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ABSTRACT: Over the last decade, improvements in surgical techniques, lung
preservation, immunosuppression, and management of ischaemia/reperfusion injury
and infections have made intermediate-term survival after lung transplantation an
achievable goal. However, chronic allograft dysfunction in the form of bronchiolitis
obliterans remains a major hurdle that threatens both the quality of life and long-term
survival of the recipients. It affects up to 50-60% of patients who survive 5 yrs after
surgery, and it accounts for >30% of all deaths occurring after the third postoperative
year.

This article discusses the alloimmune-dependent and -independent risk factors for
bronchiolitis obliterans, the current understanding of the pathogenesis of bronchiolitis
obliterans based on results of animal and human studies, the clinical staging of the
complication, strategies that may contribute to the prevention and/or early detection of

*Division of Pulmonary Medicine, University
Hospital, Zurich, Switzerland. #*The Chest
Service, Erasme University Hospital, Brussels,
Belgium.

Correspondence: M. Estenne, Chest Service,
Erasme University Hospital, 808, Route de
Lennik, B-1070 Brussels, Belgium.

Keywords: Bronchiolitis obliterans, chronic
allograft dysfunction, chronic rejection, lung
transplantation

Received: April 8 2003
Accepted: April 9 2003

bronchiolitis obliterans, and suggestions for future research.
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Over the last decade, improvements in surgical techniques,
lung preservation, immunosuppression, and management of
ischaemia/reperfusion injury and infections have contributed
to increase the 1-yr patient survival after lung transplanta-
tion (LTx) to 70-80% [1]. After successful reduction of early
complications, chronic allograft dysfunction has become the
major obstacle to long-term survival. A shift in the nature of
complications from early to late graft dysfunction has been
similarly observed after transplantation of other solid organs
[2]. Bronchiolitis obliterans (BO) after LTx was first described
in 1984 at Stanford University, Stanford, CA, USA, in heart-
lung transplant recipients who showed a progressive decline
in forced expiratory volume in one second (FEV1) [3]. Lung
biopsies from these patients showed intraluminal polyps
comprised of fibromyxoid granulation tissue and plaques of
dense submucosal eosinophilic scar. Obliteration of small
airways by these lesions produces progressive airflow obstruc-
tion, often accompanied by recurrent lower respiratory tract
infection.

BO and its clinical correlate bronchiolitis obliterans syn-
drome (BOS) affect up to 50-60% of patients who survive
5 yrs after surgery, irrespective of the type of transplant
procedure [1, 4-6]. This incidence is high compared with that
of chronic graft dysfunction in recipients of liver, heart or
kidney transplants (table 1). The time between transplanta-
tion and onset of BOS can range from a few months to several
years, but in most series, the median time to diagnosis is
16-20 months. In most patients, BOS is a progressive process
that responds poorly to augmented immunosuppression, and
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it accounts for >30% of all deaths occurring after the third
postoperative year [1]. Survival at 5 yrs after the onset of BOS
is only 30-40%, and survival at 5 yrs after transplantation
is 20-40% lower in patients with than in patients without
BOS [7]; this difference widens as postoperative follow-up
increases. After single LTx, survival after BOS onset is longer
in recipients with emphysema compared with recipients with
idiopathic pulmonary fibrosis [§].

Clinical presentation

Clinical symptoms at onset are unspecific or even absent,
and many patients only present with an asymptomatic fall in
FEVI1. However, some patients have an acute presentation
with an initial episode of acute rejection or infection that
does not respond to treatment. Later in the disease course,
symptoms often include repeated episodes of bacterial
infection, followed by permanent airway colonisation with
pathogenic bacteria and fungi (e.g. Pseudomonas and
Staphylococcus spp., and Aspergillus fumigatus). During the
first postoperative months, nonspecific bronchial hyperreac-
tivity may be present in patients who will develop BOS later
[9]. Tt is important to emphasise that from the clinical point of
view, BOS is a very heterogeneous condition. This probably
reflects the variety of risk factors and underlying mechanisms
that may be involved (see below). The rate of progression of
the disease, as assessed by the decline in FEV1, may show the
following: 1) a sudden onset with rapid decline of lung
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Table 1.—Chronic allograft
transplantation

dysfunction in solid organ

Table 2. —Risk factors for bronchiolitis obliterans syndrome
(BOS)

Organ Pathological features Incidence 5 yrs Probable risk Potential risk factors for BOS

after transplant % factors for BOS
Liver Vanishing bile duct syndrome 5 Acute rejection CMV infection (without pneumonitis)
Kidney Glomerular sclerosis/tubular atrophy 30 Lymphocytic Community respiratory virus infection
Heart Coronary artery sclerosis 20 bronchitis/bronchiolitis Donor antigen-specific reactivity
Lung Bronchiolitis obliterans 50-60 CMYV pneumonitis Medical noncompliance

function; 2) an insidious onset with a slow, progressive decline
over time; and 3) an initial rapid decline in FEV1 followed by
a prolonged period of stability [10]. The latter pattern,
however, is not very common as <20% of affected patients are
free of functional degradation at 2 yrs after diagnosis [11].

