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ABSTRACT: Cytokines play a critical role in orchestrating and perpetuating
inflammation in asthma and chronic obstructive pulmonary disease (COPD), and
several specific cytokine and chemokine inhibitors are now in development for the future
therapy of these diseases.
Anti-interleukin (IL)-5 is very effective at reducing peripheral blood and airway

eosinophil numbers, but does not appear to be effective against symptomatic asthma.
Inhibition of IL-4 with soluble IL-4 receptors has shown promising early results in
asthma. Inhibitory cytokines, such as IL-10, interferons and IL-12 are less promising,
as systemic delivery causes side-effects. Inhibition of tumour necrosis factor-a may be
useful in severe asthma and for treating severe COPD with systemic features.
Many chemokines are involved in the inflammatory response of asthma and COPD

and several low-molecular-weight inhibitors of chemokine receptors are in development.
CCR3 antagonists (which block eosinophil chemotaxis) and CXCR2 antagonists (which
block neutrophil and monocyte chemotaxis) are in clinical development for the
treatment of asthma and COPD respectively.
Because so many cytokines are involved in asthma, drugs that inhibit the synthesis of

multiple cytokines may prove to be more useful; several such classes of drug are now in
clinical development and any risk of side-effects with these nonspecific inhibitors may be
reduced by the use of inhalational route of delivery.
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Cytokines play a critical role in the orchestration
of chronic inflammation in all diseases, including
asthma and chronic obstructive pulmonary disease
(COPD). Multiple cytokines and chemokines have
been implicated in the pathophysiology of asthma
[1, 2]. There is less understanding of the inflammatory
mediators involved in COPD, but, as this inflam-
matory process is markedly different from that
in asthma, it is probable that different cytokines
and chemokines are involved and that therapeutic
strategies may therefore have to differ [3]. There is
currently an intensive search for more specific
therapies in asthma and for any novel therapies that
may prevent the progression of airflow limitation in
COPD. Inhibitors of cytokines and chemokines figure

prominently in these novel therapeutic approaches
[4, 5] (table 1).

Strategies for inhibiting cytokines

There are a number of possible approaches to the
inhibition specific cytokines [6, 7]. These include
drugs that inhibit cytokine synthesis (glucocorti-
coids, ciclosporinA, tacrolimus, myophenolate-helper
lymphocyte (Th2)-selective inhibitors), humanized
blocking antibodies to cytokines or their receptors,
soluble receptors that mop up secreted cytokines, low-
molecular-weight receptor antagonists and drugs that
block the signal transduction pathways activated by

Table 1. – Potential cytokine modulators for asthma and chronic obstructive pulmonary disease therapy

Anticytokines Inhibitory
cytokines

Chemokine
inhibitors

Cytokine synthesis
inhibitors

Anti-IL-5 IL-1 receptor antagonist CCR3 antagonists Corticosteroids
Anti-IL-4 IL-10 CCR2 antagonists Immunomodulators
Anti-IL-13 IL-12 CCR4 antagonists Phosphodiesterase 4 inhibitors
Anti-IL-9 Interferons CXCR2 antagonists NF-kB inhibitors
Anti-IL-1 IL-18 p38 MAP kinase inhibitors
Anti-TNF-a

IL: interleukin; TNF-a: tumour necrosis factor-a; NF-kB: nuclear factor-kB; MAP: mitogen-activated protein.
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cytokines [6] (fig. 1). Conversely, there are cytokines
that themselves suppress the allergic inflammatory
process and these may have therapeutic potential in
asthma and COPD [8, 9].

Inhibition of Th2 cytokines

Th2-derived cytokines play a key role in orchestrat-
ing the eosinophilic inflammatory response in asthma,
suggesting that blocking the release or effects of these
cytokines may have therapeutic potential. This has
been strongly supported by studies in experimental
animals, including mice with deletion of Th2-specific
cytokine genes. Th2 are unlikely to play any role in
COPD and there is no evidence that Th2 cytokine
levels are increased in the airways [10, 11].

