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Endothelial cells modulate eosinophil surface markers and mediator

release

M-J. Dallaire, C. Ferland, N. Pagé, S. Lavigne, F. Davoine, M. Laviolette

Endothelial cells modulate eosinophil surface markers and mediator release. M-J. Dallaire,
C. Ferland, N. Pagé, S. Lavigne, F. Davoine, M. Laviolette. © ERS Journals Ltd 2003.
ABSTRACT: Migration from blood to tissue modulates eosinophil function, possibly
through interactions with endothelial cells.

The effects of contact with and migration through endothelial cells on eosinophil
expression of surface markers and release of leukotriene C, were evaluated.

A small proportion (2.6%) of eosinophils spontaneously migrated through endothelial
cell monolayers. Activation of endothelial cells by interleukin (IL)-4 or IL-1p slightly
increased this migration (to 12.4%), which became much greater when a chemo-
attractant was placed in the lower chamber (84.3%). However, the chemotactic effect
was downregulated by pretreating endothelial cells with interferon gamma (IFN-y;
63.1%). At baseline, 5% of eosinophils expressed CD69; this increased to 30.7% in
culture on untreated endothelial cells and to 50.9% on IL-1B-pretreated endothelial
cells. This effect was mediated through intercellular adhesion molecule-1/CD11b
interaction. Eosinophil migration through endothelial cells further increased CD69
expression to 63.9% and also increased CD35 expression from 83.3 to 91.3%. Upon
stimulation, eosinophils that had migrated through endothelial cells produced more
leukotriene C4 than control cells (872.4 and 103.9 pg-mL™, respectively). Endothelial
cell pretreatment with IL-4 or IL-1§ further increased leukotriene C, release (1,789.1
and 2,895.1 pg-mL'l, respectively), whereas pretreatment with IFN-y decreased it
(293.7 pg'mL™).

These data show that in vitro interactions with endothelial cells upregulate eosinophil
membrane receptor expression and mediator release and that these effects are differently
modulated by T-helper cell type 1 and 2 cytokines. These eosinophil modulations may
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play an important role in asthma pathogenesis.
Eur Respir J 2003; 21: 918-924.

Eosinophils are recruited to tissue in various pathological
conditions [1]. In asthma, eosinophils infiltrate the bronchial
mucosa [2] and their counts in blood, sputum and bronchial
mucosa correlate with indices of disease severity [3-4]. Blood
eosinophils are thought to circulate in a quiescent state until
they migrate into the tissue [5]. In healthy mucosa, eosinophils
account for a small proportion of the cells, making it almost
impossible to evaluate their activation status. In eosinophilic
diseases in which their numbers increase, tissue eosinophils
show increased expression of complement and immuno-
globulin (Ig)G receptors compared to their blood counter-
parts [1, 5]. They also express intercellular adhesion molecule
(ICAM)-1, human leukocyte antigen (HLA)-DR and CD69,
which are barely or not detectable on blood eosinophils [6-9].
Tissue eosinophils show increased release of superoxide anion
and leukotriene (LT)C4 compared to blood eosinophils [10, 11].
Lung lavage eosinophils, obtained after segmental broncho-
provocation, show an increase in membrane receptors, adhesion,
survival and generation of superoxide anions, which was not
achieved by incubation of blood eosinophils with interleukin
(IL)-5 and granulocyte macrophage-colony stimulating factor
(GM-CSF) [12-14]. These observations suggest that passage
into tissue activates eosinophils, increasing their pro-inflammatory
potential. The factors involved in this phenomenon have yet
to be fully determined.

During their recruitment to tissue eosinophils pass through
the endothelium. This is a complex process [1, 14, 15] and
interactions with endothelial cells have been shown to modulate
certain eosinophil functions [16]. Activation of endothelium
is an important step in inflammatory processes and occurs
in disease models, including those for allergic diseases [17].
Endothelial cells exposed to cytokines such as IL-1p, IL-4 and
tumour necrosis factor-o increase their expression of [CAM-1
and vascular cell adhesion molecule (VCAM)-1 [18, 19],
which serve as ligands for eosinophil integrins. Consequently,
cytokines may modulate the transendothelial migration of
eosinophils and amplify endothelial cell-induced changes in
eosinophil functions [19, 20].