The risk for progression increases with the number of
episodes of acute rejection within 6 months of surgery, and
seems to be more pronounced in patients who develop BOS
before the second postoperative year [12]. In a recent study of
151 patients with BOS [13], 75% had a sudden onset of BOS
(pattern 1) and 25% had a chronic onset (pattern 2). Acute
onset of BOS occurred earlier relative to surgery than chronic
onset, and carried a worse prognosis (median survival after
diagnosis 29 versus 58 months). Acute onset of BOS was
significantly associated with acute rejection during the first 6
months (though no such event was recorded for many
patients), and was often triggered by an acute rejection or
infection episode. There is evidence that the number of
respiratory infections and the aggressiveness with which they
are treated also impact on BOS progression [11]. For
example, in the authors’ experience, patients who show a
very slow decline in FEV1 (pattern 2) generally have few or no
respiratory infection and/or airway colonisation.

The presence of BOS negatively affects not only survival
but also health-related quality of life [14]. Patients with BOS
show less energy and physical mobility, and more depressive
symptoms compared with their counterparts without this
complication. BOS is also associated with substantial addi-
tional healthcare costs, in particular for hospitalisations and
medications [15].

Risk factors

Many factors have been reported as risk factors for BOS
[16]. However, quality of data is often a problem, because
almost all existing information derives from retrospective
studies with no control groups and/or reflects the experience
of single centres. Numbers are small and often difficult to
interpret. In some cases, risk factors appear to have been
more important in the earlier years of LTx, e.g. cytomega-
lovirus (CMYV) infection (see below). Risk factors reported in
the literature are designated as probable and potential risk
factors in table 2.

Alloimmune-dependent factors

The bulk of evidence suggests that BO is mediated by an
immunological injury directed toward epithelial and endo-
thelial cells. This is supported by several studies that have
shown that acute rejection histology, characterised by
perivascular and/or peribronchial infiltration of activated
lymphocytes into graft tissue, is a statistical risk factor for
BOS; the risk increases when the acute rejection is histolo-
gically severe or when it persists or recurs after treatment [11,
16-21]. Three or more episodes of acute rejection within the

Anti-HLA
pretransplantation

Gastro-oesophageal reglux
Older donor age combined with longer
graft ischaemic time

CMV: cytomegalovirus; HLA: human leukocyte antigen.

first 6-12 months after surgery increase the risk of developing
BOS by 3-4 times [11]. Similarly, lymphocytic bronchitis and
bronchiolitis in the absence of acute perivascular rejection
and infection have been shown to predate BOS in a significant
number of patients [19, 21, 22]. Acute rejection later in the
postoperative period is another important risk factor [12, 23];
in one study [23], ~50% of patients treated for acute rejection
beyond 6 months after transplantation went on to develop
BOS within 3 months of treatment for rejection. In these
patients, the absence of a long intervening time period
suggests that acute rejection may lead directly to airway
obliteration.

However, many patients with acute rejection do not
develop BOS, and some patients with BOS have never
experienced acute rejection [13]. Therefore, the relationship
between acute rejection and BOS appears to be complex and
may depend on several factors, such as the time after
transplantation, whether acute rejection histology occurs in
a symptomatic or asymptomatic patient and on the intensity
of therapy provided. In a recent study, A3 or multiple A2
rejection episodes occurred in only 13% and 7% of the 96
patients studied, respectively, and their occurrence did not
predict BOS. SWANSON et al. [24] suggested that the use of
intense induction and maintenance immunosuppression and
of aggressive treatment of acute rejection may uncouple the
association between early acute rejection and BOS.

Several lines of evidence support the concept that allo-
reactivity directed towards human leukocyte antigens (HLA)
is involved in the pathogenesis of BOS. Patients with anti-
HLA antibodies pretransplantation have an increased inci-
dence of acute rejection and BOS [25]. The bronchoalveolar
lavage (BAL) fluid of stable lung transplant recipients shows
a persistent increased percentage of CD8+ T-cells, which
suggests subclinical ongoing allogeneic stimulation [26].
Expression of class-I and class-II HLA antigens by bronchial
epithelial cells is upregulated during chronic rejection [27-30].
Identification of anti-HLA antibodies directed towards these
antigens in previously unsensitised recipients is associated
with, or may even precede, the development of BOS [31, 32].
In addition, reactivity of bronchoalveolar [33] and peripheral
blood [34] lymphocytes in patients with BOS is generally
directed towards donor-specific class-I HLA antigens. Despite
these observations and single-centre reports of an association
between HLA mismatching and BOS [35], analysis of the
United Network for Organ Sharing/International Society for
Heart and Lung Transplantation (ISHLT) database [36] and
a recent review of the published literature [16] do not support
HLA mismatching as an established risk factor for chronic
rejection. This is probably related to the fact that very few
patients have two or less HLA mismatches because no
attempt at HLA matching is made.

Persistent donor antigen-specific reactivity of recipient
T-lymphocytes has reportedly led to increased rates of BOS,
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and conversely donor-specific hyporeactivity (generally asso-
ciated with peripheral blood allogeneic microchimerism) has
been reported to be protective in some [37, 38], but not in all
[39], studies. Preliminary experience from the Pittsburgh (PA,
USA) transplant group has shown that the infusion of donor
bone marrow in combination with LTx increases donor cell
chimerism and donor-specific hyporeactivity, and is asso-
ciated with a lower incidence of BOS [40]. In this study, two of
22 patients (9%) who received bone marrow infusion
developed BO and/or BOS versus five of 12 control patients
(42%); the significance of these results, however, is limited by
the small number of patients studied and the short duration of
the follow-up.

