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ABSTRACT: The development and progression of chronic obstructive pulmonary
disease (COPD) have been associated with increased oxidative stress or reduced
antioxidant resources. Several indicators of oxidative stress, such as hydrogen peroxide
exhalation, lipid peroxidation products and degraded proteins, are indeed elevated in
COPD patients. As a result, the antioxidant capacity decreases in COPD patients.

The fall in antioxidant capacity of blood from COPD patients should not only be
regarded as a reflection of the occurrence of oxidative stress but also as evidence that
oxidative stress spreads out to the circulation and can therefore generate a systemic effect.

COPD is linked to weight loss and in particular to loss in fat-free mass by skeletal
muscle wasting. This systemic effect can be mediated by both oxidative stress and
oxidative stress-mediated processes like apoptosis and inflammation. Furthermore,
COPD is a predisposition for lung cancer through several mechanisms including
oxidative stress and oxidative stress-mediated processes such as inflammation and
disruption of genomic integrity.

Current therapeutic interventions against the far-reaching consequences of the
systemic oxidative stress in chronic obstructive pulmonary disease are not yet
optimised. A diet designed to reduce chronic metabolic stress might form an effective
therapeutic strategy in chronic obstructive pulmonary disease.
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Chronic obstructive pulmonary disease (COPD) is a heter-
ogenous syndrome characterised by irreversible progressive
airflow limitation [1–3]. It is expected that in 2020 COPD will
become the third instead of the current fourth leading cause
of death worldwide [4]. The most prominent risk factor for
the clinical manifestations and progression of COPD is
tobacco smoking. Although about 90% of all COPD patients
are smokers, for unknown reasons only 20% of all smokers
develop the disease [5, 6]. Other risk factors include a1-
antitrypsin deficiency, air pollution, socioeconomic status and
lower birth weight [5]. Recently, the development of COPD
has also become associated with increased oxidative stress or
reduced antioxidant resources [7, 8]. The purpose of this
review is to evaluate the role of the oxidant-antioxidant
imbalance in the development of COPD and of the oxidant
metabolism in the systemic effects of COPD. Therapeutic
approaches to alter this oxidant-antioxidant imbalance in
COPD will also be discussed.

Indicators of oxidative stress in chronic obstructive
pulmonary disease

Hydrogen peroxide exhalation

Hydrogen peroxide in exhaled breath directly reflects oxi-
dant generation in the lung. Smokers as well as patients with
COPD have higher levels of exhaled hydrogen peroxide
(H2O2) than exsmokers with COPD or nonsmokers [9, 10].
During acute exacerbations of COPD these H2O2-levels are
even higher [11]. The source of the enhanced exhalation of
H2O2 is unknown, but has been suggested to partly originate

from the increased release of superoxide anion (O2
-) by the

alveolar macrophages from smokers compared with that by
the alveolar macrophages from nonsmokers [11, 12]. More-
over, the intracellular iron content of the alveolar macro-
phages from smokers is also increased compared with that of
nonsmokers [13]. The presence of increased amounts of free
iron in the airspaces of smokers may increase the generation
of even more reactive oxygen species through the Fenton-
reaction [3, 14]. Additionally, the combination xanthine/
xanthine oxidase, capable of generating superoxide anion
radical and H2O2, is increased in the bronchoalveolar lavage
and plasma of COPD patients and smokers when compared
with healthy subjects and nonsmokers respectively [15, 16].
Furthermore, it was shown that COPD patients performing
strenuous exercise experience systemic oxidative stress, which
can be inhibited by blocking xanthine oxidase [15].

NO
.

exhalation

The gas NO
.

is produced endogenously in the lung by
NO synthase (NOS) that exists in both constitutive isoforms
(cNOS) and an inducible isoform (iNOS) [17]. The latter can
be induced by inflammatory stimuli in the lung and may
therefore reflect airway inflammation. Consequently, exhaled
NO

.

levels are considered a marker for airway inflammation
and an indirect measure of oxidative stress [17–19]. However,
the results regarding the use of NO

.

levels as a marker for
COPD are inconclusive. Some studies report a higher level of
exhaled NO

.

[20, 21] while others found either normal or even
lower exhaled NO

.

concentrations in stable COPD patients
compared with control subjects [22, 23]. These discrepancies
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may be due to the use of different methods of measurement or
different criteria for patient selection. Furthermore, NO

.

itself
is short-lived in vivo and can be easily transformed into NOx

by its fast reaction with superoxide. It has been proposed that
NO

.

may form stable S-nitrothiols (RS-NOs) with low
molecular weight thiols like glutathione or N-acetylcysteine
in order to enhance its bioactivity [24–26]. In that way, RS-
NOs rather than NO

.

are seen as the major products of NOS
and inflammation. Studies regarding the RS-NOs levels in
inflammatory airway diseases show increased levels in the
exhaled breath condensate of COPD patients and smokers
compared to nonsmokers and healthy control subjects [17].

