signal and response 
mechanisms for resynthesis of various components of 
the lung are apparently functional, pulmonary tissue can
not regenerate alveolar morphology after extensive 
destruction of the basement membrane and alveolar 
interstitium. 

Fibrosis 

Excess connective tissue accumulates in the lung as a 
sequel to numerous forms of injury, usually involving 
acute or chronic inflammation [132-134]. Collagen 
accumulation rises significantly in human pulmonary 
fibrosis [135] through a combination of its increased 
synthesis and decreased degradation [136, 137]. As a 
result of deposition of collagen [138, 139] and other 
molecules, including fibronectin [140] and elastin [141, 
142] in the normally compliant regions of the 
parenchyma, gas exchange diminishes. Fibrotic 
deposits are also likely to change the gas diffusion 
efficiency of the alveolar wall and the fluid dynamics of 
the lung microcirculation. Fibrotic changes are patho
logical in a number of organs, and it is reasonable to 
assume that common mechanisms act to stimulate the 
over-accumulation of collagen, elastin, or proteoglycans. 
The distribution and abundance of collagen types may 
also change [143, 144]. There is experimental support 
for the concept that connective tissue cells are 
phenotypically modulated to produce increased matrix in 
fibrotic lung diseases [145], since injury with agents such 
as bleomycin can produce persistently elevated collagen 
production [146]. Fibroblasts may also over-express 
matrix proteins due to increased sensitivity to fibrogenic 
stimuli such as transforming growth factor beta (TGF-B) 
or reduced sensitivity to inhibitory signals such as 
hydrocortisone, as suggested in keloid fibroblasts [147]. 
It is probable that signals for matrix modification come 
from cells responding to injury: inflammatory cells, 
endothelial cells and epithelial cells. There are a host of 
potential mediators including cytokines that can affect 
collagen metabolism [148], many acting to modulate the 
degradative pathway by altering either protease 
production, activation, or inhibition. Alternatively, 
excessive fibroblast proliferation may be stimulated by 
mitogens, and excess matrix accumulation could directly 
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arise from increased numbers of connective tissue 
producing cells [149). 

Increased collagen metabolism can be reflected in 
various markers. The N-propeptide of type Ill collagen 
in serum has frequently been used to detect fibrotic states 
[150), and collagen met.abolites are present in increased 
amounts in pulmonary disease, inc luding fibrotic lung 
disorders s uch as idiopa thic pulmonary fib ros is, 
sarcoidosis [151- 153) and cystic fibrosis [154, 155). 

Pulnwnary hypertension 

An important subset of lung pathologies involving 
connective tissue are the changes which occur in vessel 
walls during periods of inc reased pressure in the 
p ulm o n a ry arte ry . T hi s p a thology has bee n 
experimentally induced by many forms of lung insult, 
including air embolization, hypoxia, bleomycin, and 
monocrotaline intoxication. Depending upon the na ture 
of the stimulus, peripheral vascular resistance may rise, 
as in the injury mode ls, whereas , in hypoxia, 
transformation of vessel walls may be directly driven by 
right heart output Pathological changes in hypertension 
include the thickening of medial and adventitious layers 
in peripheral vessels and the accumulation of collagen 
and e lastin. Experimental studies indicate that the struc
tura l changes in response to hypertension are quite rapid 
(2-4 days) [1 56), and one expects, therefore, that matrix 
gene expression is rapidly accelerated and then subsides. 
As in fibrosis [157- 159). signals for matrix remodelling 
may be through soluble mediators expressed by endothe
lial or inflammatory cells; however, vascular smooth 
muscle cells can autogenously respond to increased 
mechanical stress by producing higher levels of matrix 
proteins, such as collagen and elastin. 

There is abundant, undisputed evidence that chronic 
hypertension is accompanied by structural changes to 
blood vessel walls that include cellular hypertrophy, 
hyperplasia, and accumulation of interstitial matrix 
components, principally collagen and elastin [160-162). 
The mechanisms leading to the development of this 
condition are uncertain but vascular injury is a precursor 
of many forms and models of hypertension [163). Some 
of the vascular changes are irreversible [164). Although 
there is evidence for a contribution by accessory, 
inflammatory cells [165], and overlying endothelium has 
a distinct effect on the pathogenesis of vascular injury 
[166], the pathology is manifested by the vascular smooth 
muscle cell [167- 169]. This cell population may 
represent an altered smooth muscle cell (SMC) pheno
type [170]. SMC involvement was demonstrated most 
recently and clearly by the work of MtotAM et al. [171] 
using a model of pulmonary hypertension, the hypoxic 
calf. This model, in addition to showing the typical 
morphological and physiological changes to pulmonary 
arterioles, illustrated three important concepts: matrix 
production by arterial tissue was increased in hyperten
sive animals, SMC derived from the pulmonary arteries 
of these animals were higher in elastin production, and 
these SMC appeared to modify serum in a way that 

increased its ability to stimulate elastin production by 
normal nuchal ligament libroblasts. KECLEY and JoHNSON 
[172] have likewise evaluated elastin and collagen ac
cumulation and synthesis io a rat model of renal hy
pertension that demonstrates the c lose coupling between 
the induction of a hypertensive state and the production 
of new connective tissue in the vessel wall, maintaining 
proper compliance and flow properties. Although relative 
concentrations of collagen and elastin arc unchanged in 
the hypertrophic vessel wall , [171, 173] these matrix 
molecules are key markers of !he physiological state of 
vascular tissue. 