Alloimmune-independent factors

Although BOS is thought to be mediated by an alloimmu-
nological injury, it is likely that nonalloimmunological
inflammatory conditions also play a role. The lung is con-
stantly exposed to inhaled agents, such as antigens, toxins and
irritants, which promote local inflammation. In addition, the
allograft is particularly susceptible to inhaled exogenous
infectious agents [41-43]. Bacterial and fungal infections are
not known to contribute directly to the pathogenesis of BOS,
though they may increase the risk of acute rejection [21]. In
contrast, CMV-related illness has been implicated in chronic
vascular rejection of nonpulmonary solid organ transplants,
and in some studies CMV pneumonitis was correlated with
the development of BOS [12]. In the ISHLT registry [1], CMV
mismatch is reported as a risk factor for 1- and 5-yr mortality.
However, the impact of CMV on the development of BOS
remains controversial, possibly due to several factors, such as
the matching of CMV-seronegative recipients with CMV-
seronegative donors, the prospective monitoring of CMV
antigenaemia as a surveillance technique for CMV infection,
the use of prophylactic or pre-emptive antiviral treatments
and changes in the immunosuppressive regimen, all of which
may mask potential associations [44]. Several centres have
reported a decreased risk of CMV in the development of BOS,
either a decreased incidence or a delayed onset, after the use
of CMV prophylaxis [45-47].

Community respiratory virus infections, including respira-
tory syncytial virus, parainfluenza virus, adenovirus, and
influenza A and B occur frequently in lung transplant recip-
ients [48, 49]. Although these viruses have not been
unequivocally associated causally with BOS, their involve-
ment cannot be excluded. In the study by BILLINGS et al
[48], patients with community virus infections involving the
lower respiratory tract were predisposed to high-grade BOS
development.

The role of airway ischaemia in the pathogenesis of BOS is
uncertain. Ischaemia may occur as a result of two mechan-
isms. First, chronic ischaemia due to interruption of the
bronchial artery supply after reimplantation of the graft is
a potential facilitator of subsequent small airway injury,
however, the fact that bronchial artery revascularisation at
the time of surgery has not significantly reduced the
prevalence of BOS argues against the role of chronic airway
ischaemia [50]. Secondly, "cold ischaemia" that occurs during
the time interval between organ procurement and organ
transplantation has been suggested to increase the risk of
death and chronic graft dysfunction after LTx. In the study
by Novick et al. [51], the effect of ischaemia time on the
incidence of BOS was magnified as donor age increased,
suggesting that the susceptibility to ischaemic injury at the
time of organ procurement is dependent on additional
intrinsic donor characteristics.

Recently, gastro-oesophageal reflux disease (GERD) has
been reported to be associated with BOS. GERD is common
after LTx, in part due to intraoperative injury to the vagal
nerve and medication-induced gastroparesis. Afferent dener-
vation of the airways also diminishes the chronic cough
associated with GERD. Transplant recipients may thus be
insensitive to microaspiration that may promote chronic
inflammation and bacterial infections in the lower airways,
and hence may be a risk factor for BOS [52]. Antireflux
surgery (fundoplication) in transplant patients may improve
lung function [52-54].

Medication noncompliance may represent an important,
but often underestimated, risk factor for chronic rejection
[55, 56]. For example, 12 months after kidney transplantation,
the rate of compliance with a multidrug immune suppressive
regimen was only 48% [56]. Although similar studies are
not available in lung transplant recipients, medication non-
compliance should be considered as a potential risk factor for
BOS.

Several additional factors have been proposed as risk
factors for BOS, but convincing data to support their role is
lacking [16]. These factors include a history of smoking or
asthma in the donor, donor age, head injury as cause of death,
reperfusion injury, primary pulmonary hypertension as
recipient primary disease, organising pneumonia, and geno-
typic suceptibility related to cytokine gene polymorphisms
[57, 58].

Pathogenesis

The histopathological features of BO suggest that injury
and inflammation of epithelial cells and subepithelial struc-
tures of small airways lead to excessive fibroproliferation due
to ineffective epithelial regeneration and aberrant tissue repair
[59]. In parallel with the concept of "injury response" that has
been proposed to explain chronic dysfunction of other organ
allografts [60], the evolving concept is that BO represents a
"final common pathway" lesion, in which various insults (see
above) can lead to a similar histological result. Accordingly,
the cellular mechanisms discussed here may all contribute to
the development of BO, irrespective of the nature of the initial
injury and offending agent.

Animal models

Experimental studies have used the orthotopic LTx model
and the heterotopic airway transplantation model. The first
model consists of an orthotopic left single LTx performed in
small animals like rats [61] and large animals like pigs [62]. It
is mostly used to study acute events, since chronic changes
such as BO occur infrequently in this model [62-64]. In
contrast, the heterotopic airway transplantation model leads
to consistent and reproducible airway obliteration and
produces a histological lesion, which is very similar to that
of human BO. The model, which was developed in the early
1990s in mice [65] and rats [66, 67], is technically less
demanding than the orthotopic model and can be produced
in larger numbers [68]. Although the heterotopic airway
transplantation model has proved very useful to improve the
understanding of the pathogenesis of BO, it differs from the
clinical situation in several aspects. First, the transplanted
airways are not primarily revascularised but depend on
neovascularisation, and therefore, are exposed to pronounced
ischaemia. In this model, however, airway ischaemia alone
does not lead to airway obliteration [69]. Secondly, clinical
BO is a chronic process that usually starts a few months after
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surgery. In contrast, airway obliteration occurs within a few
weeks after transplantation in the airway transplantation
model, in particular when no immunosuppression is given and
when allografts from fully major histocompatibility complex-
mismatched animal strains are used.