Lipid peroxidation products

Reactive oxygen species (ROS) can trigger the peroxidation
of polyunsaturated fatty acids in biological tissues resulting in
the transformation of the fatty acids into lipid hydroper-
oxides. Lipid peroxides and lipid hydroperoxides can then
interact with enzymatic or nonenzymatic antioxidants or
decompose after reacting with metal ions or iron-containing
proteins, forming hydrocarbon gases and unsaturated alde-
hydes as by-products [5].

Lipid peroxidation (LPO) products, measured as thiobar-
bituric acid-reacting substances, display higher levels in breath
condensate and in lungs of stable COPD patients [27]. In
addition, these LPO products negatively correlate with the
lung function marker forced expiratory volume in one second
(FEV1), suggesting that lipid peroxidation plays an important
role in the decline of lung function [28]. In the plasma and
lung lavages of healthy smokers the levels of LPO products
are also increased. Furthermore, increased levels of LPO
products are inversely correlated with the time expired from
the last exposure to tobacco smoke and with the degree of
small airway obstruction [5].

The specific endproduct of lipid peroxidation 4-hydroxy-
2,3-nonenal is capable of modifying cellular proteins. Airway
epithelial cells and endothelial cells from smokers with
airway obstruction display increased 4-hydroxy-2,3-nonenal-
modified protein levels compared to nonsmokers or subjects
without airway obstruction [29].

The hydrocarbon ethane is a by-product of the peroxida-
tion of fatty acids such as 9,12,15-linolenic acid [18]. Patients
with COPD display an increased level of exhaled ethane
compared with control subjects. This increased level is nega-
tively correlated with lung function, suggesting that lipid
peroxidation is an important factor in the progression of
COPD [18, 30]. Furthermore, ethane produced in several
other organs than the lung, such as intestine, brain, kidney,
liver, heart and testis, will be transported to the lung for
elimination. Therefore, it is suggested that the systemic oxida-
tive stress in smokers and COPD patients may contribute to
the total exhaled ethane concentration [18, 31, 32].

Isoprostanes are made by ROS-mediated peroxidation of
arachidonic acid which circulate in the plasma and can be
excreted in the urine [33]. Isoprostanes also reflect systemic
effects caused by ROS. Levels of 8-isoprostane are increased
in exhaled air condensate in smokers and are negatively
correlated with the severity of the airway obstruction [34]. In
plasma, the levels of free and esterified F2-isoprostanes are
enhanced in smokers and decrease after smoking cessation for
2 weeks [35]. In urine, the levels of isoprostane F2a-III are
elevated in COPD patients in comparison to healthy controls
with the highest levels during exacerbations [36].

These studies show that oxidative stress, determined as
products originated from LPO, is negatively associated with
lung function.

Inflammatory response

Various studies have investigated the role of ROS in the
generation of the inflammatory response occurring in both
the central and the peripheral airways of COPD patients [3,
37]. A common feature of lung inflammation is the activation
of epithelial cells and resident macrophages as well as the
recruitment and activation of neutrophils [3]. Oxidants in
cigarette smoke are capable of stimulating alveolar macro-
phages to release a number of mediators, some of which
attract neutrophils and other inflammatory cells into the
lungs [3, 38]. Increased numbers of both macrophages and
neutrophils migrate into the lungs of smokers where they
generate ROS via the reduced nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase system [38, 39]. Moreover,
lungs of smokers with airway obstruction have more
neutrophils than smokers without such an obstruction [40].
Peripheral blood neutrophils from both smokers and COPD
patients during acute excerbations display an increased
production of superoxide anion. In the latter group the
production returned to its normal level when the patients were
re-studied when clinically stable [41, 42]. The myeloperox-
idase content of the neutrophils is positively associated with
cigarette smoking, suggesting an increased production of
oxidants like hypochlorous acid in smokers [43].

A relationship has been shown between circulating
neutrophil numbers and the FEV1 [44, 45], suggesting an
increased airflow limitation as a result of the ROS production
of the increased number of neutrophils. Smokers that develop
COPD have increased ROS release from these circulating
neutrophils compared to smokers who do not develop the
disease [46].

Degradation of proteins

Oxidative stress renders proteins more susceptible to
proteolytic degradation by modifying amino acid chains,
forming protein aggregates and cleaving peptide bonds [47].
During this process, some amino acid residues are converted
to carbonyl residues that can be found systemically. Human
plasma proteins are indeed modified to carbonyl-containing
proteins with lost sulfhydryl groups after exposure to gas-
phase cigarette smoking [48]. Both the saturated and the
unsaturated aldehydes present in cigarette smoke contribute
to this modification of proteins [49, 50]. Additionally,
exposure of human plasma to cigarette smoke in vitro also
results in depletion of plasma protein sulfhydryls and
elevation of the carbonyl protein levels [49]. Oxidative
damage of proteins, and therefore the formation of carbonyl
proteins, caused by cigarette smoke can be almost completely
prevented by ascorbic acid and partially by glutathione [50,
51].

