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ABSTRACT: This review summarizes statistical methods likely to be needed by
researchers. It is not a replacement for a statistics book, and almost no symbols or
mathematics are used. It seeks to guide researchers to the appropriate methods and to
make them aware of some common pitfalls.

Sections deal with methods for quantitative outcomes, both basic and more advanced,
and parallel methods for qualitative or categorical outcomes. Reference is made to
papers using the more advanced methods in the European Respiratory Journal in order
that their relevance may be appreciated.

The paper seeks to improve the quality of papers submitted to the European
Respiratory Journal, to reduce the revisions to papers required of authors, and to enable
readers of the journal to gain more insight into the interpretation of results.
Eur Respir J 2001; 18: 393–401.

Dept of Public Health Sciences, King9s
College London, London.

Correspondence: S. Chinn, Dept of
Public Health Sciences, King9s College
London, 5th floor Capital House, 42
Weston Street, London SE1 3QD.
Fax: 44 2078486605

Keywords: Biostatistics
statistical tests
trial design

Received: March 19 2001
Accepted: March 20 2001

No researcher can ignore statistical methods, either
in reporting their own results or in reading the
literature. The December 2000 issue of the European
Respiratory Journal (ERJ) contained 20 original
articles, of which 19 had at least some statistical
summary, and 13 used methods of greater complexity
than that described below as "basic". As in every other
subject, new methods are continually being developed
and standards in use change. It is not possible in one
article to explain details of statistical methods; rather
this article will try to explain when particular methods
are required, give useful references, and highlight
some common pitfalls in analysis and presentation.
Where reference is made to articles in the ERJ this is
to highlight the relevance of the method to respiratory
medicine. The pitfalls have not been referenced, as
examples in print are a result of a failure of the
reviewing and editorial process.

The subject of statistics is about all stages of
research, not just the analysis. In any study the
analysis should follow the design, and no amount of
analysis can rescue a study with a bad, or the wrong,
design for the question being examined. Major issues
in design are therefore, presented first.

Design

Randomized controlled trials

Not too much needs to be said here about parallel
group trials in which patients are randomized
individually, as a summary of necessary procedure
and how results should be presented are given
succinctly elsewhere [1, 2]. Authors should read the
guidelines while preparing a grant application, and

certainly before starting a study. Failure to record full
recruitment details, for example, may lead to difficulty
in publishing the results. Some details which may not
seem necessary to reporting an individual trial become
relevant to researchers seeking to include all trials in a
meta-analysis [3].

Ethics committees demand sample size or power
calculations, as well as editors for publication [1].
There is no such thing as an "exact" sample size
calculation, as the information taken from a previous
or pilot study will not be precise, and a few per cent
more or less subjects make little difference to the
power to detect a given treatment difference. What is
important is not to have a sample size that is too small
or too large by a factor of, say, 50% or more. It is
never easy to decide on the minimum difference that
the study should detect, and prior information on the
variability of the relevant outcome may not be
available. Equivalence studies, in which researchers
seek to establish comparability of two treatments
within given limits, generally require more subjects
than those aiming to show a difference [4]. A medical
statistician is used to discussing such issues and may
be able to suggest an alternative design or outcome
when difficulties occur, as well as perform the required
calculations. The most commonly needed sample size
calculations are described by CAMPBELL et al. [5].

Every effort should be made to obtain data on all
randomized individuals so that an "intention to treat"
analysis can be carried out. Otherwise the benefits of
randomization, that the groups will on average be
balanced on unknown prognostic factors, is lost. If
compliance with treatment is not 100% then an "on
treatment" analysis may also be presented, but should
not replace the "intention to treat" analysis, as this
may be biased.
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Cross-over trials [6], in which patients with a
chronic illness are given two or more treatments in
random order, have a number of problems. Although
in theory they require fewer patients than the
corresponding parallel group trial, as subjects act as
their own control, the necessary data on within-
patient variation required to calculate sample size are
often lacking, and selective drop-out can make the
cross-over biased, or carry-over effects of treatment
render the analysis invalid. Such trials should only be
undertaken when clearly warranted [7].