Histologically, the heterotopically transplanted trachea
shows an initial ischaemic phase [69], followed by marked
lymphocytic infiltration with complete epithelial loss, and
then by fibrous obliteration of the airway lumen. In the
tracheal allograft model, injury to the epithelium is immune-
mediated, but interestingly, nonimmune-mediated injury to
the epithelium of tracheal isografts (e.g. produced by protease
digestion) may also lead to airway obliteration [70]. In both
the allograft and the isograft models, the loss of epithelium
plays a pivotal role in this process. Thus, epithelial cell
replacement in denuded isografts can significantly reduce
airway obliteration [71]. After the epithelium is lost, thicken-
ing and fragmentation of the basement membrane can be
observed [72].

The loss of basement membrane integrity will allow
lymphocytes to infiltrate the tracheal mucosa, producing a
histological picture that closely resembles the lymphocytic
bronchitis and bronchiolitis seen in humans. Lymphocytic
inflammation of the airway thus seems to be a precursor of
BO [69]. Infiltrating cells include CD4+ and CD8+ T-cells
(with a higher proportion of CD8+ cells early on [67, 73]),
natural killer cells and macrophages [74], and later, myofi-
broblasts [73]. Recipient T-cells will recognise donor major
histocompatability complex class-I and class-II alloantigens
by both direct and indirect pathways [75, 76]. T-cell activation
requires co-stimulatory signals. It has been shown that
cellular infiltration and airway obliteration highly depend
on host CD40 ligand and to a lesser degree on CD28 [72]; the
interaction of CD28 with its ligand B7-2, but not B7-1, is
involved in upregulating proinflammatory and T-helper (Th)
cell type-1 cytokine responses [77]. Consistent with this, treat-
ment with cytotoxic T-lymphocyte antigen 4-immunoglobulin
G (CTLA4-IgG), which blocks the CD28/B7 co-stimulatory
pathway, delays epithelial injury and attenuates obliterative
changes. When administration of CTLA4-1gG and FTY720
(which induces T-cell apoptosis and sequestration of circulat-
ing mature lymphocytes) are combined, the integrity of both
epithelium and airway lumen is maintained [78].

Mediators involved in the process include a strong and
persistent Th1-type response with upregulation of interferon-
v and interleukin (IL)-2 accompanied by a mild upregula-
tion of Th2 cytokines, such as IL-4 and IL-10 [79]. The Thl
response persists even after completion of the airway
obliteration, indicating ongoing immune stimulation [80].
CC as well as CXC chemokines and their receptors play an
important role in the recruitment of intragraft leukocytes.
RANTES (regulated upon activation, normal T-cell expressed
and secreted), a chemoattractant for memory T-cells, mono-
cytes and eosinophils, has been shown to be highly expressed
in mononuclear cells infiltrating the tracheal allograft [80]; the
use of a neutralising anti-RANTES antibody decreases the
number of CD4+ infiltrating T-cells and prevents airway
obliteration [81]. Similarly, monocyte chemoattractant pro-
tein (MCP)-1 acting through its receptor CCR2 is a potent
chemoattractant for mononuclear cell. Loss of MCP-1/CCR2
signalling significantly reduces mononuclear cell recruitment
and later airway obliteration [82].

Typical cells involved in the fibroproliferative phase are
fibroblast-like cells that express type-III collagen messenger
ribonucleic acid (mRNA) [83]. Mediators include profibrotic
cytokines, such as platelet-derived growth factor (PDGF),
fibroblast growth factor, transforming growth factor (TGF)-j,
insulin-like growth factor (IGF)-1 and endothelin (ET)-1 [84].
These cells and mediators promote extracellular matrix

deposition, proliferation of smooth muscle cells, angiogenesis
and excessive fibroproliferation.

In addition to its contribution to the identification of
several cellular mechanisms involved in BO, the animal
models have been used to understand how CMV infection
may enhance BO [85], to test protocols of orally induced
tolerance [63] and to assess the effectiveness of novel
immunosuppressive agents (and other compounds) in the
prevention of airway obliteration [86-92].

Human studies

As in the animal model, there is evidence that damage to
the airway epithelium plays a key role in the cascade of events
leading to human BOS. As noted above, indirect allorecogni-
tion of donor HLA class-I peptides in patients with BOS may
lead to sensitisation of T-cells [34] and production of anti-
HLA class-I antibodies [31]. These antibodies, in turn, may
induce proliferation of airway epithelial cells in vitro [93].
Furthermore, non-HLA antibodies directed against airway
epithelial cells are found in some patients with BOS, and
binding of such antibodies to epithelial cells may upregulate
growth factors like TGF-f3 [94].