Plasma proteins can also be degraded through nitration
and oxidation by reactive nitrogen species (RNS), the
formation of which is stimulated by cigarette smoking [3].
Levels of oxidised proteins are significantly higher in smokers
than in nonsmokers [52]. Smokers display higher levels of
nitrated proteins, such as fibrinogen, transferrin, ceruloplas-
min and plasminogen, compared to nonsmokers [52].

Furthermore, aldehydes present in cigarette smoke may
react with the sulfhydryl- and amino- moieties of plasma
proteins by a Michael addition reaction [53]. Conversion of
the amino acid tyrosine into 3-nitrotyrosine and dityrosine
can also be regarded as an indicator for free radical damage
and protein damage [54]. Nitrotyrosine levels are elevated in
plasma and epithelial lining fluid of smokers and negatively
correlated with the FEV1 [55].
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Finally, the activity of the elastase inhibitor alpha 1-
proteinase inhibitor (alpha 1PI) that plays an important role
in preventing emphysema in COPD patients can be decreased
by oxidising agents [56]. Oxidation of a critical methionine
amino acid residue in alpha 1PI into methionine sulfoxide
leads to a dramatic reduction of the inhibitory capacity of
alpha 1 PI [57, 58]. Lung lavage of smokers display alpha 1 PI
that contains only half of its normal activity and 4 moles of
methionine sulfoxide per mole while the alpha 1 PI from lung
washings of nonsmokers is fully active with only native
methionine [56].

The evidence that oxidative stress plays an important role
in the development and progression of COPD is summarised
in fig. 1.

Antioxidant capacity in chronic obstructive
pulmonary disease

The fall in antioxidant capacity of blood from smokers and
COPD patients can not only be regarded as a reflection of the
occurrence of oxidative stress but even more as evidence that
oxidative stress spreads out to the circulation and can
therefore generate a systemic effect [59].

Numerous studies have investigated the relationship
between antioxidants and pulmonary function as well as
respiratory diseases [60, 61]. Analysis of this relationship is
frequently performed using data on the dietary intake of
antioxidants. Dietary intake data have for example been
obtained from the American Nutrition Examination Survey
(NHANES) or the Dutch Monitoring Project on Risk Factors
for Chronic Diseases (MORGEN) study, a monitoring
project on risk factors and health in the Netherlands.

In a subsample of NHANES I a lower dietary intake of
vitamin C is directly related to lower values of FEV1.
Moreover, the protective effect of vitamin C is even greater
in asthma and bronchitis subjects [61]. Cigarette smokers
display lower concentrations of serum vitamin C due to a
decreased intake and an increased metabolism [62]. The latter

phenomenon may result from the so-called protective utilisa-
tion of vitamin C under conditions of increased oxidative
stress like smoking [63]. Data obtained in NHANES II
display an inverse association between both dietary and
serum vitamin C with chronic respiratory symptoms [64].
NHANES III shows that the jointly considered serum
antioxidants vitamin C, vitamin E, selenium and b-carotene
are associated with lung function [60]. Serum vitamin C has
the same association with FEV1 among smokers, former
smokers and nonsmokers. The association between lung
function and serum selenium is stronger among current
smokers compared to former or nonsmokers while both
dietary and serum b-carotene levels display a weaker
association among current smokers that even decreased
further with increasing smoking dose [60].

So, the effect of the various serum antioxidants changes
with the smoking status. This could be explained in two
different ways: 1) some antioxidants may be more efficient
than others in neutralising general versus cigarette smoke
oxidants; and 2) the level of oxidant burden may have an
effect on the efficiency of an antioxidant i.e. that some
antioxidants display a stronger effect when the oxidant
burden is high [60].

Analysis of the data obtained in the MORGEN study also
reveals that a high intake of vitamin C and b-carotene is
associated with a higher FEV1 than a low intake of these
antioxidants. Since no consistent associations are observed
with respiratory symptoms, only a protective effect on lung
function is suggested for the antioxidants vitamin C and b-
carotene [65]. The only confounding factor in the relationship
between lung function and antioxidants is the educational
level. A possible explanation may be that the educational level
can be regarded as a healthy life style indicator, since subjects
in this higher educational level are more likely to have a
healthy lifestyle including a high intake of antioxidants [65].

A lack of association between dietary vitamin E intake and
lung function has been reported in several studies [65, 66].
These results are not consistent with other studies that show a
positive relationship between dietary intake of vitamin E and
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Fig. 1. – Evidence that links systemic oxidative stress to the development and progression of chronic obstructive pulmonary disease (COPD).
LPO: lipid peroxidation; EBC: exhaled breath condensate; H2O2: hydrogen peroxide; NO

.

: nitric oxide.
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lung function [67] or between dietary intake of vitamin E and
incidence of asthma [68].