Anti-interleukin-5

Interleukin (IL)-5 plays an essential role in orches-
trating the eosinophilic inflammation of asthma [12,
13]. In IL-5 gene knockout mice, the eosinophilic
response to allergen and the subsequent airway
hyperresponsiveness (AHR) are markedly suppressed,
validating the strategy of inhibiting IL-5 (fig. 2). This
has been achieved using blocking antibodies directed
against IL-5. These antibodies inhibit eosinophilic
inflammation and AHR in animal models of asthma,
including primates [14, 15]. This blocking effect may
last for up to 3 months after a single intravenous
injection of antibody, making treatment of chronic
asthma with such a therapy a feasible proposition.
Humanized monoclonal antibodies directed against
IL-5 have been developed and a single intravenous
infusion of one of these antibodies (mepolizumab)
markedly reduces blood eosinophil levels for several

weeks and prevents eosinophil recruitment to the
airways after allergen challenge in patients with mild
asthma [16] (fig. 3). However, this treatment has no
significant effect on the early or late response to
allergen challenge or on baseline AHR, suggesting
that eosinophils may not be of critical importance in
these responses in humans. A clinical study in patients
with moderate-to-severe asthma, who had not been
controlled on inhaled corticosteroid therapy, con-
firmed a profound reduction in circulating eosinophil
numbers, but no significant improvement in either
symptoms or lung function [17]. In both of these
studies, it would be expected that high doses
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Fig. 1. – Strategies for inhibiting cytokines include inhibition of cytokine synthesis, inhibition of secreted cytokines using blocking
antibodies or soluble receptors, and blocking of cytokine receptors and their signal transduction pathways. Horizontal arrows indicate
inhibition strategies: A and H: transcription factor (TF) inhibitor; B: synthesis inhibitor; C: antiserve oligonucleotide; D: monoconal
antibody; E: soluble receptor; F: receptor antagonist; G: kinase inhibitor. mRNA: messenger ribonucleic acid.
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Fig. 2. – Inhibition of interleukin-5 (IL-5). IL-5 is released predo-
minantly from type 2 T-helper lymphocytes (Th2) and the other
cells shown and its only effects are on eosinophils, resulting in
differentiation in the bone marrow and priming, activation and
increased survival in the airways. IL-5 may be blocked using
blocking antibodies (such as mepolizumab) or theoretically by
receptor antagonists. Tc2: type 2 cytotoxic lymphocyte.
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of corticosteroids would improve these functional
parameters. These surprising results question the
critical role of eosinophils in asthma and indicate
that other strategies aimed at inhibiting eosinophilic
inflammation might not be effective.

Somewhat similar findings have previously been
reported in some studies in mice in which anti-IL-5
reduced eosinophilic responses to allergen, but not
AHR, whereas AHR was reduced by anti-CD4, which
depletes T-helper cells [18].

The use of nonpeptidic IL-5 receptor (IL-5R)
antagonists would be an alternative strategy and
such compounds are being sought using molecular
modelling of the IL-5R a-chain and through large-
scale throughput screening. However, the lack of
clinical benefit using anti-IL-5 has made this a less
attractive approach. It is possible that eosinophils are
associated with more chronic aspects of asthma, such
as airway remodelling, and in mice a blocking anti-IL-5
prevents the increased collagen deposition in airways
associated with repeated allergen exposure [19].
Eosinophils may be an important source of trans-
forming growth factor-b in asthmatic airways, result-
ing in structural changes [20].

Anti-interleukin-4

IL-4 is critical to the synthesis of immunoglobulin
(Ig) E by B-lymphocytes and is also involved in
eosinophil recruitment to the airways [21]. A unique
function of IL-4 is to promote differentiation of Th2,
and it therefore acts at a proximal and critical site in
the allergic response, making IL-4 an attractive target
for inhibition (fig. 3).