In patients with BOS, bronchial epithelial cells overexpress
the Ki-67 antigen [30] (which is a proliferation marker) and
co-stimulatory B7 molecules [95]. As a result of epithelium
destruction, there is a decline in Clara cell function and
protein production with decreased concentration in BAL fluid
[96]. This reduction may render the bronchiolar epithelium
more sensitive to oxidative stress (see below), and promote
both inflammation and fibroproliferation. The bronchial
epithelium is also an important source of chemokines that
attract neutrophils (see below).

Endobronchial biopsies show that the bronchial epithelium
of patients with BOS contains increased numbers of dendritic
cells (DC) [97, 98], with a higher proportion of antigen-
presenting cells and a lower proportion of "suppressor"
macrophages. In addition, these DC express co-stimulatory
molecules of the B7 family (in particular the B7-2), which are
capable of inducing optimal T-cell stimulation [97]. Thus,
epithelial DC in lung transplant recipients presumably
activate local and systemic immune responses, which may
contribute to the process of chronic rejection.

With BOS development, BAL neutrophilia (and eosino-
philia) increase [99-102] above levels seen in stable patients
[26, 101, 103, 104]. However, whether this is a specific feature
of BOS or whether it reflects concomitant airway infection is
still debated. The increased neutrophilia is also found in
induced sputum [105] and in lung tissue [30]. Besides the
physiological function of clearing invading microorganisms,
activated neutrophils have a large potential to cause damage
to lung tissue through the generation of reactive oxygen
species (ROS) and the release of proteases [106]. Markers of
granulocyte activation, such as the oxydative enzymes
myeloperoxidase and eosinophil cationic protein, may be
detected in BAL fluid months before the clinical onset of BOS
[107-111]. Lung transplant recipients without BOS already
have a compromised antioxidant status [112], but the
oxidative stress substantially increases when BOS develops
[109, 110]. The increased oxidative stress may simply reflect
neutrophil influx in the airways, but iron overload caused by
microvascular leakage may be an additional mechanism [113,
114]. BOS is also associated with impaired antiprotease
activity, evident from decreased concentrations of BAL
secretory leukocyte protease inhibitor [109]. Furthermore,
unopposed neutrophil elastase activity is frequently found in
lung transplant recipients, usually in association with
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endobronchial bacterial infection in the context of BOS [111].
At present, it is not entirely clear whether the increased
oxidative stress and impaired protease/antiprotease balance
should be merely considered as markers of BOS or whether
they may be directly involved as pathogenic mechanisms.

The important role played by neutrophils in the pathogen-
esis of human BOS differs from what is seen in animal models
where graft infiltration is mainly of lymphocytic origin (see
above). This difference may be explained by several factors.
First, in the rat, circulating blood lymphocyte concentrations
are higher (40-80% of total leukocyte count) than in humans.
Secondly, the animals are kept under strict sterile conditions
and the subcutaneously placed allograft has no contact to the
environment; as a result, the primary injury leading to airway
obliteration is alloimmune in nature, and hence driven by
lymphocytes. In contrast, bronchial infection or aspiration,
which typically elicit neutrophilic infiltration, may be present
in the clinical setting. Thus, unlike what is seen in human BOS
(see below), macrophage inflammatory protein-2, which is the
functional rodent correlate of human IL-8 and has potent
neutrophil-chemoattractant properties, is upregulated only in
the first few days after transplantation [80].

One of the major mediators of airway inflammation in
human BOS is IL-8, a member of the CXC chemokine family
and a key chemoattractant and activating factor for neutro-
phils. IL-8 is produced by bronchial epithelial [115] and
smooth muscle cells [116], and its concentration in BAL fluid
of BOS patients highly correlates with airway neutrophilia
[99, 102, 107, 115, 116]. Attraction of neutrophils and eosino-
phils may also be induced by ET-1, which is upregulated
during bacterial infections in lung transplant recipients [117].
ET-1 has profibrotic properties and is involved in the airway
remodelling of several inflammatory diseases. As in the

heterotopic airway model in animals, increased BAL con-
centrations of MCP-1 [99], RANTES [102] and growth
factors (PDGF [118], IGF-1 [119], and TGF-B [115,
120-122]) are found in human BOS. These profibrotic
cytokines are responsible for an increased fibroblast-prolifera-
tive activity in BAL supernatant [123]. In addition to the
effects of growth factors, the "fibrolytic" activity of IL-1 is
inhibited by increased levels of IL-1-receptor antagonist,
resulting in a local profibrotic environment [123].

Summary

Taken together, accumulated experience from human and
animal studies suggests that alloimmune and/or nonalloim-
mune injury to the airway epithelium triggers a massive influx
of inflammatory cells through the fragmented basement
membrane, and the secretion of proinflammatory cytokines
(IL-2, IL-6, tumour necrosis factor (TNF)-a) and chemokines
(IL-8, RANTES, MCP-1) by epithelial cells, T-cells, activated
macrophages and smooth muscle cells (fig. 1). In human BOS,
this leads to attraction and accumulation of activated
neutrophils; these cells promote production of additional
cytokines and chemokines that amplify cell recruitment, and
release large amounts of ROS and toxic proteases that
produce further airway injury. Macrophages typically pro-
duce profibrotic cytokines that elicit attraction and prolifera-
tion of fibroblasts, leading to extracellular matrix deposition
and proliferation of smooth muscle cells. Thus, after an
initial epithelial injury, ineffective epithelial regeneration and
massive inflammation eventually produce aberrant tissue
repair with scar tissue obliterating the airway lumen.