Role of mechanical stress. There are a host of causes 
that can initiate the morphological and biochemical 
changes seen in hypertension, including endothelial injury 
[174, 175], vasoconstric tion [176) and obstruction of 
blood flow [177]; however, little is known with certainty, 
at the mechanistic level, to link chronic elevation of blood 
pressure to medial wall changes. Obvious possibilities 
include mechanical stress, stress-induced tissue injury, 
[178), altered blood flow [179), a ltered interac tions 
between leucocytes and the vessel wall [180], changes in 
matrix composition [181] and changes in leve ls of 
circulating hormones or vasoactive peptides [1 6 1]. Other 
studies have suggested that proteolytic damage to the 
vessel wall could initiate structural changes characteristic 
of hypertens ion [182]. A number of experiments 
suggest tha t mechanical stress alone is sufficient to 
initiate matrix accumulation [183-185]. The classic study 
of LEUNG et al. [186] showed that SMC, grown on an 
elastin matrix that was cyclically stretched, produced 
more protein and collagen than unstretched controls, more 
recentl y s uggested to be the result of changing 
adenosine 3'5-cyclic phosphate (cAMP) levels [187]. 
More recent findings in o ther cell systems [188-190] 
have confirmed this observation as well as showing 
increased proliferation, and preliminary reports of the 
effects of monotonic stretching on aortic rings of chick 
aorta, with or without intact endothelium, indicate that 
stretched tissues can respond in a similar manner [191]. 
Below. data from this laboratory also support the 
hypothesis that matrix accumulation in vessel walls is 
due, at least in part, to mechanical forces. 

Hormones and cytokines. In chronic hypertension, 
structural changes in the vessel wall can become 
permanent, suggesting that the phenotype of the SMC is 
shifted to one of enhanced wall thickening [170]. Part of 
this could arise from the observed polyploidy of 
hypertensive smooth muscle cells in experimental animals 
[192- 194], but evidence from MECHAM et al. [171] and 
our own work suggest that SMC of hypertensive vascular 
tissue produce greater quantities of elastin per unit DNA 
than cells from normotensive vessels, even in the same 
culture environment [195]. Therefore, either the genes 
or the sys te ms that regul a te matrix genes arc 
reprogrammed in some way to produce more (or degrade 
less) matrix. ln addition, external signals derived either 
from the local or humoral environment of the vessel wall 
could play an important role in maintaining or amplifying 
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the hypertensive phenotype [160]. Among the potential 
effector molecules, TGFB is a prime candidate, since it 
is the most potent agonist of matrix production and an 
antagonist of matrix degradation [196]. Insulin-like 
growth factor·! has a positive effect on elastin production 
[197, 198]. Glucocorticoids can also be up-regulators of 
matrix production, particularly in developing connective 
tissue and derived cells, but also in certain adult-derived 
cells, including SMC [199]. Platelet-derived growth 
factor could also play an early role in SMC hyperplasia 
[200, 201] but it fails to stimulate matrix production 
[202), and is reported not to be significantly expressed in 
the hypertensive vessel wall [203). 

TGFB is a multipotenlial inhibitor of cell division, 
present in tissues including the lung [204), that has been 
widely implicated as a mediator of fibrotic changes taking 
place during development [205]. in tissue repair [206], 
and most importantly in the aorta of hypertensive 
animals [186]. TGF~ has properties consistent with a 
role in the pathogenesis of hypertension [207, 208]. Recent 
studies by our collaborator, E. A. Perkett, strongly suggest 
that TGF~ is present in the lung during the progression 
of hypertens ion [209] and o ur own findings are 
consistent with TGF~ being an elastogenic signal in 
pulmonary hypertension. TGFP appears to act through 
receptors with protein kinase activity [196, 210], but fur· 
ther events leading to increased matrix expression are 
unknown. A site in the mouse a1(I) collagen promoter 
has been linked to TGF~ response [211] but others have 
suggested that matrix formation could be regulated by 
altered transcript stability [212, 213], as was previously 
suggested for glucocorticoid-mediated down-regulation 
of collagen transcript abundance [214]. 