Data from the MORGEN study also show an independent
beneficial association of fruits (w180 g?day-1), whole grains
(w45 g?day-1) and alcohol with COPD (1–30 g?day-1) [69]. In
subjects with a positive intake of these foods, the FEV1 was
significantly higher and the prevalence of COPD symptoms
significantly lower. These beneficial effects are also found in
nonsmokers, so confounding by smoking cannot explain the
observed effect of diet on COPD totally. An association with
COPD was not found for fish and vegetable intake.

The findings of the MORGEN study are consistent with
others that have also shown an association between COPD-
related outcomes and fruit intake [70–74] but not with
vegetable intake [72, 75]. A possible explanation for the lack
of association with vegetables could be that vegetables are
usually boiled before consumption, which leads to loss of
antioxidants like vitamin C. The positive association between
whole grain consumption and COPD can be explained as a
result of the antioxidant components of whole grains like
vitamin E and phenolic acids [76]. The effect of low alcohol
consumption on COPD found in the MORGEN study is
consistent with other studies [72, 77] and may be caused by
the inhibitory effects of alcohol on inflammatory cells [78, 79].
Studies that have investigated the effect of fish intake on
COPD are however not conclusive [64, 72, 74].

Finally, data from the MORGEN study show a beneficial
association between the intake of three flavonoid subclasses,
i.e. catechins, flavonols and flavones, and the FEV1 [80]. All
three subclasses display anti-inflammatory and antioxidant
activity and may therefore exert a positive effect on COPD.
Indeed, catechin intake shows a strong positive association
with all COPD symptoms but the intake of flavonols and
flavones is only associated with cough. No beneficial effect of
tea, the main dietary source of the catechins, on COPD is
found indicating that the observed effect of the catechins is
not causal. Instead the proposed effect of catechin may be
caused by a substance not derived from tea, the intake of
which is related to that of the catechins [80]. More direct
studies have also linked a decreased antioxidant capacity of
blood with tobacco smoking and COPD. Smokers display in
their erythrocytes a decreased glutathione peroxidase activity
[81]. Whole blood glutathione levels are decreased in smokers,
but will return to normal values in 3 weeks after smoking
cessation [82]. Cigarette smoke has also been associated with
both a decreased serum antioxidant activity [39] and
decreased plasma levels of the antioxidants ascorbate, vitamin
E, b-carotene, uric acid and selenium [81, 83–87]. Vitamin E
will be consumed only after complete depletion of ascorbic
acid, suggesting that ascorbic acid acts as a general anti-
oxidant reservoir and spares the use of the more specific
vitamin E [83]. This reduction in plasma antioxidant levels in
smokers is positively correlated with increased levels of
protein carbonyls and lipid peroxides [48, 88]. Moreover,
reduced plasma antioxidant levels appear to be associated
with a family history of lung disease [89].

A decreased total antioxidant capacity also occurs in the
plasma of COPD patients having an acute exacerbation [41]
with a rise after the exacerbation when they were considered
to be stable again [59]. However, their antioxidant levels did
not return to the normal levels seen in clinically stable COPD
patients who were studied at least 6 weeks after their last
exacerbation. This decrease in total antioxidant capacity of
blood is more pronounced in patients with a current smoking
history than in former smokers [59]. This fall in antioxidant
capacity correlates with the increased release of ROS from
circulating neutrophils in COPD patients with exacerbations
[41]. The decreased antioxidant capacity in plasma can have

several causes, including depletion of protein sulfhydryls that
become oxidised [59, 90].

Some smokers however display an increased level of
antioxidants such as vitamin E, vitamin C and glutathione
[83, 91]. Additionally, increased levels of the antioxidant
enzymes superoxide dismutase and catalase occur in circulat-
ing red blood cells from smokers [92]. This increased enzymatic
antioxidant activity might be the result of the upregulation
of protective antioxidant enzymes as an adaptive response
triggered by the increased oxidative stress in COPD [3]. This
adaptive reaction may serve as protection and, since not all
smokers are capable of increasing their antioxidants, may also
explain why not all smokers develop COPD [5].

Body composition and chronic obstructive pulmonary
disease

Chronic conditions like COPD are generally accompanied
with wasting of the body cell mass (BCM), which consists of
both the actively metabolising (organs) and the contracting
(muscles) tissue [93]. Since BCM is not directly measurable,
weight loss and especially loss in fat-free mass (FFM) are
considered as important markers of changes in BCM. Patients
with advanced COPD often display weight loss, which is
inversely correlated with the occurrence of exacerbations and
can be seen as an independent predictor of outcome [94, 95].
The most important tissue in which weight loss occurs in
COPD patients is the skeletal muscle, because wasting of the
respiratory muscles implies an increased energy cost of
breathing due to a loss of power and endurance [96, 97].
Other factors that display an adverse effect on the loss of
FFM are peripheral muscle function, exercise capacity and
health status [98–100].