Experimental laboratory studies

A randomized controlled trial (RCT) is an experi-
ment on people. When the experimental units are
nonhuman animals the same principles should apply.
It is less usual to randomize animals to treatment
groups, as they are often inbred and assumed to be
genetically identical. However, conditions of housing
may vary in subtle ways, and if there is no reason
against it, other than inconvenience, randomization
should be used. Sample size justification, particularly
for large animal studies, is becoming necessary.
Compliance will not be an issue, but death of animals
prior to sacrifice may prevent an "intention to treat"
analysis. The biggest problem with animal experi-
ments seems to be in over-complicated designs and in
the analysis of serial measurements on a small number
of animals. A researcher should have an analysis plan
before starting the experiment, as is required for drug-
licensing trials in humans and increasingly, in other
RCTs.

Observational studies

Studies may be prospective, cross-sectional or retro-
spective. Animal studies are nearly always prospective,
albeit over short periods. In human studies the
different designs have advantages and disadvantages.
Prospective, also known as cohort or longitudinal
studies, are optimal for studying risk factors for
disease, survival or disease progression. However,
particularly for the study of the incidence of rare
diseases, they require follow-up of large numbers of
people, and so are expensive, take time to do, and may
have administrative problems and selective drop-out
of subjects. Hence, retrospective case-control studies
[8] are often used, in which controls are matched with
cases of the disease and data on risk factors obtained
by recall or searching medical records. The main
issues here are selection of a suitable control group
and whether to individually or group match the cases
and controls, for example, on age. Repeatability
studies are a special form of prospective study, as
data are necessarily collected at two different time
points. The main distinction is that the order of data
collection should have no bearing on the result in a
true repeatability, or reproducibility study, and also
that the time scale is usually short. Particular methods
of analysis apply, as referenced below. In develop-
ment of models to predict disease progression two

prospective studies are required, one to develop the
model, the other to validate it, although one large
study randomly divided into two may be used.

Cross-sectional surveys

Cross-sectional surveys, in which all data are
collected at the same point in time, are used for a
variety of purposes. Many are comparisons of
different patient groups. Those in which the aim is
to assess disease prevalence in a population must be
based on a sampling frame, i.e. a representative list of
the population. Multicentre cross-sectional studies
have been used to study variation in the prevalence of
asthma and atopy [9, 10].

Case series may be cross-sectional or prospective,
depending on whether the patients are followed-up.
They may be used for hypothesis generation, but
lacking controls or comparison group they rarely
enable hypothesis testing, and will not be considered
further.

Other types of study

Although not yet very common in respiratory
research, two other types of study deserve mention.
The first is meta-analysis [3], in which no new data
collection is undertaken but results from several
studies are combined to give an overall result.
Guidelines are now available for the reporting of
such studies [11]. The other type of study to experience
a large increase in popularity is that of cluster
randomized trials (US terminology is cluster random-
ization trial). Instead of individuals being randomized
to different interventions, whole family practices,
geographical areas or other distinct units are rand-
omly allocated. This may be because the intervention
is at the cluster level [12], to avoid "contamination"
between individuals [13] or to estimate the total
community benefit [14]. A draft extension [15] of the
CONSORT (Consolidated Standards of Reporting
Trials) statement [1] for individually randomized trials
has been published. Meta-analysis and cluster rand-
omized trials were developed independently, but
methods of analysis share some common features, as
in meta-analyses data are clustered within studies.

The above is not an exhaustive list of types of study,
but covers the ones most likely to be encountered.

Distinction between outcome and explanatory
variables

Before presentation and analysis can be discussed,
the distinction between outcome, or dependent,
variables and explanatory variables, also called
independent or exposure variables, needs to be
clarified. Usually there will be no confusion. In a
randomized controlled trial, survival or recovery of
the patient may be the outcome of interest and the
treatment group is the explanatory variable. There
may be additional explanatory variables, such as age
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and sex, and these should include any variable used to
stratify the patients in an RCT. However, in some
circumstances there is ambiguity. In a case-control
study, subjects are selected as having the disease, the
cases, or not having the disease, the controls, and the
measured potential risk factors are the outcomes of
the study. The data analysis proceeds by treating
"caseness" as the outcome and the risk factors as
explanatory variables, but strictly speaking the
opposite is true. In a study of asthmatic patients
presenting in Accident and Emergency it is possible to
compare the ages of patients that do or do not require
admission or to analyse the risk of admission by age.
In the first analysis, age is treated as the outcome and
admission the independent variable, but more logic-
ally in the second, admission is the outcome. Although
a conclusion that increasing age is associated with
lower risk of admission might be found from either
analysis, the second leads to results in a more useful
form and also enables adjustment for risk factors
other than age.