In order to further clarify the role of endothelial cells in
the modulation of eosinophils during their migration to
tissue, the effects of eosinophil migration through a human
umbilical vein endothelial cell monolayer on expression of
cell-surface markers and liberation of LTC4, a powerful
bronchoconstrictor and pro-inflammatory mediator, were
evaluated. It was found that expression of CD69, an early
marker of activation, and of CD35, a receptor for comple-
ment proteins, and LTC, release were modulated by endo-
thelial cells and that treatment of endothelial cells with
T-helper cell type 1 and 2 cytokines differently modified their
effect on eosinophils.
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Materials and methods
Reagents

Platelet-activating factor (PAF), activated complement frac-
tion 5a (C5a) and bovine serum albumin (BSA) were purchased
from Sigma Chemical Co. (St Louis, MO, USA). Kits for
LTC, determination and 5-ox0-6, 8, 11, 14-eicosatetraenoic
acid (5-0x0-ETE) were obtained from Cayman Chemical
(Ann Arbor, M1, USA). Purified monoclonal mouse antibody
IgGlx and IgG2b (isotypic control), purified human anti-
CD4, anti-CD16, anti-CD28, anti-CD86, anti-CD35, anti-CD69
and anti-HLA-DR and phycoerythrin-conjugated polyclonal
antimouse antibodies were purchased from BD Biosciences
(Mississauga, ON, Canada). In specific experiments, fluorescein
isothiocyanate (FITC)-conjugated anti-CD69 antibodies were
used. Monoclonal mouse antihuman CD16 antibodies were
purchased from Miltenyi Biotec (Auburn, CA, USA) and
human recombinant IL-1p, IL-4 and interferon gamma (IFN-
v) from Peprotech, Inc. (Rocky Hill, NJ, USA). Monoclonal
mouse antihuman CD11b antibody (clone bear 1) was obtained
from Beckman Coulter (Mississauga, ON, Canada) and fibro-
nectin was from Roche Diagnostics (Laval, QC, Canada).
Anti-ICAM-1 antibody (clone HA58) was purchased from BD
Biosciences. Human umbilical vein endothelial cells cryo-
preserved from a single donor in primary culture were purchased
from Clonetics (San Diego, CA, USA).

Subject selection

Seven normal subjects (two male/five female, median age
31 yrs (range 18-55 yrs)) without a history of allergy or
asthma and 10 asthmatics (five male/five female, median
age 23.5 yrs (range 19-35 yrs)) meeting the criteria of the
American Thoracic Society for the diagnosis of asthma were
recruited for the study [21]. The asthmatic subjects had a
morning prebronchodilator forced expiratory volume in one
second (FEV1) of >85% of the predicted value and required
only a short-acting B,-agonist on demand on less than four
occasions per week. The inclusion criteria included stable
treatment for >3 months, no inhaled steroids over the 3
months preceding the study, no use of other drugs and no
disease other than asthma. Approval for the study was
obtained from the local ethics committee and all subjects
signed an informed consent form. FEV1 and provocative
concentration of methacholine causing a 20% fall in FEV1
(PC20) were measured in the morning, >8 h after any [,-
agonist inhalation. Median FEV1 for normal and asthmatic
subjects were 98.5 (91-110) and 96 (86-102)% pred, respec-
tively (p=0.03), and geometric mean PC20 were 43.9119.7 and
1.1£0.9 mg-mL™, respectively (p=0.006, Wilcoxon rank-sum
test). Subjects underwent blood samphng early in the mornlng
Mean blood eosinophil counts were 0.2x10° and 0.3x10%cells L™
for normal and asthmatic subjects, respectively.

Blood eosinophil purification

Eosinophils were purified as previously described [22]. They
were separated from neutrophils by negative selection using a
magnetic cell sorter. An aliquot of the cell suspension was
used to determine cell number (haemocytometer) and viability
(trypan blue exclusion; Sigma Chemical Co.) and differential
cell counts (Diff-Quik; Dade Diagnostics, Aguada, PR, USA).
The purity of the eosinophil preparations used in this study
was >98% and the contaminating cells were neutrophils and/
or lymphocytes. Eosinophil viability was always >99%.