Few studies have considered how mechankal distortion 
of cells could lead to increased matrix production. 
Possible direct effects of mechanical stress are changes 
in ion fluxes [215] (Ca'"', K~) leading to phospholipid 
mobilization, [216] cyclic nucleotide metabolism, [187] 
and protein phosphorylation [217]. Stress may also induce 
the production of a cytokine signal that produces positive 
feedback. ln wounds, we have shown that TGF~ 1 
induces it own production, for example [218). Matrix 
regulation has not been tightly linked to the activation of 
a particular signal transduction pathway, al though cyclic 
nuclcotides can participate to some extent in the regulation 
of collagen and elastin l219, 220], and theophylline is 
reported to reduce stretch-induced stimulation of protein 
production [187]. Whether hypertension or mechanical 
stress mediate their effects through a TGF~ receptor and 
direct mechano-reception is still an open question. 

Biochemical markers of lung disease 

There are few clinical biochemical markers for vessel 
wall thickening or other fibroproliferative disorders, 
although the N-propcptides of collagen I and Ill have 
been used in some applications [221). Elastin peptides 
detected in plasma and desmosioes (elastin-specific 
cross-Unks) present in plasma and urine have been 
suggested as markers of elastin destruction [222-224) 

but they have not previously been measured under con
ditions of net elastin accumulation. These peptides may 
have significant biological activity in the lung [79]. Our 
preliminary data [225] lend support to the concept that 
elastin turnover is a hallmark of medial wall thickening 
[226) , and that elastin peptides could be of diagnostic 
value in lung and vascular pathology [227]. 
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Revue genera/e. Biochimie et rotation de /'interstitium 
pulmonaire. J M. Davidson. 
RESUME: Le poumon contient une quantite de composantes 
de la matrice extra-ccllulaire qui comportent les ~l~ments de 
support et d'adhesion des voies aeriennes de conduction. des 
alv~oles et de l'arbre vasculaire. Alors qu'aucun de ces 
composants n'est sp~cifique au poumon, !cur distribution 
particuliere determine !'architecture et la fonction de cet organe 
d'~changes gazeux. Les cellules et les tissus du poumon 
interagissent avec la matrice par une varieti de reccpteurs de 
surface, en particulier les int~grines et les molecules adhesives, 
dont cetaines peuvent jouer des roles irnportants dans l'agression 
et la r~paration pulmoniare. Le collagene de type I est le 
d~terminant predominant de la force de tension; mais pas moins 
de 11 autres types gen~tiques de collagene, avec des fonctions 
d'adhesion et de connection spC.cialis~s peuvent etre observes 
dans differentes structures pulmonaires, y compris le cartilage 
et les membranes basales. Une accumulation excessive de 
matrice dans le poumon est le resultat d'une serie complexe 
d'influences sur la r~gulation des genes, dont une partie peut 
etre due ~la presence de cytokines inl1ammatoires qui stirnulent 
directment la synthese de la matrice. Toutefois, la d~gradation 
et la rotation de la matrice sont ~galement des processus 
critiques influences par bcaucoup des memes mediateurs. La 
collagenase et la gelatinase (collagenase de type IV) sont des 
m~tallo-enzymes ~troitement r~g!Cs qui, en accord avec un 
ensemble d'inhibiteurs specifiques des metallo-proteinases, 
d6tenninent l'abondance nette et la distribution du collagene. 
Les ~lastases de diU.~rents type biochimiques sont de mcme 
etroitement r~gles par les inhibiteurs des proteinases. L'elastine 
est essentielle ~ la fonction pulmonaire, au niveau de la capacite 
de retraction et d'ouverture de la paroi alveolaire; la perte de 
l'elastine dans l'emphyseme semble due ~ une degradation non 
control~e du type de fibres elastiques embryologiquement 
detenninees, accompagnee par un remplacement non fonctionnel 
comme reponse ~ l'agression. L'agression de l'endothelium 
vasculaire du poumon, ainsi que les autres agressions 
physiologiques qui elevant la pression sanguine pulmoniare, 
peuvent entraincr une accumulation excessive de collagene et 
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d'elastine dans les arteres de conductance et de resistance de la 
circulation pulmonaire. Le stress mechanique et l'agression 
endotMiiale peuvent meruer l'hypertrophle de la media de ces 
vaisseaux. Les composantes de la matrice extra-cellul.aire sont 
bnpliquecs de f~on critique ll presque chaque stadc de la 
biologic pulmonaire: developpement, fonction norm ale, cl etats 
pathologiques aigus et chroruques. A ce jour, seuls les 
glucocortico1des, inhibiteurs "crosslinking" et les inhlbiteurs des 

pro teases ont 61.6 utilises avec !'intention generale de supprimer, 
soit un.e accumulation, soit une perte excessive, de matrice. 
Une comprehension plus detaillee de la regulation et des 
interactions specifiques des composantes de la matrice 
sont essentielles pour !'analyse des etats pathologiques et 
pour le developpemcnt de strategies therapeutiques 
appropriees. 
Eur Respir J., /990, 3, 1048-1063. 