Basic statistics

Descriptive statistics

The first task is to describe the data, whether
characteristics of groups being compared or baseline
data in a prospective study [16] (table 1). The methods
depend on whether the data to be described are
continuous quantitative (ratio or interval scale in
alternative terminology), such as forced expiratory
volume in one second (FEV1), discrete quantitative,
for example, number of visits by a patient to his
doctor, ordered categorical (ordinal), such as grading
of severity of disease, or unordered categorical
(nominal), a type which includes diagnosis, and also
many binary variables, such as whether the patient
survived or not. Both a measure of "central tendency",
such as a mean, and one of variation need to be given,
as shown in the first column of table 1. When data are
skewed, medians and interquartile ranges may be
more informative than mean and standard deviation.
A separate row is not shown in the table for discrete
quantitative data; when there are sufficient values they
can be treated as if continuous, or when few values as
ordered categorical.

Hypothesis tests and estimation

The simplest hypothesis tests concern comparison
of two groups and are classified in two ways. One is
the nature of the outcome variable. The other
classification is whether the subjects in the two
groups are matched. The appropriate method of
analysis depends primarily on these two features of
the design and data, and are set out in table 1. The
simplest example of matching is of subjects before and
after treatment. Data are then said to be paired. A
cross-over trial of two treatments is another example
when the paired t-test can be used, but only if it is
safe to assume that carry-over and time effects are
negligible.

Comparison of means using a t-test assumes an
underlying Normal distribution, and in the case of the
unpaired t-test that the underlying standard devia-
tions of the two groups are the same. t-tests are
"robust" to non-Normality, i.e. they give quite
accurate p-values and confidence intervals even when
the distributions are skewed, and so researchers
should not worry about this too much. It is never
possible to "prove" Normality, and in small samples
impossible to examine it. t-tests are preferable to the
equivalent nonparametric tests as they are more
powerful and give related confidence intervals more
easily. It should always be made clear whether a t-test
is paired or unpaired; the term "Student9s" is
unnecessary.

When data are positively skewed log transforma-
tion reduces skewness. Figure 1 shows serum total
immunoglobulin-E (IgE) for a sample of males and
females before and after taking logs to base 10. As
tables 2, 3 and 4 show, the standard deviations before
transformation were much bigger than the mean, and
both mean and standard deviation are greater for
males than for females. After transformation the
standard deviations are almost equal. Although the
log-distributions are not quite Normal they are close
enough to allow comparison using an unpaired t-test.
All calculations are carried out on the log values, but
for presentation the means should be antilogged to
give geometric means, and the difference in means and
confidence interval to give the ratio of the geometric
means and its confidence interval (tables 2, 3 and 4).
The p-value quoted is the one derived from the log
values. The base of the logarithms used does not

Table 1. – Basic statistical methods for two-group comparisons

Type of data and summary
statistics

Paired design Unpaired design

Continuous quantitative data Paired (one-sample) t-test
Wilcoxon signed rank test

Unpaired (two-sample/independent) t-test
Wilcoxon rank sum test*Summary: mean¡SD

median and interquartile range
Ordered categorical data Wilcoxon signed rank test Wilcoxon rank sum test*

Summary: median and
interquartile range

Unordered categorical data McNemar9s test if two categories Chi-squared test#

Fisher9s exact testSummary: proportions or
percentages

Less usual methods are indicated in italics. *: =Mann-Whitney U-test; #: =z-test for proportions if two categories.
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matter provided the antilogging (exponentiation)
corresponds. Due to the extreme skewness of the
raw IgE values, the geometric means are much less
than the arithmetic means and much more descriptive
of central tendency.