Endothelial cell culture

Endothelial cells were grown in endothelial growth medium
supplemented with human recombinant epidermal growth
factor, human fibroblast growth factor vascular endothelial
growth factor, ascorbic acid, long-R® insulin-like growth
factor-1, heparln hydrocortlsone gentamicin and ampho-
tericin B (Clonetics) and 10% foetal bovine serum (FBS)
(Invitrogen Canada, Burlington, ON, Canada) in a 5% carbon
dioxide (CO,) atmosphere at 37°C. When ~80% confluent,
cells were harvested, resuspended in fresh culture medium and
seeded at a den51ty of 2x10° cells-500 pL™! on cell culture
inserts (12-mm diameter polycarbonate membrane with 3.0-um
pores; BD Biosciences Labware, Mississauga, ON, Canada).
The inserts were placed in 24-well culture plates (BD Bio-
sciences Labware), culture medium without FBS (500 pL)
was placed in the lower chamber to inhibit formation of an
endothelial cell bilayer [23] and the cells cultured for 5 days.
Endothelial cell monolayers were confirmed as being at
confluence by toluidine blue staining on control inserts. All
experiments were carried out on passage 4 cells. In specific
experiments, endothelial cells were cultured on the bottom of
24-well culture plates.

Incubation of eosinophils with endothelial cells and
transendothelial migration

Confluent endothehal cell monolayers were treated with
IFN-y (1,000 U-mL" )for 72 h, IL-4 (100 U-mL™") for 24 h
or IL-1B (50 U-mL™) for 4 h in a 5% CO, atmosphere at
37°C. These cytokines were added to the upper compartment
of the wells. Times of incubation and cytokine concentrations
were chosen based on the results of previous studies [24-27].
Thereafter, the upper and lower compartments of the wells
were washed three times with Hank’s balanced salt solution
(HBSS) (37°C). Eosinophils (I1x10° cells'mL™ in Roswell
Park Memorial Institute 1640 containing 10% FBS and
1% penicillin/streptomycin) were laid in inserts coated or not
with endothelial cells. A potent eosinophil chemoattractant,
5-0x0-ETE (1 uM), was added to the lower chamber of
some wells to induce migration [22]. After a 4-h incubation,
eosinophils recovered from the upper chambers served to
evaluate the effect of contact with endothelial cells and cells
that had migrated through endothelial cell-coated inserts
under the action of 5-0x0-ETE served to evaluate the effect of
transendothelial migration. In these two sets of experiments,
inserts without endothelial cells served as controls. In specific
experiments, to further evaluate the effects of endothelial cell
contact in the presence or absence of 5-oxo-ETE and to
prevent migration through endothelial cells, eosinophils were
incubated in 24-well culture plates coated or not with
endothelial cells. Moreover, in order to evaluate the role of
ICAM-1/CD11b ligation in eosmophll/endothehal cell inter-
actions, an anti-ICAM-1 antibody (20 pg-mL™') was added
to the 1ncubat10n medium. The migration rate is presented
as the percentage of cells in the upper chamber that migrate
into the lower chamber. At the end of incubations, the
viability of the eosinophils was always >98%.

Incubation on fibronectin- or anti-CD11b antibody-
coated plates

In order to study the effect of CD11b and very late
activation antigen-4 (VLA-4) ligation on eosinophil CD69
expression, 96-well culture plates (Nunc-Immuno Plate Maxi-
sorp Surface; VWR International, Montreal, QC, Canada)
were lncubated with either 100 uL ﬁbronectm (20 pg-mL™),
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100 pL anti-CD11b monoclonal antibody (20 pg-mL™), both
fibronectin and anti-CD11b antibody, or 100 pL HBSS
(control) overnight at 4°C. At the end of this incubation,
the wells were washed twice with HBSS and nonspecific
protein binding was blocked by addition of 100 uL. HBSS
containing 1% BSA for 1 h at 37°C. Before use, the coated
wells were washed with HBSS and eosinophils (1x10° cells-
100 pL™!) were added to wells and incubated for 4 h at 37°C.
Cells were then harvested and stained with FITC-conjugated
antihuman CD69 as described below.