IL-4-blocking antibodies inhibit allergen-induced
AHR, goblet cell metaplasia and pulmonary eosino-
philia in a murine model [22]. Inhibition of IL-4 may

therefore be effective in inhibiting allergic diseases,
and soluble IL-4Rs are in clinical development as a
strategy for inhibiting IL-4. A single nebulized dose of
these receptors prevents the fall in lung function
induced by withdrawal of inhaled corticosteroids in
patients with moderately severe asthma [23]. Subsequent
studies have demonstrated that weekly nebulization of
the soluble IL-4Rs improves asthma control over a
12-week period [24]. Another approach is blockade of
IL-4Rs with a mutated form of IL-4 (BAY 36-1677),
which binds to and blocks IL-4Ra and IL-13Ra1,
thus blocking both IL-4 and IL-13 [25].

IL-4 and the closely related cytokine IL-13 signal
through a shared surface receptor, IL-4Ra, which
activates a specific transcription factor, signal trans-
ducer and activator of transcription (STAT)-6 [26].
Deletion of the STAT-6 gene has a similar effect to
IL-4 gene knockout [27]. This has led to a search for
inhibitors of STAT-6, and, although peptide inhibitors
that interfere with the interaction between STAT-6
and Janus Kinases linked to IL-4Ra have been
discovered, it will be difficult to deliver these
intracellularly. An endogenous inhibitor of STATs,
suppressor of cytokine signalling-1, is a potent
inhibitor of IL-4 signalling pathways and offers a
new therapeutic target [26, 28].

Anti-interleukin-13

There is increasing evidence that IL-13 in mice
mimics many of the features of asthma, including
AHR and mucus hypersecretion, independently of
eosinophilic inflammation [29] and potently induces
the secretion of eotaxin from airway epithelial cells
[30]. IL-13 signals through the IL-4R a-chain, but
may also activate different intracellular pathways via
activation of IL-13Ra1 [31], and thus may be an
important target for the development of new thera-
pies. A second specific IL-13R, IL-13Ra2, exists in
soluble form and has a high affinity for IL-13, thus
acting as a decoy receptor for IL-13. Soluble IL-
13Ra2 is effective in blocking the actions of IL-13,
including IgE generation, pulmonary eosinophilia and
AHR in mice [29]. In the murine model, IL-13Ra2 is
more effective than IL-4-blocking antibodies, high-
lighting the potential importance of IL-13 as a
mediator of allergic inflammation. Humanized IL-
13Ra2 is now being developed as a therapeutic
approach for asthma.

Anti-interleukin-9

IL-9 is a Th2-derived cytokines that may enhance
Th2-driven inflammation and amplify mast cell
mediator release and IgE production (fig. 4) [32].
IL-9 may also enhance mucus hypersecretion [33]. IL-
9 and its receptors show increased expression in
asthmatic airways [34, 35]. Strategies for blocking IL-
9, including blocking antibodies, are currently in
development [36].
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Fig. 3. –Effects of blocking interleukin(IL)-4 in asthma. IL-4 has
multiple effects relevant to allergic inflammation in asthma,
including differentiation of type 2 T-helper lymphocytes (Th2),
production of immunoglobulin E (IgE) from B-lymphocytes,
increased expression of the low-affinity receptor for IgE (FCeRII)
on several inflammatory cells, increased mucus secretion and
fibrosis. IL-4 may be blocked by a high-affinity soluble receptor
(shuIL-4R). VCAM: vascular cell adhesion molecule.
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Inhibition of proinflammatory cytokines

Proinflammatory cytokines, particularly IL-1b and
tumour necrosis factor-a (TNF-a), may amplify the
inflammatory response in asthma and COPD and be
linked to disease severity. This suggests that blocking
IL-1b or TNF-a may have beneficial effects, particu-
larly in severe airway disease.

Anti-interleukin-1

IL-1 expression is increased in asthmatic airways
[37] and activates many inflammatory genes that are
expressed in asthma. There are no low-molecular-
weight inhibitors of IL-1, but a naturally occurring
cytokine, IL-1R antagonist (IL-1RA), binds to IL-1R
and blocks the effects of IL-1 [38]. In experimental
animals, IL-1RA reduces AHR induced by allergen.
Human recombinant IL-1RA does not appear to be
effective in the treatment of asthma, however [39].
There are no published studies on the role of IL-1 in
COPD.