Chi-squared tests should not be used when numbers
in cells are very small. The most quoted criterion is
that "80% of expected numbers should be at least 5".
In a two by two table this is satisfied if all the observed
numbers are ¢5. The z-test for difference in pro-
portions gives the same p-value and is more inform-
ative as a confidence interval for the difference in

proportions can be derived. Both the Chi-squared test
and the corresponding z-test can be "corrected for
continuity", which gives a slightly larger p-value.
Statisticians still argue over whether this is necessary.
If numbers are small, Fisher9s exact test can be used to
give a p-value. McNemar9s test is a simple form of
Chi-squared test used when binary data are paired, for
example, in looking at changes in allergic sensitization
in a sample of people over time. However, for paired
data on variables with more than two categories there
is no simple generalization.

p-Values and confidence intervals

Whatever the design of the study and estimate of
interest a confidence interval is more informative than
a p-value. In the case of a statistically significant
difference between two treatments it enables the
reader to judge the clinical importance of the
difference; a small difference may be statistically
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Fig. 1. – The distribution of serum total immunoglobulin-E a) before and b) after log10 transformation in males and c) before and d) after
log10 transformation in females in the British arm of the European Respiratory Health Survey.

Table 2. – An example of the analysis of positively skewed
data: raw data-serum total immunoglobulin-E kU?L-1

Number in sample Mean¡SD

Males 406 115.2¡242.4
Females 509 92.8¡230.4

Table 3. – An example of the analysis of positively skewed
data: data transformed-log10(total immunoglobulin-E)

Mean SD SE 95% CI p-value

Males 1.559 0.695 0.034 1.491–1.626
Females 1.380 0.709 0.031 1.318–1.441
Difference 0.179 0.047 0.087–0.271 0.0001

95% CI: 95% confidence interval.

Table 4. – An example of the analysis of positively skewed
data: results transformed back to kU?L-1

Geometric
mean

Ratio of
geometric means

95% CI p-value

Males 36.22 30.97–42.27
Females 23.99 20.80–27.61
Difference 1.51 1.22–1.87 0.0001

95% CI: 95% confidence interval.
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significant if the study is large. Conversely, and
more commonly, a p-value w0.05 neither precludes
the data being compatible with a difference of clinical
importance nor proves equivalence [4]; a large p-value
may be the result of too small a study. The 95%
confidence interval shows the range of plausible values
for the estimate and should always be given if possible
for the main comparison of interest. It is usual also to
provide the associated p-value, which is the pro-
bability of getting the observed result (or one more
extreme) if the "null hypothesis", usually a statement
of a chance finding, is true. The p-value is a measure
of strength of evidence against the null hypothesis. It
should be quoted as an actual value to two decimal
places, and not as, for example, "pv0.05" or "NS"
implying pw0.05. Values between 0.001–0.01 should
be given to three decimal places. "pv0.001" is
acceptable, and occasionally, for brevity in the text,
a statement such as "no other factor was significantly
associated with outcome (pw0.3)".

p-Values should always be "two-sided", i.e. the
possibility of a difference occurring in either direction
needs to be allowed for. Only if the researcher can
truly say that a difference in the opposite direction
would be equivalent to no difference is a one-sided
p-value appropriate. This is rarely the case.

Only descriptive statistics should be used to describe
baseline data in a clinical trial. Provided the random-
ization has been performed correctly, the null hypo-
thesis must be true and any imbalance is due to
chance. Baseline data on any factor likely to be
associated with outcome should be taken into account
in the analysis whether or not imbalance is evident at
baseline, as the precision of the treatment difference in
outcome can be increased [17]. Analysis of change in
the outcome from baseline to final value should be
justified if used rather than the preferred analysis of
final value adjusted for baseline.

At the other extreme, a hypothesis test should not
be used to compare groups on any variable that is
included in the definition of the groups, as then by
definition the null hypothesis cannot be true. This
applies, for example, to component parts of a score
used to define disease groups.