Cell-surface marker detection

Eosinophils were labelled (2x10° cells-100 pL™! for 30 min
at 4°C) with specific antibodies (1 pg-mL™") directed against
CD4, CD16, CD28, CD35, CD69, CD86 and HLA-DR or
with their respective isotypic control, as previously described
[28, 29]. After incubation, cells were washed with HBSS con-
taining 1% BSA and fixed in 4% paraformaldehyde (10 min
at 4°C). Phycoerythrin-conjugated antimouse secondary anti-
body (1 pg'mL™") was then added (for 30 min at 4°C). In
experiments with incubation on fibronectin- or anti-CD11b
antibody-coated plates, FITC-conjugated anti-CD69 anti-
bodies were used. Finally, eosinophils were washed, suspended
in HBSS containing 1% BSA, kept at 4°C and immediately
subjected to cytometric analysis using an EPICS® ELITE
ESP flow cytometer (Beckman-Coulter, Miami, FL, USA).
Mean fluorescence (MF) was measured on a logarithmic scale
[28, 29] and the percentage of cells expressing a particular
marker determined by counting the number of cells showing
greater fluorescence activity than >96% of negative controls.

Leukotriene Cy assay

Eosinophils (1x10° cellssmL™ in HBSS/CaCl, (1.6 mM))
were incubated with PAF (1 pM) for 10 min at 37°C under
5% CO, and thereafter with C5a (10 nM) under the same
conditions. Tubes were then put on ice for 5 min to stop the
reaction. Cells were centrifuged and LTC,4 measured in the
supernatants by quantitative enzyme immunoassay according
to the manufacturer’s recommendations.

Statistical analyses

Mediator and cell-surface marker expression data were
analysed using a crossed-nested design (analysis of variance).
Data are presented as meantSEM and results were considered
significant when p was <0.05. There was no difference between
the eosinophils of normal and asthmatic subjects for all
measured parameters under all tested conditions. Their data
were, therefore, pooled together for analysis and presentation.

Results
Migration through endothelial cells

Spontaneous eosinophil migration through uncoated inserts,
untreated endothelial cells and TFN-y-pretreated endothelial
cells was 1.410.2, 2.630.3 and 2.1£0.4%, respectively (fig. 1).
Pretreatment of endothelial cells with IL-4 or IL-1p increased
eosinophil migration to 11.5+0.9 and 12.4+0.8%, respectively
(p=0.0001). Addition of 5-0x0-ETE to the lower chambers
dramatically stimulated eosinophil migration through endo-
thelial cells (84.3%1.0%; p=0.0001). Pretreatment of endothelial
cells with IFN-y decreased the effect of 5-oxo-ETE on eosinophil
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Fig. 1.—Migration of eosinophils through endothelial cell monolayers.
Eosinophils were laid on cell culture inserts coated (Z; B) or not (O)
with endothelial cells. Data are presented as mean+SEM. The eosino-
phils barely migrated through uncoated inserts (C) and inserts coated
with untreated endothelial cells (EC). Pretreatment of endothelial cells
with interleukin (IL)-4 or IL-1f but not interferon gamma (IFN-vy)
increased eosinophil migration. When 5-oxo0-6, 8, 11, 14-eicosatetraenoic
acid was added to the lower chambers (B), most eosinophils migrated
through inserts coated with endothelial cells, but this effect decreased
with IFN-y-pretreatment of endothelial cells. *, #, ¥, ™ p=0.001 versus
each other (n=17 for each).

migration (63.1+1.3%; p=0.0001). In contrast, pretreatment
of endothelial cells with IL-4 or IL-1B did not modify 5-oxo-
ETE-induced migration (82.8£1.3 and 81.8%+2.0%, respectively).

FEosinophil surface marker expression

Among eosinophils incubated on uncoated inserts and
recovered from the upper chambers, the percentage of CD69-
positive cells was 5.0+2.2% (0.06£0.02MF) and increased to
30.7+8.4% (0.34x0.11MF) on inserts coated with untreated
endothelial cells (p<0.0001) (fig. 2a). Contact of eosinophils
with endothelial cells in culture plates in the presence of
5-0x0-ETE induced similar CD69 expression (27.216.2%;
0.2+0.04MF) to incubation on endothelial cells alone. Pre-
treatment of endothelial cells with IFN-y or IL-4 did not
modify eosinophil expression of CD69 (36.3+7.6% (0.35%
0.06MF) and 45.4%7.3% (0.43£0.05MF), respectively). How-
ever, pretreatment of endothelial cells with IL-1pB increased
CD69-positive eosinophil percentages (50.9+10.8%; 0.58+
0.14MF) (p<0.0001). Compared to cells incubated on endo-
thelial cells, eosinophils of the lower chambers that had
migrated through endothelial cells under the action of
5-0x0-ETE showed a further increase in CD69 expression
(63.917.0%; 0.88+0.18MF; p=0.004) (fig. 2b). Migration of
eosinophils through cytokine-pretreated endothelial cells did
not further modify CD69 expression compared to migration
across untreated endothelial cells.