Several factors influencing the loss in weight and in FFM in
COPD patients are suggested including malnutrition, an
imbalance in overall protein turnover and hormones involved
in this process, tissue hypoxia and pulmonary inflammation
[93, 97, 99, 101]. There is also some evidence that links the
wasting that occurs in COPD patients to both oxidative stress
and oxidative stress-mediated processes, such as apoptosis,
inflammation, disruption of the excitation-contraction cou-
pling and atrophy [97, 102–104]. This effect of oxidative stress
on skeletal muscle wasting in COPD is shown in figure 2.

Effect and consequences of systemic oxidative stress

Oxidative stress is regarded as a disbalance between forma-
tion of and protection against ROS and RNS and can result
in damage to biomolecules.

Oxidative stress present in the systemic circulation of
COPD patients can influence the skeletal muscle mass loss by
stimulation of muscle proteolysis [105, 106]. This is especially
the case when the regulation of several important intracellular
antioxidants like glutathione is disturbed [107].

Oxidative stress caused by overproduction of NO
.

can be
the result of an upregulated expression of iNOS in the muscle
initiated by, for example, tissue hypoxia and systemic inflam-
mation, processes that both occur in COPD [102, 108–110].
Skeletal muscles of COPD patients that suffer from weight
loss indeed show such an upregulation of iNOS [111].

Furthermore, overproduction of NO
.

may lead to oxidative
stress and oxidative stress-mediated pathologies such as
muscle wasting by impairment of antioxidant enzymes like
superoxide dismutase or catalase [108]. Two commonly used
models of skeletal muscle wasting, namely the hindlimb
suspension and the chronic coronary occlusion, display an
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upregulation of iNOS, an increase in oxidative stress and a
significant decrease in skeletal muscle antioxidant enzyme
activity [112–115]. Muscle wasting pathologies such as
cachexia also increase the production of ROS and RNS
production and enhance the iNOS levels [116, 117]. Genera-
tion of ROS and RNS could lead to impairment of the
antioxidant protection in skeletal muscles. A recent study
using RNS challenge of skeletal muscle samples as a patho-
physiological model showed that RNS are indeed capable of
substantial downregulation of antioxidant enzymes in skeletal
muscle. The degree of this down-regulation showed specificity
for the various antioxidant enzymes and RNS donors,
indicating that different antioxidants have different sensitiv-
ities to specific RNS donors [108].

Moreover, ROS can cause damage to lipids in biomem-
branes and to proteins both present in skeletal muscles [118].
Peroxidation of these lipids increases the permeability of
membranes and in case of the mitochondrial inner membrane
this can lead to leakage of ions, resulting in damage to the
mitochondrial function and thereby reduction of the energy
production. Reactions of ROS with proteins result in the
formation of carbonyl groups on amino acid residues. Since
this may change the structure and chemical properties of
the proteins, their function will decline and they become more
susceptible to proteinases or complete protein unfolding [119].
Both the lipid and the protein reactions with ROS may
contribute to muscle wasting or muscle dysfunctioning.

Finally, oxidative stress is also an important factor in the
ageing process that is characterised by changes in the skeletal
muscles, including loss of muscle mass and function, atrophy
of mainly type II muscle fibres and a decline of metabolic
capacity [103, 120, 121]. It is therefore often suggested that a
premature and/or accelerated ageing process contributes to
the muscle wasting in COPD. However, since type I muscle
fibres increase proportionally in elderly it can be suggested
that the observed fibre-type redistribution in COPD, namely
an increase of type II and a decrease in type I fibres, is
not dependent of ageing [103]. Moreover, most studies in
COPD patients make use of healthy age-matched control
groups so that age-related changes have to be present in both
groups, unless the reaction of patients to ageing is different
from that of healthy controls [103]. These potential differ-
ences need to be further explored in order to elucidate the

contribution of ageing to the muscle wasting seen in COPD
patients.

Apoptosis. Apoptosis, an active process of cell death, is
triggered by oxidative stress in experimental animals [122]. In
mononucleated cells apoptosis will lead to cell death whereas in
multinucleated cells like the myocytes cell atrophy will occur
[123, 124]. The unexplained weight loss in COPD patients is
mainly caused by skeletal muscle atrophy, indicating that
excessive apoptosis may occur in these patients [125].
Furthermore, several triggers of apoptosis like hypoxia,
oxidative stress and systemic inflammation do exist in
COPD patients [126, 127]. A recent study in COPD patients
with a low body weight indicates that increased apoptosis of
skeletal muscles indeed occurs in these patients [102].

Exercise. In normal conditions skeletal muscles produce both
ROS and RNS and they are associated with excitation-
contraction [106, 128–130]. Exercise can cause an overpro-
duction of these reactive species, leading to oxidative stress
[128, 131]. Paradoxically, the disuse of muscles can also
generate oxidative stress since a lower antioxidant-stimulating
trigger consequently results in a lower antioxidant status [128,
132]. An occasional occurrence of exercise may in that case
generate more reactive species than can be scavenged by the
present antioxidants, resulting in a hypersensitivity for
oxidative stress [133].