Another misuse of hypothesis tests is to claim that a
variable showing a baseline difference in means
between two groups of patients, one of which is
found to have better prognosis, is "predictive". Any
small difference in means can be shown to be
statistically significant if the samples are large
enough. Only if the distributions of the measurements
do not overlap, or only to a small degree, can the
measurement be validly claimed to be predictive [18].
The degree of overlap can be described using the index
of separation, the difference in means divided by the
within-group standard deviation, sometimes known as
the "effect size". However, when a new diagnostic test
is proposed it is more useful to estimate the sensitivity
and specificity [19] of the measurement for the optimal
cut-off point; one study or random half should be
used to establish the cut-off point and the other for
the estimation. Estimation of positive and negative
predictive values is of even greater value [20].

Range or confidence interval, standard deviation or
standard error

In most studies it is appropriate to quote a range or
standard deviation when describing baseline data or
patient groups, but a confidence interval or standard
error when describing the main results, although there
are exceptions to the latter. A confidence interval is
preferred to a standard error, as the latter gives too
reassuring a picture of the accuracy of the results.
Similarly, a 95% range is more descriptive than a
standard deviation; the full range depends on the
sample size and is therefore, less useful [18]. Except-
ions to giving a confidence interval in relation to the
main results are in reporting reproducibility, in
comparison of methods of measurement, or in
reporting degree of prediction of a continuous out-
come. In each of these some measure of variation of
the individual values is appropriate.

Regression and correlation

Equally as basic as t-tests are methods to relate one
quantitative variable to another. Simple regression
analysis provides an estimate of the linear increase in
the outcome variable for unit increase in an explana-
tory variable, known as the regression coefficient, with
associated confidence interval and p-value, and
is usually more informative than the associated
(Pearson) correlation coefficient, which gives a mea-
sure of linear association between two variables. The
hypothesis tests of no linear relation between the two
variables based on the regression coefficient and the
correlation coefficient, are equivalent in that the
p-values are the same. Linear regression assumes
Normality and constant standard deviation of the
outcome variable for given values of the explanatory
variable. The Pearson correlation coefficient is based
on a Normal distribution of both variables and is
heavily influenced by outliers. Nonparametric corre-
lation coefficients, Spearman9s or Kendall9s, can be
used when the assumptions are violated. Data should
always be plotted first, as only if the relation is at least
approximately linear is it sensible to use either linear
regression or Pearson9s correlation. Spearman9s rank
correlation coefficient will show the degree of any
monotone relation.

Extensions to basic methods

Unfortunately the above methods rarely suffice.
Fortunately most of them generalize to more com-
plicated designs, so only a little more effort is required
once the above have been mastered. There may be
more than two groups, or more than one explanatory
variable, in any of the cases so far mentioned.

Continuous outcomes

Analysis of variance

The unpaired t-test is a comparison of two means in
relation to the within-group variation. The bigger the
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variation, the more the two means are expected to
differ by chance. One-way analysis of variance is an
extension to more than two groups; the p-value
provides evidence against equality of all group
means. It should be used when the difference between
any two groups is of interest, followed by a test of
pair-wise group differences in means only if the
analysis of variance suggests that some difference
does exist. The test of pair-wise group differences
should be a test specific for this, such as Duncan9s
multiple range test, Neuman-Keuls test [21], Tukey9s
test or Scheffé9s test. If t-tests are used the p-values
will be too small, as they do not allow for the fact that
the k(k-1)/2 comparisons of k groups are not
independent. These tests should not be confused
with the Bonferroni adjustment of p-values when a
number of different independent outcomes are ana-
lysed. The Bonferroni correction is not recommended
[22], although debate continues.

A two-way analysis of variance is one in which two
explanatory variables are cross-classified, for example,
different inhaled steroids may be compared at the
same time as different inhaler devices. The effect of
each on, say, peak flow variability as an outcome
would need to be known. Analysis of variance would
tell whether mean effects of each steroid differ when
the inhaler device is kept constant, and whether the
mean effects of devices differ when the steroid is kept
the same. Provided the study was planned with a large
enough sample, whether there is an "interaction"
effect, i.e. does the difference between steroids differ
between devices, can be investigated. In this case
interaction is unlikely but not impossible.