The effect of CD11b and VLA-4 ligation on eosinophil
CD69 expression is presented in figure 3. Eosinophils incu-
bated on fibronectin showed low expression of CD69
(6.21+1.5%), similar to control wells (4.241.4%). In contrast,
cells incubated on anti-CD11b antibody-coated wells exhibi-
ted increased expression of CD69 (27+6%; p=0.007; n=06).
Addition of fibronectin did not modify this expression
(26.8+11.5%). These values were similar to those observed
with eosinophils incubated on untreated endothelial cells
(fig. 2a). Furthermore, in two experiments eosinophils were
incubated on endothelial cells in the presence of an anti-
ICAM-1 antibody. This antibody decreased endothelial cell-
induced CD69 expression from 36.6 to 2.4%.

The expression of CD35 in eosinophils incubated in uncoated
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Fig. 2.—Expression of CD69 receptors on a) eosinophils incu-
bated on inserts or culture plates coated (4) or not (O) with
endothelial cells and b) cells that migrated through inserts coated
with endothelial cells under the effect of 5-oxo-6, 8, 11, 14-
eicosatetraenoic acid (5-oxo-ETE) (H). Data are presented as
meantSEM. a) Eosinophil CD69 expression increased in contact with
endothelial cells (EC) compared to cells that have not been in contact
with endothelial cells (C). Pretreatment of endothelial cells with
interleukin (IL)-18, but not IL-4 or interferon gamma (IFN-vy),
further increased eosinophil CD69 expression. b) Migration through
endothelial cells under the effect of 5-0x0-ETE doubled the number
of CD69-positive eosinophils compared with nonmigrated cells
incubated on endothelial cells in the presence of 5-oxo-ETE. B+
p<0.0001 versus each other; % p=0.0037 versus nonmigrated cells
(n=13).
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Fig. 3.— Expression of CD69 receptors of eosinophils incubated on
fibronectin (FN)- and anti-CD11b antibody-coated wells. Data are
presented as meant+SEM. Compared to control (C) and FN-coated
wells, incubation of cells on anti-CD11b antibody-coated wells induced
an increase in CD69-positive cells. #: p<0.007 versus control and FN-
coated wells (n=6).

inserts (83.314.5%; 1.2+0.1MF), inserts coated with endothe-
lial cells (85.5+2.6%; 1.4£0.2MF) or on endothelial cells in
the presence of 5-oxo-ETE (85.5+3.8%; 1.8+0.3MF) were
similar (fig. 4a). Treatment of endothelial cells with cytokines
did not modify eosinophil CD35 expression: IFN-y 87.9%+1.1%,
IL-4 90.1+1.4%, and IL-1B 89.5+2.3% (p=0.38). Migration
of eosinophils through endothelial cells under the action of
5-0x0-ETE significantly increased CD35 expression (91.313.2%;
1.91£0.3MF) compared to cells incubated in inserts coated
with endothelial cells and that had not migrated (p=0.0013)
(fig. 4b). Cytokine pretreatment of endothelial cells did not
modify the CD35 expression of migrated eosinophils.
Purified blood eosinophil expression of CD4, CD16, CD28,
CD86 and HLA-DR were 15.0+3.7, 2.0£1.0, 3.5+1.3, 6.9+2.8
and 1.5%0.3%, respectively (n=4-8). Contact with and migration
through endothelial cell monolayers did not modify eosino-
phil expression of these surface markers (data not shown).