Anti-tumour necrosis factor-a

TNF-a is expressed in asthmatic airways and may
play a key role in amplifying asthmatic inflammation,
through activation of nuclear factor-kB (NF-kB),
activator protein-1 and other transcription factors
[40]. TNF-a levels are markedly increased in induced
sputum from patients with asthma [41]. Furthermore,
there is evidence that COPD patients with weight loss
may show increased releasability of TNF-a from
circulating cells and that TNF-a may cause apoptosis
of skeletal muscle, resulting in the characteristic
cachexia seen in some patients with severe COPD [42].

In rheumatoid arthritis and inflammatory bowel
disease, a blocking humanized monoclonal antibody
directed against TNF-a (infliximab) and soluble TNF-
a receptors (etanercept) have produced remarkable
clinical responses, even in patients who are relatively

unresponsive to steroids [43, 44]. Such antibodies or
soluble TNF-a receptors are a logical approach to
asthma therapy, particularly in patients with severe
disease, and clinical trials are currently under way.
They may also be indicated in the treatment of severe
COPD, particularly in patients with malaise and
cachexia.

Because of the problems associated with antibody-
based therapies, low-molecular-weight inhibitors of
TNF-a are being sought. TNF-a-converting enzyme
is a matrix metalloproteinase-related enzyme critical
for the release of TNF-a from the cell surface. Low-
molecular-weight TNF-a-converting enzyme inhibi-
tors are in development as oral TNF-a inhibitors [45].

Anti-inflammatory cytokines

Some cytokines have anti-inflammatory effects in
inflammation and therefore have therapeutic potential
[8, 9]. Although it may not be feasible or cost-effective
to administer these proteins as long-term therapy, it
may be possible to develop drugs in the future that
increase the release of these endogenous cytokines or
activate their receptors and specific signal transduc-
tion pathways.

Interleukin-10

IL-10 is a potent anti-inflammatory cytokine that
inhibits the synthesis of many inflammatory proteins,
including cytokines (TNF-a, granulocyte-macrophage
colony-stimulating factor, IL-5 and chemokines)
and inflammatory enzymes (inducible nitric oxide
synthase) that are overexpressed in asthma (table 2)
[46]. Indeed there may be a defect in IL-10 transcrip-
tion and secretion from macrophages in asthma
[47, 48]. In sensitized animals, IL-10 is effective in
suppressing the inflammatory response to allergen
[49], suggesting that IL-10 might be defective in atopic

Table 2. – The anti-inflammatory actions of interleukin (IL)-
10

Q Proinflammatory cytokines (IL-1b, TNF-a, IL-6, GM-
CSF)

Q Chemokines (IL-8, MIP-1a, RANTES, eotaxin)
Q Inflammatory enzymes (iNOS, COX-2, MMP-9)
Q Allergen responses (MHC class II, CD23, B7-1, B7-2)
Q Th2 cytokines (IL-4, IL-13, IL-5)
q Anti-inflammatory effects (IL-1RA, TIMPs)

IL-10 has several anti-inflammatory effects and may there-
fore be of therapeutic value, via administration of either
IL-10 itself (daily subcutaneous injections) and IL-10 ana-
logues or, in the future, drugs that activate the same signal
transduction pathways; down arrow: decrease; up arrow:
increase; TNF-a: tumour necrosis factor-a; GM-CSF:
granulocyte-macrophage colony-stimulating factor; MIP-
1a: macrophage inflammatory protein 1a; RANTES:
regulated on activation, normal T-cell expressed and
secreted; iNOS: inducible nitric oxide synthase; COX-2:
cyclo-oxygenase 2; MMP: matrix metalloproteinase; MHC:
major histocompatibility complex; Th2: type 2 T-helper
lymphocyte; TIMP: tissue inhibitor of MMPs.
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diseases. Specific allergen immunotherapy results in
increased production of IL-10 by T-helper lympho-
cytes and this may contribute to the beneficial effects
of immunotherapy [50].