The paired t-test is in fact a special case of the two-
way analysis of variance. The factor of interest, before
and after treatment or two different treatments on the
same subject, has only two categories, while the
subject, the other level, is usually not of interest.
The treatment categories may be extended to three or
more occasions or treatments, but can no longer use
the simple paired t-test approach if all comparisons
are of interest and should use a two-way analysis of
variance. The exception is, as above, that if one
treatment is a control group, each of the others may
be compared with the control.

In a parallel group RCT it is common to follow
patients for some time and obtain multiple observa-
tions. There are three factors, treatment, subject and
time, and a three-way analysis of variance could be
performed. It is usually the treatment-time interaction
that is of interest, i.e. do the treatments have a
different effect on the outcome over time, given that at
time zero they were randomized to be equal. However,
this may only tell us that the treatments differ not how
they differ, and once there are more than, say, four
time points, this approach becomes increasingly
unhelpful. The repeated measurements must not be
analysed as if from different subjects. Researchers
may be tempted to compare treatments at each time
point, but the tests are not independent. "Repeated
measures analysis", which takes account of the
correlation of repeated measurements on the same
subject over time, can mean several things, so must be
fully described. However, MATTHEWS et al. [23] have

suggested a pragmatic approach to the analysis of
serial measurements which gives more informative
results.

Multiple regression

Frequently, a continuous outcome needs to relate
not to just one continuous explanatory variable but
several [24]. Multiple regression estimates the increase
in mean outcome per unit increase in each explanatory
variable for fixed levels of each of the others. This can
be used to estimate the regression coefficient of
interest, "controlling" for other variables. It works
provided the intercorrelation, or "colinearity", of the
explanatory variables is not too great. When it is, the
standard errors of the regression coefficients increase
enormously. Only one of two very highly correlated
variables should be included. Results should be
presented as the regression coefficients with standard
error or confidence interval. Where prediction is of
interest the standard deviation of the differences
between actual and predicted values should be
reported (sometimes misleadingly termed "SEE").

Equivalence of multiple regression and analysis of
variance

Traditionally, before the advent of flexible statist-
ical computing programs in the 1970s, analysis of
variance was used for analysing a continuous outcome
with categorical explanatory variables. When a single
explanatory variable was continuous and was being
used to adjust the relation of outcome to a categorical
explanatory variable of primary interest, the term
"analysis of covariance" was used. However, since
statisticians recognized that analysis of variance and
linear regression were just slightly different forms of a
linear model, "analysis of covariance" has become an
obsolete term. A linear model can contain as many
explanatory variables as the data can support, both
continuous and categorical. Counting one for the
overall mean, one for each continuous variable and
(k-1) for each k-level categorical variable, the total is
the number of estimates required, which should not be
more thany20% of the size of the data set, or leaving
at ¢25 "degrees of freedom" remaining to estimate
the residual variance. A multiple regression program
can be used to analyse a k-level categorical explana-
tory variable by creating "dummy variables" for the
(k-1) independent differences between categories. The
major computer programs do this automatically. Any
reader for whom this is a new idea should compare the
effect of analysing 2-level categorical variables in an
analysis of variance program with that of a multiple
regression program, with the two levels of the
variables coded as 0 and 1. At the simplest, perform
an unpaired t-test and use simple linear regression and
compare the results. It will be seen that the "regression
coefficient" is the difference in means and that the p-
values are identical.
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Stepwise analysis

Stepwise regression [25] can be used to select
variables associated with outcome, but should be
used with caution. If there is a prior hypothesis to be
tested then adjustment should be made for all vari-
ables which, based on the literature, may be asso-
ciated with outcome, including stratifying variables
in an RCT, even if the relations are not statistically
significant in the current study. The loss of degrees
of freedom is usually outweighed by the reduction
in residual standard deviation, so that the confidence
interval for the estimate of interest is narrowed.
Only when a parsimonious model is required, perhaps
in the development of a new diagnostic or prognostic
scale, should a stepwise analysis be used. Back-
wards stepwise, in which all variables are included at
first and eliminated in order of least statistical signi-
ficance, is preferable to forwards stepwise, in which
variables are entered in order of greatest statistical
significance. The latter should only be used when there
are too few data for backwards elimination. Neither
approach guarantees that the final equation will be
optimal.