Leukotriene Cy release

Compared to eosinophils recovered from the upper chambers,
cells of lower chambers that migrated through endothelial
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Fig. 4. — Expression of CD35 receptors on a) eosinophils incubated on
inserts or culture plates coated (4) or not ((J) with endothelial cells
and b) cells that migrated through inserts coated with endothelial
cells (EC) under the effect of 5-o0x0-6, 8, 11, 14-eicosatetraenoic acid
(5-0x0-ETE) (H). Data are presented as mean+SEM. a) CD35 expres-
sion of eosinophils incubated on inserts coated or not with endo-
thelial cells were similar (n=8). b) Migration of eosinophils through
inserts coated with endothelial cells under the effect of 5-oxo-ETE
significantly increased CD35 expression compared to nonmigrated
cells incubated on endothelial cells in the presence of 5-oxo-ETE. EC:
untreated endothelial cells. #: p=0.0013 versus nonmigrated cells (n=13).
C: eosinophils incubated on uncoated cells; IFN-y: interferon gamma;
IL: interleukin.
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Fig. 5.—Release of leukotriene (LT) C4 by eosinophils under migra-
tion conditions. Data are presented as mean+SEM. Release of LTC,
by eosinophils that had migrated across inserts coated with endo-
thelial cells (EC) under the effect of 5-0x0-6, 8, 11, 14-eicosatetraenoic
acid (B) was increased compared to eosinophils incubated on
uncoated inserts (C; OJ) (p=0.0055). Eosinophils that migrated through
interleukin (IL)-4- or IL-1B-pretreated endothelial cells released more
LTC, than eosinophils that migrated through untreated or interferon

gamma (IFN-y)-pretreated endothelial cells. # o+ p<0.0006 versus

each other (n=10).

cells under the action of 5-0x0-ETE released more than eight
times more LTC, (103.9£30.2 and 872.4%292.5 pg-mL!,
respectively; p=0.0055) (fig. 5). Migration through IFN-y-
pretreated endothelial cells decreased eosinophil LTC, release
(293.7£116.9 pg-mL"'; p=0.0006). In contrast, migration through
IL-4- and IL-1B-treated endothelial cells further increased
eosinophil LTC, release (1,789.1+457.3 and 2,895.1+831.4 pg-
mL!, respectively; p=0.0006). Eosinophils incubated in endo-
thelial cell-coated and uncoated culture plates released similar
amounts of LTC, (32.4+12.7 and 82.9+28.2 pg'mL™", respec-
tively; p=0.2, n=6). Moreover, under these conditions, addition
of 5-0x0-ETE did not amplify the PAF/C5a-induced LTC,
release (32.4+12.4; n=3).

Discussion

Eosinophil emigration from blood to tissue and migration
through endothelium may contribute to the observed activa-
tion status of tissue eosinophils compared to their blood
counterparts. This study shows that in vitro contact with
endothelial cells increases eosinophil CD69 expression and
that eosinophil migration through an endothelial cell mono-
layer further increases CD69 expression and also augments
CD35 expression and LTC, release. Moreover, the endothe-
lial cell effects on eosinophils are modulated by cytokines, IL-
1B or IL-4 amplifying them and IFN-y decreasing them.

In the present study, endothelial cell pretreatment with 1L-4
or IL-1p but not IFN-y facilitated the passage of eosinophils
across endothelial cell monolayers. Since IL-4 and IL-1B
upregulate ICAM-1 and VCAM-1 on endothelial cells [30,
31], these ligands may increase adhesion of eosinophils to
endothelial cells via Mac-1 (a B, integrin) and VLA-4, respec-
tively, and, consequently, may promote eosinophil migration.

5-oxo0-ETE, a potent chemoattractant [32], promoted the
migration of most of the eosinophils. IFN-y partially inhibits
5-0x0-ETE-induced eosinophil migration. The mechanism of
this inhibition remains undefined. IFN-y has no known effect
on the expression of adherence molecules such as VCAM-1
but increases the expression of ICAM-1 on airway epithelium
[33].

Induction of CD69 expression on eosinophils has been
reported as an indication of eosinophil activation [34]. The