IL-10 may also be of therapeutic value in COPD as
it inhibits not only TNF-a and chemokines but also
certain matrix metalloproteinases (MMPs), such as
MMP-9, that may be involved in the destruction of
elastin in the lung parenchyma [51]. In addition, IL-10
increases the release of the tissue inhibitors of MMPs,
the endogenous inhibitors of MMPs.

Recombinant human IL-10 has proved to be
effective in controlling inflammatory bowel disease
and psoriasis, in which similar cytokines are
expressed, and may be given as a weekly injection
[52]. Although IL-10 is reasonably well tolerated,
there are haematological side-effects. In the future,
drugs which active the unique signal transduction
pathways activated by the IL-10R or drugs that
increase endogenous production of IL-10 may be
developed. In mice, drugs that elevate cyclic adenosine
monophosphate increase IL-10 production, but this
does not appear to be the case in human cells [53].

Interferons

Interferon gamma (IFN-c) inhibits Th2 and should
therefore reduce atopic inflammation. In sensitized
animals, nebulized IFN-c inhibits eosinophilic inflam-
mation induced by allergen exposure [54]. Adminis-
tration of IFN-c by nebulization to asthmatic patients
did not significantly reduce eosinophilic inflammation,
however, possibly due to the difficulty in obtaining
a high enough concentration locally in the airways
[55]. Interestingly, allergen immunotherapy increases
IFN-c production by circulating T-lymphocytes in
patients with clinical benefit [56] and increased num-
bers of IFN-c-expressing cells in nasal biopsy samples
from patients with allergic rhinitis [57]. A preliminary
report suggests that IFN-a may be useful in the
treatment of patients with severe asthma who have
reduced responsiveness to corticosteroids [58].

Interleukin-12

IL-12 is the endogenous regulator of Th1 deve-
lopment and determines the balance between Th1
and Th2 [59]. IL-12 administration to rats inhibits
allergen-induced inflammation [60] and sensitization
to allergens. IL-12 causes IFN-c release, but has
additional effects on T-lymphocyte differentiation. IL-
12 levels released from whole blood cells are lower in
asthmatic patients, indicating a possible reduction in
IL-12 secretion [61].

Recombinant human IL-12 has been administered
to humans and has several toxic effects that are
diminished by slow escalation of the dose [62]. In
patients with mild asthma weekly infusions of human
recombinant IL-12 in escalating doses over 4 weeks
caused a progressive fall in circulating eosino-
phil number, and a reduction in the normal rise in
circulating eosinophil number after allergen challenge

[63]. There was a concomitant reduction in eosinophil
number in induced sputum. However, there was no
reduction in either the early or late response to inhaled
allergen challenge and no reduction in AHR.
Furthermore, most of the patients suffered from
malaise and one of the 12 subjects had an episode of
cardiac arrhythmia. This suggests that IL-12 in not a
suitable treatment for asthma. In mice, administration
of an IL-12/allergen fusion protein results in the
development of a specific Th1 response to the allergen,
with increased production of an allergen-specific
IgG2, rather than the normal Th2 response with IgE
formation [64]. This indicates the possibility of using
localized IL-12 together with specific allergens to
provide a more specific immunotherapy, which might
even be curative if applied early on in the course of the
atopic disease.

Interleukin-18

IL-18 was originally described as IFN-c-releasing
factor, but has a different mechanism of action to IL-
12 [65]. IL-12 and IL-18 appear to have a synergistic
effect in inducing IFN-c release and inhibiting IL-4-
dependent IgE production and AHR [66].

Chemokine inhibitors

Many chemokines are involved in the recruitment
of inflammatory cells in asthma and COPD. w50
different chemokines that activate up to 20 different
surface receptors are now recognized [67, 68].
Chemokine receptors belong to the seven-transmem-
brane-spanning domain receptor superfamily of G-
protein-coupled receptors and this makes it possible to
find low-molecular-weight inhibitors, which has not
been possible for classical cytokine receptors [69].
Some chemokines appear to be selective for single
chemokines, whereas others are promiscuous and
mediate the effects of several related chemokines
(table 3). Chemokines appear to act in sequence in
determining the final inflammatory response and so
inhibitors may be more or less effective depending on
the kinetics of the response [70].