Repeatability and comparison of methods of measure-
ment

When continuous measurements to be compared
are on the same scale, the methods of BLAND and
ALTMAN [26] should be used. Estimation of repeat-
ability for continuous outcomes is also described. If
the methods produce categorical results which should
be the same, the kappa statistic is appropriate [27].
When the measurements to be compared are on
different scales their repeatability can be compared
using the intraclass correlation coefficient [28]. Any
monotone relation implies that one measurement
could be calibrated in terms of the other.

Further analysis of categorical outcomes

Before the analysis of categorical outcomes can be
extended beyond Chi-squared tests several other
summary statistics, which can be derived from two-
by-two tables, need description. Consider a prospect-
ive or cohort study in which healthy subjects are
followed-up to the relation of disease outcome to a
risk factor; it may help to think of smoking and lung
cancer. Table 5 shows the notation to be used here. Of
those with the risk factor present at the start of the
study (e.g. smokers) a number "a" are found at follow-
up to have the disease (e.g. lung cancer), while "b" do
not. So the risk of the disease in those positive to the
factor is the proportion "a/(azb)". Similarly, in those
without the disease (nonsmokers) the risk (of lung
cancer) is "c/(czd)". The difference in risk and
associated confidence interval can be calculated. This
is a measure of absolute effect of the risk factor
(smoking). The ratio of these two risks can also be
taken, which is called the relative risk or risk ratio
(RR) and as the first name implies, is a relative

measure that may be less dependent on disease
incidence from one population to another or over
different time periods. The RR is one when the "risk"
factor has no effect, while the difference in risks is
zero.

Multiple logistic regression

In the analysis [24] it is probable to want to include
adjustment for some variables, such as age and sex.
The outcome (disease incidence) is a binary cate-
gorical variable for each subject. Either a person gets
the disease or they do not. The appropriate analysis is
multiple logistic regression. What is estimated in such
analysis is the "odds ratio" (OR) associated with each
unit increase in a continuous explanatory variable, or
between the (k-1) categories of a k category explana-
tory variable. "Odds" is a betting term, the ratio of the
chances for an event to the chances against, so reduces
to the simple formula shown in table 5. The OR is one
if there is no effect of the "risk" factor. Otherwise it is
always further from one than RR and the difference
between OR and RR is greater, the bigger the disease
incidence. Unfortunately, OR is often loosely inter-
preted as RR and this may be misleading. Testing any
of the null hypotheses, for OR, RR or difference in
risk is approximately equivalent in the simple case to
using the Chi-squared test, but it should be noted that
a 95% confidence interval formulae for risk difference,
OR or RR may include the null hypothesis value when
the p-value is close to 0.05 or vice versa. Logistic
regression actually produces an estimate of loge(OR),
but this and the related confidence interval can be
antilogged and most programs do this automatically.

Survival analysis

In a cohort study, provided follow-up time is the
same for those with and without the risk factor, and
follow-up is complete, both the incidence of the
disease and the initial prevalence of the risk factor
can be estimated without bias. If the outcome is
mortality then this can be achieved. If follow-up time
is not constant then other methods, known as sur-
vival analysis, are required. This is appropriate when
patients in a cohort are recruited at different times and
allows data on date of death or disease incidence to be
analysed, not just whether or not death or disease
occurred. Results are displayed using a Kaplan-Meier

Table 5. – Summary statistics for cohort and case-control
studies: cohort study

Explanatory variable
(risk factor)

Outcome variable
(future disease)

Total

zve -ve

zve a b azb
-ve c d czd
Total azc bzd N=azbzczd

Relative risk=(a/(azb))/(c/(czd)). Odds ratio=(a/b)/(c/d)=ad/bc.
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survival curve [16, 29]. The association of survival
with a single risk factor can be tested using a
nonparametric test, the logrank test. This allows for
the fact that not only do survival times have a very
non-Normal distribution, but that for patients still
alive the survival time is known only to be at least as
long as current follow-up; their survival time is said to
be censored. When several risk factors are to be
analysed, or adjustment for other explanatory vari-
ables is required, the most common method of
analysis is Cox proportional hazards regression,
which estimates the ratio of the rate of dying or
disease incidence between the two groups [16, 27].
This depends on the ratio being constant over time,
hence the "proportional hazards" in the full name. The
Kaplan-Meier survival curves may show that this is
not the case, so the method should not be auto-
matically applied. In the case of a single risk factor,
similar p-values are often obtained from the logrank
test and Cox regression.