Furthermore, COPD patients display exercise-induced
oxidation of blood glutathione [134] and increased lipid
peroxidation products [15, 135]. It is striking that both COPD
patients and healthy subjects display the same degree of this
exercise-induced glutathione oxidation. Since it is generally
suggested that during exercise most ROS are generated in the
oxidative metabolism in the mitochondria, it would be
expected that the ROS production diminishes due to the
reduced oxygen consumption that COPD patients display
during maximal exercise. However, the observed enhanced
oxidative stress in COPD patients during exercise can also be
explained by disturbances in the mitochondrial respiratory
chain, contribution of other sources besides the mitochondria
to exercise-induced ROS generation and decreased anti-
oxidant levels in COPD [130]. As explained below, excessive
ROS can affect skeletal muscle functions in several ways.
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Fig. 2. – The effect of oxidative stress on skeletal muscle wasting in chronic obstructive pulmonary disease.
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Excitation-contraction coupling. Skeletal muscle-contractility
is affected by ROS in a dose- and time-dependent way. Low
levels of the ROS generator xanthine oxidase cause a
potentiation of muscle tension whereas higher levels result
in a severe depression of contractility [136]. A comparable
paradoxical role on muscle contractility is demonstrated for
NO

.

in various muscle preparations [137].
Various studies have indeed demonstrated that exposure to

excessive oxidative stress causes contractile dysfunction of
skeletal muscles [138–140]. Chronic exposure of skeletal
muscle fibres to H2O2 reduced the force generation [138].
Increased lipid peroxidation, a result of ROS, in chronically-
loaded diaphragms is related positively with reduction in
strength and with fatigability [139]. Noteworthy is the fact
that in most studies the effect of oxidative stress could
successfully be reversed by various types of antioxidants [141,
142], suggesting a possible mechanistic role for oxidative
stress in the pathophysiology of muscle dysfunction [104].

ROS can affect skeletal muscle functions in various ways,
for example by generating a blunted calcium-release from the
sarcoplasmatic reticulum [143], by reducing the calcium
sensitivity in skeletal muscles [138] or by causing enzymatic
dysfunction within the glycolytic pathway, the citric acid cycle
and the electron transport system leading to impairment of
the cellular energetics [144, 145]. Taken together, it can be
suggested that increased oxidative stress may impair the
excitation-contraction coupling as well as the redox status,
thereby accounting for at least a part of the skeletal muscle
dysfunction seen in COPD [104].

Inflammation. Oxidative stress and inflammation are
associated. There is evidence for the influence of oxidants
on inflammation [3, 146] as well as for the role of inflammation
in the induction of oxidative stress [147, 148].

On the one hand, the lung inflammatory response is
initiated and mediated by increased levels of ROS that can
activate the transcription of pro-inflammatory cytokine and
chemokine genes as well as of transcription factors like
nuclear factor kappa B (NF-kB), upregulate adhesion
molecules and increase the release of pro-inflammatory
mediators [3, 146, 149–151].

On the other hand, several studies indicate that the
inflammatory initiator and mediator tumour necrosis factor
(TNF)-a is capable of stimulating oxidative stress in various
cells and tissues [147, 148, 152]. Transfected animals expres-
sing the inflammatory mediator TNF-a have higher levels of
LPO products together with a stimulated NOS expression in
their skeletal muscles. This indicates the induction of an
oxidative pathway in these TNF-a animals [106, 153–155].

In COPD patients, inflammation indeed contributes to the
observed weight loss in both a direct way, through for
example inflammatory mediators like TNF-a and cytokines,
and a more indirect way, through catabolic intermediary
metabolism [156, 157].

Both oxidative stress and NO
.

overproduction are directly
capable of mediating muscle wasting and skeletal muscle
abnormalities, like a disturbed muscle contraction due to a
decreased affinity of junD for the myosine creatinine
phosphokinase (MCK) enhancer [106]. By binding to the
MCK enhancer, junD stimulates MCK that is critical for
differentiated skeletal muscle function since it delivers the
energy required for muscle contraction by catalysing the
adenosine triphosphate (ATP) formation from phosphocrea-
tine [158].

Furthermore, increased circulating levels of TNF-a and
interleukin-6 as well as of their soluble receptors in subjects
with a normal body mass index are associated with skeletal
muscle loss, indicating an overall inverse relationship

between skeletal muscle mass and these cytokines [97]. In
differentiated myotubes, total protein content as well as
adult myosin heavy chain content reduce in a time- and
concentration-dependent manner after treatment with TNF-a
[159]. Furthermore, TNF-a animals show a myosin deple-
tion and a disrupted organisation in the skeletal muscle
fibrils that can be prevented through treatment with various
antioxidants like a-tocopherol. These findings suggest that
the TNF-a induced oxidative pathways and NOS stimula-
tion contribute specifically to the development of muscle
wasting [106].