Fibrosis

Primary damage to the airway
epithelium (ischaemia/reperfusion

aspiration)

1,16 ~ Adaptive
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(PMN L2 12,
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Fig. 1.—Primary damage to the lung allograft leads to activation of the innate immune system, which by interaction of dendritic cells and T-
lymphocytes is followed by activation of the adaptive immune system. Injury to the airway epithelium and loss of epithelium leads to repair
mechanisms finally ending in intrabronchiolar scar formation. PMN: polymorphonuclear; IL: interleukin; TNF: tumour necrosis factor; MCP:
monocyte chemoattractant protein; IFN: interferon; RANTES: regulated on activation, T-cell expressed and secreted; ROS: reactive oxygen
species; NO: nitric oxide; PDGF: platelet-derived growth factor; IGF: insulin-like growth factor; FGF: fibroblast growth factor; TGF:

transforming growth factor.
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Staging

The diagnosis of BO is based on histology, but a histo-
logical proof is often difficult to obtain using transbronchial
lung biopsies. Therefore, in 1993, a committee sponsored by
the ISHLT proposed a clinical description of BOS based on
changes in FEV1 [124]. The aims were to provide a
classification system for airway disease after LTx that did
not rely on histopathological findings, was sensitive and
specific, relied on diagnostic techniques available to all lung
transplant physicians, and was relatively simple to understand
and apply. For each patient, a stable post-transplant baseline
FEV1 was defined as BOS stage 0; in patients who
experienced a decrease in FEV1, progressive stages of BOS,
from 1-3, were defined according to the magnitude of the
decrease (table 3). The functional alteration has to be
irreversible (Z.e. be present for a period of >3 weeks) and
not be explained by other conditions that may alter graft
function; when such conditions are found, the diagnosis of
BOS can only be made if the functional alteration persists
after appropriate treatment [17].

Although this classification system has been adopted by
transplant centres worldwide as a useful descriptor of chronic
allograft dysfunction, concern has been raised regarding its
ability to detect small changes in pulmonary function. This
concern recently led to formulation of a revised classification
system for BOS [17], which includes a new "potential BOS"
stage (BOS 0-p) defined as a decrease in forced mid-expiratory
flow rates (FEF25-75%) and/or FEV1 (table 3). The rationale
for including FEF25-75% comes from studies that showed that
this variable deteriorates before FEV1 at the onset of BOS
[100, 125, 126]. The new BOS 0-p stage is meant to alert the
physician and to indicate the need for close functional
monitoring and for in-depth assessment using surrogate
markers for BOS (see below).

Most data supporting the usefulness of monitoring the
FEF25-75% have been obtained in recipients of heart-lung and
bilateral-lung, rather than single-lung grafts. In the latter, the
presence of the native lung may make interpretation of
functional changes more difficult. Disease progression in the
native lung and complications affecting this lung may
contribute to a change in overall lung function. In patients
with emphysema, progressive hyperinflation of the native lung
may produce clinical and functional changes that resemble
those produced by BOS [127]. These confounding factors may
explain, at least in part, that in a recent retrospective study
performed in single-lung transplant recipients, FEF25-75%

Table 3.—Bronchiolitis obliterans syndrome (BOS) class-
ification system

1993 Classification 2002 Classification

FEV1 >80% of FEV1 >90% of baseline BOS 0
baseline and FEF25-75% >75%
of baseline
FEV1 81-90% of baseline ~ BOS 0-p
and/or FEF25-75% <75%
of baseline
BOS 1 FEV1 66-80% of FEV1 66-80% of baseline BOS 1
baseline
BOS 2 FEV1 51-65% of FEV1 51-65% of baseline BOS 2
baseline
BOS 3 FEV1 <50% of FEV1 <50% of baseline BOS 3
baseline

FEV1: forced expiratory volume in one second; FEF25-75%: forced
mid-expiratory flow rates.

was shown to be a very sensitive, but not specific, indicator of
the subsequent development of BOS [128].

The classification system for BOS has proved useful to
categorise patients according to the degree of chronic graft
dysfunction, and has allowed transplant centres to use a
common language to compare results and therapy from their
programmes. However, the implication for an individual
patient to be categorised in a given stage is less clear because
different patients may have vastly different patterns of BOS
acquisition and subsequent progression (see above). This is
the reason why the classification system is not intended to be
used to construct treatment algorithms and make therapeutic
decisions. Such algorithms would need to include informa-
tions on the patient risk factors, history of rejection and
infection, previous and current immunosuppression, and
pattern of BOS onset and progression [129].

Prevention and early detection

To the extent that current therapies work to stop or slow
down the progression of BOS, they do so mostly by an anti-
inflammatory, and not an antifibrotic effect. Therefore, they
are more likely to be effective in the early stage of BOS. For
this reason, various parameters have been evaluated to
determine whether they may be useful as early markers of a
fall in graft performance.