CCR3 inhibitors

Several chemokines, including eotaxin, eotaxin-2,
eotaxin-3, regulated on activation, normal T-cell
expressed and secreted (RANTES) and macrophage
chemoattractant protein (MCP)-4, activate a common
receptor on eosinophils termed CCR3 [71]. A neu-
tralizing antibody directed against eotaxin reduced
eosinophil recruitment to the lung after allergen
challenge and the associated AHR in mice [72].
There is increased expression of eotaxin, eotaxin-2,
MCP-3, MCP-4 and CCR3 in the airways of
asthmatic patients and this correlates with increased
AHR [73, 74]. Several long-molecular-weight inhibi-
tors of CCR3, including UCB 35625, SB297006 and
SB328437, are effective in inhibiting eosinophil
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recruitment in allergen models of asthma [75, 76] and
drugs in this class are currently undergoing clinical
trials in asthma. Although it was thought that CCR3
were restricted to eosinophils, there is some evidence
for their expression on Th2 and mast cells; thus, these
inhibitors may have a more widespread effect than on
eosinophils alone, making them potentially more
valuable in asthma treatment.

RANTES, which shows increased expression in
asthmatic airways [77] also activates CCR3, as well as
having effects on CCR1 and CCR5, which may play a
role in T-lymphocyte recruitment. Modification of the
N-terminus of RANTES, to give met-RANTES, has a
blocking effect on RANTES by inhibiting these
receptors [78].

CCR2 inhibitors

MCP-1 activates CCR2 on monocytes and
T-lymphocytes. Blocking MCP-1 with neutralizing
antibodies reduces recruitment of both T-lymphocytes
and eosinophils in a murine model of ovalbumin-
induced airway inflammation, with a marked reduc-
tion in AHR [72]. MCP-1 also recruits and activates
mast cells, an effect that is mediated via CCR2 [79].
MCP-1 instilled into the airways induces marked and
prolonged AHR in mice, associated with mast cell
degranulation. A neutralizing antibody to MCP-1
blocks the development of AHR in response to
allergen [79]. MCP-1 levels are increased in the
bronchoalveolar lavage fluid of patients with asthma
[80]. This has led to a search for low-molecular-weight
inhibitors of CCR2.

CCR2 may also play an important role in COPD, as
MCP-1 levels are increased in the sputum and lungs of
patients with COPD [81, 82]. MCP-1 is a potent
chemoattractant of monocytes and may therefore be
involved in the recruitment of macrophages in COPD.

Indeed, the chemoattractant effect of induced sputum
from patients with COPD is abrogated by an antibody
to CCR2 [82]. Since macrophages appear to play a
critical role in COPD as a source of elastases and
neutrophil chemoattractants, blocking CCR2 may be
important as a therapeutic strategy in COPD.

CCR4 inhibitors

CCR4 are selectively expressed on Th2 and are
activated by the chemokines monocyte-derived che-
mokine and thymus and activation-dependent chemo-
kine [83]. Inhibitors of CCR4 may therefore inhibit
the recruitment of Th2 and thus cause persistent
eosinophilic inflammation of the airways.