Skeletal muscle loss in differentiated muscle cell lines can
also be caused by TNF-a induced activation of NF-kB [159].
Activated NF-kB can inhibit the differentiation of skeletal
muscles through suppression of the messenger ribonucleic
acid (mRNA), and therefore of the protein levels, of trans-
cription factor MyoD at post-transcriptional level [160].
Furthermore, TNF-a induced NF-kB activation may inhibit
the myogenic differentiation since it interferes with the
expression of muscle proteins and the muscle creatine kinase
activity in differentiating myoblasts [93, 161].

The influence of the more indirect catabolic intermediary
metabolism can be seen in the increased nitrogen excretion,
the excessive loss of nitrogen for FFM and the relationship
between both a reduced FFM and a reduced skeletal muscle
mass and the calculated protein catabolic rate [97]. Increased
levels of circulating cytokines can contribute to this protein
catabolic state.

As shown in several experimental animal and in vitro
studies, both components of the energy balance, i.e. dietary
intake and energy or substrate metabolism, can be influenced
by inflammation [118]. Skeletal muscle proteins can become
mobilised during inflammation in order to deliver the
increased amount of amino acids necessary for acute phase
protein synthesis. Increased levels of acute phase proteins in
COPD patients are indeed correlated with an enhanced
resting metabolic rate and FFM loss [157].

Carcinogenesis and chronic obstructive
pulmonary disease

Since both lung cancer and pulmonary impairment are
linked to tobacco smoke, it can be expected that these diseases
frequently occur together [162, 163]. Forty-nine per cent of
lung cancer patients have COPD and as many as 12% of
COPD patients between the age of 65–69 yrs die as a
consequence of lung cancer [164, 165]. Most studies have
found that, even after standardisation for the smoking habits,
impaired pulmonary function increases the risk for lung
cancer [166–169]. However, the strength of this relationship
differs among the various studies from very weak [170] to
quite strong [168]. When the relationship of pulmonary
impairment with lung cancer is investigated by its histological
type or tumour location, it displays a somewhat stronger
association with squamous- or small-cell carcinoma than with
adenocarcinoma [162, 171].

Furthermore, COPD is not only a risk factor for lung
cancer, but also for death from lung cancer and death from
any cause after matching for smoking habits [172]. However,
a direct link between COPD and other primary forms of
cancer has not been established [173].

The predisposition of COPD to lung cancer may occur by
several mechanisms including impaired mucociliary clearance,
genetic predisposition and oxidative stress-mediated processes
like inflammation and stimulation of the carcinogenesis
process [149, 167, 174, 175].
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Mucociliary clearance

The predisposition of COPD to lung cancer may partly
result from the impaired mucociliary clearance in smokers
and even more in COPD patients [172, 176, 177]. In the more
central airways, i.e. the sites where smoking-related cancers
occur, microparticles are deposited. During the clearing
process, the particles tend to assemble in areas that display
the most impaired mucociliary clearance. These areas will, as
a result of the pooling, be exposed longer to carcinogens from
the smoke [178].

Genetic predisposition

A common denominator of the effects mediated by tobacco
smoke could be pulmonary dysfunction, since preservation of
other organs depends on a normal pulmonary function.
Furthermore, ventilatory impairment is associated with
mortality from COPD, ischaemic heart disease and overall
mortality [179–186]. Impaired ventilatory function is more
present in first-degree relatives of lung cancer patients and
COPD patients than in control subjects or relatives of
nonpulmonary patients [174, 187]. Since this difference
could not be ascribed to the tested genetic markers or to the
adjustment factors like age, sex, alcohol and smoking, it is
suggested that COPD and lung cancer share a common
familial pathogenetic factor associated with ventilatory
impairment [174, 187].

Oxidative stress-mediated carcinogenesis

As shown in figure 3, oxidative stress may be implicated in
carcinogenesis via several pathways like inflammation and
disruption of genomic integrity.

Inflammation. The risk for cancer in several organs like lungs,
pancreas, esophagus and skin is increased in chronic
inflammatory disorders [188]. Several epidemiological
studies show that asthma, a disease characterised by
persistent lung inflammation, elevates the risk of lung
cancer [189–192]. In vitro, leucocytes can induce sister
chromatid exchanges in hamster ovary cells [193]. Athymic

mice injected with fibroblasts that were exposed to activated
neutrophils, developed both benign and malign tumours
whereas injection of control cells did not mediate tumour
development [194]. Neutrophils can also induce deoxy-
ribonucleic acid (DNA) base damage in naked DNA [195,
196] as well as in target cellular DNA [197]. Furthermore both
neutrophils and macrophages are able to induce target cellular
DNA strand breakage [198, 199].

The influence of inflammation on cancer may be mediated
by inflammatory cell-derived ROS and RNS. Granulocytes
and lymphocytes can generate at least four types of genotoxic
or mutagenic products, namely H2O2, nitric oxide, malon-
dialdehyde and 4-hydroxy-2,3-nonenal [155, 200–215]. H2O2

can function as a progenitor of ROS like the highly reactive
hydroxyl radical [196, 197, 216]. The fact that the induction of
ex vivo mutagenesis by alveolar macrophages is significantly
lower than by neutrophils could be explained by the fact that
neutrophils have a higher potential to increase the ROS-
generation after activation than macrophages [217–219].