Surveillance transbronchial biopsy

Several studies have shown that surveillance transbronchial
biopsy (TBB) performed during the first postoperative
months may show acute rejection histology in 22-73% of
clinically and physiologically stable patients [24, 130, 131].
Similarly, a recent study that used home monitoring of FEV1
and FEF25-75% via the internet to detect acute rejection (and
infection) found a sensitivity of only 63% because many
episodes detected by surveillance TBB were not associated
with significant functional changes [132]. Thus, the perfor-
mance of surveillance TBB in the first months after surgery
provides a means to detect and treat clinically silent rejection
episodes, and may dictate the use of a more intense
maintenance immunosuppression. This strategy may even-
tually prove useful to uncouple the association between acute
rejection and BOS [24]. In addition, BANDO ef al. [18] have
reported that BO resolved or stabilised in 87% of patients in
whom the diagnosis was made by surveillance TBB (i.e. who
were asymptomatic and in BOS stage 0 at the time of
diagnosis). However, no information on the long-term
functional evolution of these patients was provided, and the
apparent resolution of BO histology may simply reflect a
sampling error on subsequent biopsies. Whether or not early
initiation of augmented immunosuppression may slow down
progression of the disease, both consistently and in the long
term, thus remains to be established.

Pulmonary function

A potential limitation of the staging system proposed by
the ISHLT is that hospital spirometry may be performed
infrequently, especially in patients who live at great distances
from transplant centres. This limitation, however, may be
overcome by the use of home spirometry with telemetric
transmission of functional data to the transplant centre [133].
Alterations in the distribution of ventilation in peripheral
airways may also contribute to the early detection of BOS.
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Two recent prospective studies in heart-lung and bilateral-
lung recipients have shown that the slope of the alveolar
plateau for nitrogen or helium obtained during single-breath
washouts (that reflects the heterogeneity of ventilation
distribution) may increase up to several months before the
criteria for BOS 0-p are met [100, 125]. Finally, the presence
of nonspecific bronchial hyperreactivity may also precede
BOS. In a recent longitudinal study that included 111 patients
undergoing bilateral LTX, a positive methacholine challenge
at 3 months after transplantation was associated with the
development of BOS, with a positive predictive value of 72%
[9]. This observation may be related to the fact that, in trans-
planted subjects, methacholine-induced bronchoconstriction
involves the small airways [134].

Bronchoalveolar lavage

At least three reports have shown that BAL neutrophilia
may predate the spirometric criteria defining BOS 1100, 102,
116], and cross-sectional studies of patients with BOS have
demonstrated increased concentrations of various cytokines
in the BAL (see above) [99, 102, 107, 115, 116, 118, 119].
These alterations, as well as the increase in BAL fibroblast-
proliferative activity [123], may precede the functional
alteration of BOS, suggesting that overexpression of cyto-
kines may be predictive of BOS onset. However, the
overlap of concentrations found in patients with and without
BOS, the fact that measurements of these markers are not
currently available at most transplant centres, and the cost of
such measurements are all expected to limit their clinical
application.

Induced sputum

Sputum induction, a noninvasive method to measure
inflammation of the lower respiratory tract, was recently
evaluated in patients with BOS [105]. Similarly to BAL
findings, increased neutrophil counts have been found. In
addition, matrix metalloproteinase (MMP)-9 and the ratio of
MMP-9 to its inhibitor have been found to be elevated in BOS
patients; MMP-9 correlated negatively with FEV1 values and
positively with sputum neutrophils and TNF-a [135]. The
usefulness of induced sputum analysis for the early detection
of BOS remains to be investigated in larger studies.

Exhaled breath condensate

Volatile and nonvolatile markers originating from the
respiratory tract can be measured in breath condensate [136].
To date, eicosanoids, products of lipid peroxidation, vasoac-
tive amines, nitric oxide (NO)-related products, ammonia,
hydrogen ions and cytokines have been measured, and there is
hope that this method may contribute to the early detection of
BOS in the future. Only exhaled carbonyl sulphide as a
marker of acute rejection [137] and leukotriene B4 as a marker
of infection [138] have been described in the lung transplant
population.

Exhaled nitric oxide

Exhaled nitric oxide (eNO) concentration, which has been
proposed as a noninvasive marker of airway inflammation,
may be useful in the early detection of BOS. It is elevated in
patients with lymphocytic bronchiolitis and in patients with

BOS, in particular at the onset of the functional deterioration
(BOS 1). Concentrations of eNO correlate with the expression
of inducible NO synthase in the bronchial epithelium and
with the percentage of neutrophils in BAL [139-141]. These
data indicate that eNO reflects the degree of airway
inflammation in lung transplant recipients [142], but the
extent to which eNO may predict the development of BOS in
an individual patient remains to be established.

Computed tomography

The presence of air trapping on expiratory high-resolution
computed tomography (CT) is an accurate indicator of the
bronchiolar obliteration underlying BOS. In patients with
BOS, the pulmonary lobules that have normal airways
increase in density during the expiratory phase, while areas
with obstructed airways cannot empty and remain radio-
lucent. Studies in adults and children have shown that the
sensitivity of air trapping for enabling the diagnosis of BOS
and BO ranges 74-91% while the specificity ranges 67-94%
[143, 144]. This variability may be accounted for by dif-
ferences in the technique used to quantify the extent of air
trapping, and by the fact that some studies included both
heart-lung or bilateral-lung and single-lung transplant reci-
pients [144]. Interestingly, in the study by BANKIER ef al
[143], five of the six patients with initial false-positive findings
(with significant air trapping but an FEV1 >80% of baseline)
later developed BOS, which suggests that expiratory CT may
contribute to the early detection of the condition. Conversely,
air trapping has a very high negative predictive value (>90%),
i.e. a low score of air trapping in a patient with declining lung
function makes the diagnosis of BOS very unlikely. The
extent to which these results may apply to recipients of single-
lung grafts is unknown.