CXC receptor inhibitors

CXC receptors mediate the effects of CXC chemo-
kines, which act predominantly on neutrophils. IL-8
levels are markedly increased in the induced sputum of
patients with COPD and correlate with the increased
proportion of neutrophils [41, 84]. Since IL-8 is a
potent neutrophil chemoattractant, it is an attrac-
tive target for COPD therapy. Anti-IL-8 has an inhi-
bitory effect on the chemotactic response to COPD
sputum [85]. IL-8 acts via two receptors, CXCR1,
which is a low-affinity receptor that is specific for
IL-8, and CXCR2, which has high affinity and is
shared by several other CXC chemokines, including
growth-related oncogene (GRO)-a, GRO-b, GRO-c,
granulocyte chemotactic protein-2 and epithelial
cell-derived neutrophil-activating peptide-78 (fig. 5).
CXCR1 responds to high concentrations of IL-8 and
is responsible for activation of neutrophils and release
of superoxide anions and neutrophil elastase, whereas
CXCR2 responds to low concentrations of CXC
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Fig. 5. –CXC chemokine receptors (CXCRs) are important in
neutrophilic inflammation. Interleukin-8 (IL-8) signals through a
specific low-affinity receptor (CXCR1) and also through a high-
affinity receptor (CXCR2) shared with other CXC chemokines,
such as growth-related oncogene (GRO)-a. Low-molecular-weight
inhibitors of CXCR2 are curretly developed. The cells depicted at
the left are the sources of CXC chemokine. ENA-78: epithelial
cell-derived neutrophil-activating peptide-78; GCP-2: granulocyte
chemotactic protein-2; MPO: myeloperoxidase.

Table 3. – Chemokine receptor antagonists in asthma

Chemokine
receptor

Cell types Agonists Antagonists

CCR3 Eosinophil,
Th2,
mast cell

Eotaxin,
eotaxin-2,
RANTES,
MCP-4

Met-RANTES,
UCB 35625,

SB 328437

CCR2 Monocyte,
mast cell,
T-lymphocyte

MCP-1,
MCP2-5

CCR4 Th2 MDC,
TARC

Several chemokines are likely to be involved in the patho-
physiology of asthma. There are three major chemokine
receptor targets in asthma, CCR3, which is most advanced
in terms of low-molecular-weight inhibitor development, and
also CCR2 and CCR4, for which low-molecular-weight
inhibitors are currently developed; Th2: type 2 T-helper
lymphocyte; RANTES: regulated on activation, normal T-cell
expressed and secreted; MCP-4: macrophage chemoattractant
protein-4; MDC: monocyte-derived chemokine; TARC:
thymus and activation-dependent chemokine; Met-RANTES:
N-terminally modified RANTES.
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chemokines and is involved in chemotactic responses.
Potent low-molecular-weight inhibitors of CXCR2
that block the chemotactic response of neutrophils to
IL-8 and GRO-a, such as SB 225002, have now been
developed [86]. This antagonist has a significant
inhibitory effect on the chemotactic response to
COPD sputum. Concentrations of GRO-a are also
elevated in the induced sputum of patients with
COPD and this mediator has a chemotactic effect on
neutrophils and monocytes [82]. CXCR2 antagonists
may therefore also reduce monocyte chemotaxis and
the accumulation of macrophages in COPD patients.

Neutrophils are not a prominent feature of inflam-
mation in patients with chronic asthma and inflam-
mation is dominated by eosinophils. However, there is
evidence for increased neutrophils number in the
biopsy samples and induced sputum of patients with
severe asthma who are treated with high doses of
inhaled or oral corticosteroids, and levels of IL-8 are
increased [87, 88]. It is not certain whether this
neutrophilic inflammation contributes to the asthma
pathophysiology, but it is possible that CXCR
inhibitors may have a therapeutic role in severe
asthma.

Other approaches to cytokine inhibition

Although several attempts have been made to block
specific cytokines, this may not be adequate to combat
the chronic inflammation in asthma and COPD as so
many cytokines are involved and there is considerable
redundancy of effects. This has led to the suggestion
that development of drugs that have a more general
effect on cytokine synthesis may be more successful.
However, these drugs also affect other inflammatory
processes, and so their beneficial effects cannot
necessarily be ascribed to inhibition of cytokine
synthesis alone.

Corticosteroids

Corticosteroids represent the most effective treat-
ment for asthma by far and part of their efficacy is due
to inhibition of inflammatory cytokine expression.
This is mediated via an effect on glucocorticoid
receptors, reversing the acetylation of core histones
that is linked to increased expression of inflammatory
genes [89]. However, corticosteroids are not effective
in suppressing the inflammation in COPD [90] and
this, at least in part, may be explained by an inhibitory
effect of cigarette smoking on histone deacetylation
[91].