Since lung inflammatory response can also be initiated and
mediated by increased levels of ROS, it can be expected that
in COPD patients the inflammation-induced risk of lung
cancer will be further elevated.

Stimulation of cancer development. ROS can cause disruption
of genomic integrity, a process required for neoplastic
progression, in both a direct and an indirect way [220].
Directly they can introduce oncogenic mutations by causing
DNA strand breaks or DNA adducts, whereas indirectly they
may suppress genomic repair processes by modulating gene
transcription and nuclear transcription factor activities [175,
220–225]. LPO-products like malondialdehyde and 4-hydroxy-
2,3-nonenal can also directly react with DNA bases, forming
exocyclic DNA adducts like propano- and etheno(e)- DNA
adducts [175]. Moreover, ROS can contribute to the formation
of DNA adducts by activating polycyclic aromatic
hydrocarbons (PAH9s) to a DNA binding metabolite [226,
227]. The mainly tobacco-derived PAH benzo-a-pyrene
(B[43]P) for example can be activated through a one-
electron oxidation [228]. The generated B[a]P.z-radical
cation predominantly forms labile guanine or adenine DNA
adducts, but can also induce some stable DNA adducts [229,
230]. Furthermore, the cation can also function as an inter-
mediate metabolite which upon auto-oxidation ultimately
results in the formation of reactive quinones [231].
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Fig. 3. – Oxidative-stress mediated effects on carcinogenesis in chronic obstructive pulmonary disease. DNA: deoxyribonucleic acid; PAH:
polycyclic aromatic hydrocarbons.
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Finally, ROS can also contribute to carcinogenesis by
modifying intracellular proteins, inducing mitogen-activated
protein kinases and increasing mitosis [220, 232, 233].
However, ROS are also capable of inducing permanent
growth arrest and activating several caspases as well as the
release of cytochrome c in order to induce cell death by
apoptosis [232–234].

Conclusion

It is evident that local (pulmonary) and systemic aberrant
metabolism of oxidants occur in COPD patients. The
resulting chronic metabolic stress may have far-reaching
consequences ranging from exacerbations to muscle wasting
and carcinogenesis. Therapeutic intervention should therefore
include three approaches: 1) prevention of oxidant formation,
2) inhibition of oxidant effects and 3) repair of oxidant-
mediated damage.

Adequate anti-inflammatory pharmacotherapy may pre-
vent the formation of oxidant generation. Optimal treatment
to diminish the neutrophilic inflammation in COPD has
not yet been achieved with either classical or new drugs such
as corticosteroids, chemokine inhibitors, leukotriene B4

inhibitors, adhesion molecule inhibitors, phosphodiesterase
inhibitors or neutrophil function blockers [235].

Attempts to attenuate other possible pathways for ROS
generation have only been explored in a limited way. An
interesting recent finding is the inhibition of ROS-generating
enzyme xanthine oxidase by allopurinol in COPD [15].

Antioxidants might be used to combat the oxidant effects.
The antioxidant N-acetylcysteine has been shown to reduce
acute exacerbations in COPD [236]. Intervention studies with
other antioxidants have not been performed. It is now known
that enzymatic and nonenzymatic antioxidants form an
intricate network that functions as a shield against ROS
[237]. Knowledge on the functioning of this network is slowly
emerging. It appears that the network differs between various
tissues. This becomes clear when the composition of two
extracellular fluids, i.e. the pulmonary epithelial lining fluid
and blood plasma, are compared [238]. Rational supplemen-
tation in this antioxidant network is only possible when the
changes that occur as a result of COPD are known. Until now
only general dietary intake of antioxidants has been
associated with improvement of lung function. It might be
anticipated that a more specific supplementation may result in
better results.

Finally, it might be speculated that enhancement of repair
of pulmonary or systemic oxidative damage may lead to
new therapeutic avenues. An example of this approach is
the stimulated repair of the oxidised a1-antiprotease. It has
been shown that it is possible to reduce oxidised methionine
in oxidatively damaged a1-antiprotease thus restoring its
activity [239].

The chronic and systemic oxidant burden in chronic
obstructive pulmonary disease warrants a continuous elevated
antioxidant level to circumvent oxidative damage. The diet
forms the major source of antioxidants in the body. The joint
activity of the antioxidant ingredients in the diet is probably
superior to the classical pharmacotherapeutic antioxidant
action of individual compounds, which act in isolation.
Moreover, the chronic and systemic character of chronic
obstructive pulmonary disease asks for a nutritional rather
than a pharmacological intervention. Optimising the antiox-
idant content of the diet might therefore be utilised to avert or
treat chronic metabolic stress in chronic obstructive pulmo-
nary disease.
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