Analysis for case-control studies

As already mentioned, when a disease is rare it is
likely that a case-control study will be carried out
rather than a cohort study, and a case-control study
may also be the initial study to examine the
plausibility of a new hypothesis. The link between
smoking and lung cancer was first examined in this
way. It is important to realize that the disease
incidence can no longer be estimated, as a fixed
number of cases and controls are selected (table 6),
unless the study is "nested" in a cohort study from
which cases and controls are drawn. If the controls are
not individually matched with cases the OR can be
estimated as shown, which, when the disease is rare, is
a good approximation to RR. An OR adjusted for
other explanatory variables can also be estimated
using logistic regression with "caseness" as the
dependent variable. If individual matching has been
used then an OR can be calculated [27], and
conditional logistic regression used to adjust for
covariates.

Meta-analysis

Meta-analysis is primarily a method for combining
results from different RCTs in a systematic review [3,
30], but can also be used to combine results from
observational studies [31] or across centres in a

multicentre study [32]. The estimate are combined
and weighted according to the amount of information
provided by each study. The actual weights differ
slightly between the different methods of meta-
analysis. One reason that few meta-analyses have
been published in respiratory disease may be that the
analysis requires a common outcome to be reported
from each study. Two systematic reviews [3, 30] found
a mixture of continuous and categorical outcomes and
in each two separate meta-analyses were performed.
This is undesirable [33]; it is intended that this will be
reported further elsewhere in relation to bronchial
responsiveness. Meta-analysis is not without pro-
blems. This is a relatively new field and much is still
being published.

Cluster randomized trials

If meta-analysis is relatively new, cluster random-
ized trials are all the rage but may be overused [13].
Again the literature is growing rapidly.

Graphical methods

Graphs can illuminate the results and show whether
the method of analysis was appropriate. Bar charts
should be reserved for frequencies. Means should
normally be displayed with two-sided error bars,
which should always be defined [18].

Software and reference to methods

This article deliberately says nothing about specific
computer programs. There are many around, and all
statistical software should be able to cope with
descriptive and basic methods as described above,
without error, if used correctly. Reference to the
program used is not necessary when commonly used
methods are reported, as the reference does not
guarantee that the program has been used correctly
or necessarily tell the reader exactly what has been
done. "Analysis was carried out using a t-test
(STATMAGIC)" is not informative; "mean FEV1

was compared between the two patient groups using
an unpaired t-test" is sufficient. Blanket statements
about statistical methods repeated from one paper to
another should never be used. The statistical analysis
section should always be particular to the paper.
Analysis of variance/multiple linear regression or
multiple logistic regression can now be regarded as
standard, so only methods beyond these need to be
referenced or described in detail. As far as possible,
reference should be to papers or books in print, as a
reference to an out-of-print book is irritating for the
reader (and referee) and may mean that the method
has been superseded. A software reference is helpful
for methods not implemented in the major packages.

Table 6. – Summary statistics for cohort and case-control
studies: case-control study

Past risk factor Present disease

zve -ve

zve a b
-ve c d
Total azc (fixed) bzd (fixed)

Odds ratio=ad/bc.
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Further reading

Other methods not referred to here may at times be
required. This article tries as far as possible to give
accessible references, in both senses of the word. Some
of these are to the excellent series of British Medical
Journal articles by J.M. Bland and D.G. Altman, of
which many more are available on a variety of topics.
The book already referenced [27] is one of the best,
and would meet most researchers9 needs.

Final advice

Remember the audience and do not use methods
more complicated than necessary. They will not
impress this statistical editor!
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