Clinical management

The various approaches to the treatment of BOS have been
described in detail in an earlier chapter. Several issues may
deserve attention in the decision-making process of selecting
a specific treatment for BOS. As discussed previously, it is
likely that BOS represents a heterogeneous syndrome, with
alloimmune and nonalloimmune mechanisms predominating
to variable degrees in individual patients. To the greatest
extent possible, lung transplant physicians should attempt to
discern these differences and individualise therapy. For
example, it may be more appropriate to have an aggressive
therapeutic attitude in patients with rapid, as opposed to
slow, BOS onset. Many patients with BOS suffer from
recurrent bacterial, viral and fungal infections that further
compromise lung function and often become the proximate
cause of death [41-43]. Therefore, vigorous efforts to identify
and treat infections are warranted during exacerbations of
respiratory illness in recipients with BOS. It is also likely,
although unproven, that aggressive immunosuppressive treat-
ment of BOS predisposes to intercurrent bronchopulmonary
infections; in patients with repeated infections, some physi-
cians regard decreasing immunosuppression as an option. It is
clear that the infectious risk must be factored into the risk-
benefit analysis of augmented immunosuppression.

Current therapies, when effective, will necessarily preserve
the most lung function if they are employed early in the
evolution of the disease process. In this regard, it is possible
that lung recipients with risk factors for chronic rejection,
such as prior episodes of acute rejection, CMV pneumonitis,
lymphocytic bronchiolitis, or anti-HLA antibodies, may
benefit from intensified immunosuppressive therapy, even
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prior to observing a decrease in pulmonary function (or while
in BOS 0-p) [24]. However, this approach is rarely taken by
lung transplant physicians due to the relatively low predictive
value of currently recognised risk factors and the known risks
of increased immunosuppression. In addition to the infectious
risk mentioned above, progressive kidney insufficiency and
bone fractures will inevitably alter patient survival and/or
quality of life. Therefore, an important goal for future
research will be to validate the surrogate markers described
above in longitudinal studies, and to develop more sensitive
and specific noninvasive biomarkers of the risk for progres-
sion to BOS.

Suggestions for future research

Post-transplant BO has become the major hurdle to long-
term survival after LTx. Although considerable information
has been gained in the understanding of the pathogenesis of
this complication, its prevalence has not substantially
decreased over time and it remains the first cause of late
death in lung transplant recipients. This is due to the fact that,
to date, no treatment has proved efficient to reverse
established BOS, or even to slow down the progression of
the functional deterioration. The following are some sugges-
tions for future research.

Bronchiolitis obliterans syndrome classification

The term BOS is currently used to qualify chronic allograft
dysfunction (whatever the underlying cause/mechanism). The
staging system has proved useful to categorise patients
according to the degree of functional impairment and has
allowed transplant centres to use a common language to
compare results from their programmes. However, from the
therapeutic point of view, the use for an individual patient
to be diagnosed in any particular BOS category is not
established, because patients in a given stage may have vastly
different patterns of disease progression. Both the cause of
BOS and the rate of functional decline, which are not currently
included in the classification, may have important implica-
tions when making decisions about treatment [129].

Risk factors

Most data regarding risk factors for BOS come from
retrospective studies. Longitudinal studies evaluating all
suspected risk factors should be undertaken in a sufficiently
large number of patients to reach the statistical power needed
to assess the relative risk associated with each factor. Among
others, the following factors should be studied: 1) pre-
operative characteristics of recipient (primary disease, HLA
sensitisation) and donor (cause of death, age, history of
asthma and smoking); 2) matching of donor and recipient sex,
CMV status, and HLA antigens; 3) presence and severity of
ischaemia/reperfusion injury; 4) episodes of CMV infection,
acute rejection and community respiratory viral infection; and
5) presence of gastro-oesophageal reflux disease. In these
studies, specific attention should be given to clarify the
relationship between acute rejection and subsequent BOS
development.

Pathogenesis

A number of abnormalities have been observed in the BAL
of patients with BOS, but they do not necessarily directly
contribute to the pathogenesis of BOS, ie. they may merely

be disease markers. In addition, the variable pathogenic
mechanisms and time course of BOS have not been correlated
with differences at the level of cellular and molecular markers.
The evolving technologies of functional genomics and
proteomics, which allow simultaneous comparisons of large
numbers of mRNA or protein species between individuals or
over time in a single individual, will likely yield a more
comprehensive and informative view of the development of
bronchiolar fibrosis.

Early detection

Longitudinal studies using several potential early markers
(lung function, BAL analysis, analysis of exhaled gases and
breath condensate, CT ezc.) should be performed to assess the
time course of changes and their ability to predict future
decreases in lung function. The validity of some markers (e.g.
FEF25-75%, air trapping on CT) remains to be established in
recipients of single-lung transplants.

Treatment

Prospective studies are needed to determine if changes (and
which changes) in immunosuppressive regimens made at the
onset of bronchiolitis obliterans syndrome may alter the
subsequent evolution of the process. Developing effective
antifibroproliferative therapies (based on either novel immuno-
suppressive agents or cytokine/chemokine antagonists [81,
84, 120]) may well eventually be the best treatment option for
bronchiolitis obliterans syndrome.
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