function of CD69 on eosinophils and other cell types is not
entirely understood, although engagement of this marker
leads to eosinophil apoptosis in vitro and cytokine release in
other cell types [35]. CD69 may be a coreceptor for eosino-
phil activation, or, as for platelets and monocytes, facilitate
mediator release or degranulation [9, 36, 37]. CD69 is barely
detectable on freshly isolated eosinophils but is rapidly expressed
after stimulation with numerous cytokines [9, 38-40]. CD69 is
also present on bronchoalveolar lavage eosinophils [8, 9, 34].
The present data and the recent report of YAMAMOTO et al.
[16] show that CD69 expression is increased by contact with
and further increased after migration through endothelial
cells. The induction of CD69 expression is also observed on
eosinophils incubated with antibodies directed against CD11b
and inhibited by an anti-ICAM-1 antibody, suggesting that
binding of eosinophils to endothelial cells via ICAM-1/,
integrin interaction is probably involved in endothelial cell-
mediated eosinophil activation. The greater expression of
CD69 on migrated eosinophils is probably due to the effect of
migration through the endothelial cell monolayer, given that
CD69 expression on eosinophils cocultured with endothelial
cells in the presence of 5-o0xo-ETE was not increased com-
pared to that on eosinophils in contact with endothelial cells.
YAMAMOTO et al. [16] showed that migration across IL-1p-
pretreated endothelial cells stimulated eosinophil expression
of CD69, CD54 and HLA-DR. The present study failed to
show upregulation of CD69 and HLA-DR expression on
eosinophils that had migrated across IL-1B-treated endothe-
lial cells compared to those that had migrated through
unstimulated endothelial cells. One possible explanation
for this discrepancy is the different eosinophil populations
studied. YAMAMOTO et al. [16] analysed a small population
of eosinophils (<15% of total eosinophils placed on the endothe-
lial cell monolayer) that migrated spontancously through
IL-1B-pretreated endothelial cells, whereas the present study
analysed eosinophils that migrated through endothelial cells
under the action of 5-0xo-ETE (>80% of total eosinophils).
Moreover, YAMAMOTO et al. [16] measured MF on a linear
scale, which greatly increases the sensitivity but also signifi-
cantly decreases the specificity of measurements.

In the present study, CD35 was highly expressed on blood
eosinophils. As shown by WALKER et al. [27], this expression
was not modified by contact with, but increased slightly after
migration through, endothelial cells. Complement receptors
such as CD35 are known to play a role in the activation and
adhesion of neutrophils and eosinophils, and, during asthmatic
reaction, expression of these receptors is elevated on circulat-
ing granulocytes [41]. In contrast, other receptors, CD4, CD16,
CD28, CD86 and HLA-DR, were barely expressed by blood
eosinophils and their expression was not upregulated by migra-
tion through endothelial cells. These receptors are involved in
interactions of eosinophils with mediators and other cells and
are upregulated on tissue eosinophils [42]. The present results
suggest that eosinophil migration through endothelial cells is
not involved in this upregulation.

The present study shows that passage of eosinophils
through endothelial cells modulates LTC, release. MuNOz
et al. [43] reported that incubation on IL-1B-treated endo-
thelial cells but not endothelial cells alone augmented LTC,
release from stimulated eosinophils and that this augmenta-
tion was related to the process of eosinophil binding at the
endothelial surface [43]. Herein, the effect of incubation on
cytokine-treated endothelial cells was not evaluated, but it
was shown that migration of eosinophils through IL-1B- or
IL-4-treated endothelial cells further increased LTC, release.
It is likely that part of this increase is mediated via
upregulation of adhesion molecule expression on endothelial
cells [30, 31]. The inhibitory effect of endothelial cell
pretreatment with IFN-y is important (fig. 5) and could also
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be mediated via modulation of adhesion molecule expression
on endothelial cells. Moreover, the amount of LTC, produced
by eosinophils in vivo depends on its level of activation and
eosinophil exposure to cytokines and mediators [10]. Thus,
during migration, exposure to cytokine(s)/mediator(s) expressed
by endothelial cells might be involved in the modulation of
LTC, release observed after migration of eosinophils through
endothelial cells. Previous reports showed that IL-1 and 1L-4
increased GM-CSF production by endothelial cells, whereas
IFN-vy decreased it [44-46].

Since blood ecosinophils from asthmatic subjects are
activated compared to normal eosinophils [1-5], the present
authors postulated that asthmatic eosinophils might respond
differently to migration through an endothelial cell mono-
layer. However, no difference was observed between normal
and asthmatic blood eosinophils for the measured param-
eters. This may be related to the clinical state of the patients,
given that the subjects recruited in the present study had very
mild asthma. Blood eosinophils from subjects with more
severe asthma might respond differently to interactions with
endothelial cells.

In conclusion, the present study investigated many cell
surface markers and release of leukotriene C4, a potent
mediator. The data suggest that, in vivo, endothelial cells
modulate specific eosinophil cell-surface marker expression
and function, thus modifying eosinophil phenotype, and that
these effects are themselves modulated by various cytokines
and, at least in part, mediated via adhesion molecules.
Therefore, evaluation of the activation status of eosinophils
following their passage from blood to tissue and the increase
in their capacity to interact with cells and extracellular matrix
components is a very important step in understanding the role
of these cells in tissue homeostasis.
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