Immunomodulatory drugs

Ciclosporin A, tacrolimus and rapamycin inhibit
the transcription factor nuclear factor of activated
T-cells that regulates the secretion of IL-2, IL-4,
IL-5 and granulocyte-macrophage colony-stimulating
factor by T-lymphocytes [92]. Although it has some
reported beneficial steroid-sparing effects in asthma

[93], the toxicity of ciclosporin A limits its usefulness,
at least when given orally. More selective Th2-
selective drugs may be safer for the treatment of
asthma in the future. An inhibitor of Th2-derived
cytokines, suplatast tosilate [94], is reported to
provide clinical benefit in asthma [95]. Cytotoxic
(CD8z) T-lymphocytes are prominent in COPD and
therefore immunomodulatory drugs may also have a
role in this disease.

Phosphodiesterase 4 inhibitors

Phosphodiesterase 4 (PDE4) inhibitors inhibit the
release of cytokines and chemokines from inflamma-
tory cells via an increase in intracellular cyclic
adenosine monophosphate [96]. Their clinical use is
limited in asthma by side-effects such as nausea. In
contrast to corticosteroids, PDE4 inhibitors have a
potent inhibitory effect on neutrophils [97], indicating
that they may be useful anti-inflammatory treatments
for COPD. There is preliminary evidence that a PDE4

inhibitor cilomilast improves lung function and
symptoms in patients with COPD, although whether
this is due to inhibition of cytokines is not yet certain
[98].

Nuclear factor-kB inhibitors

NF-kB regulates the expression of many cytokines
and chemokines involved in asthma and COPD [99].
There are several possible approaches to inhibition of
NF-kB, including gene transfer of the inhibitor of NF-
kB (IkB), inhibitors of IkB kinases, NF-kB-inducing
kinase and IkB ubiquitin ligase, which regulate the
activity of NF-kB, and the development of drugs that
inhibit the degradation of IkB [100]. One concern
about this approach is that effective inhibitors of NF-
kB may result in immune suppression and impair host
defences, since knockout mice, which lack NF-kB
proteins, succumb to septicaemia. However, there are
alternative pathways of NF-kB activation that might
be more important in inflammatory disease [101].

p38 mitogen-activated protein kinase inhibitors

Mitogen-activated protein (MAP) kinases play a
key role in chronic inflammation and several complex
enzyme cascades have now been defined. One of these,
the p38 MAP kinase pathway, is involved in the
expression of inflammatory cytokines and chemokines
[102, 103]. Nonpeptide inhibitors of p38 MAP kinase
such as SB 203580, SB 239063 and RWJ 67657, also
known as cytokine synthesis anti-inflammatory drugs,
have now been developed and these drugs have a
broad range of anti-inflammatory effects [104]. How-
ever, there may be issues of safety as p38 MAP kinases
are involved in host defence. It is possible that the
inhalational route of delivery will reduce the risk of
side-effects.
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Conclusions

Several specific cytokine and chemokine inhibitors
are currently being developed for the treatment of
asthma and COPD.

Inhibition of IL-4 with soluble IL-4 receptors has
shown promising early results in asthma. Anti-IL-5 is
very effective at reducing peripheral blood and airway
eosinophil numbers, but does not appear to be
effective against symptomatic asthma. Inhibitory
cytokines, such as IL-10, interferons and IL-12 are
less promising, as systemic delivery causes side-effects,
and it may be necessary to develop inhalation delivery
systems. Inhibition of TNF-a may be useful in the
treatment of severe asthma and COPD.

Many chemokines are involved in the inflammatory
response of asthma and COPD and low-molecular-
weighted inhibitors of chemokine receptors are
currently in development. CCR3 and CXCR2 antago-
nists are also currently being developed for the
treatment of asthma and COPD respectively.

Because so many cytokines are involved in these
complex diseases, drugs that inhibit the synthesis of
multiple cytokines may be more successful. Several
such classes of drug are now in clinical development.
The risk of side-effects in these nonspecific inhibitors
may be reduced by use of inhalational route of
delivery, however.
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