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Severe respiratory insufficiency causes patients to be
intolerant of physical effort and to be frequently limited in
their daily activity and results in an imbalance between
food intake and nutritional needs. Undernutrition and over-
nutrition can both affect the quality of life and survival of
patients with pulmonary disease. Protein-energy malnu-
trition can lead to quantitative, qualitative and functional
alterations of muscle [1, 2] and this affects muscle func-
tion, including respiratory muscle in patients with already
limited respiratory reserves. Optimal adaptation of nutrition
support through the assessment of fat-free mass (FFM)
and fat mass (FM) in patients with chronic respiratory in-
sufficiency can avoid or minimize muscle wasting or obe-
sity. For these reasons, the nutritional assessment should
include body composition measurements which are based
on objective rather than subjective criteria of nutritional
evaluation. Body composition can be measured by a num-
ber of techniques, including hydrodensitometry, isotope
dilution, and whole-body counting of potassium-40 [3].
However, these methods are not easily applicable in ill
subjects.

More recent methods for the determination of the FFM
are dual-energy X-ray absorptiometry (DXA) and bioelec-

trical impedance analysis (BIA). DXA has been validated
against independent methods, including a gamma neutron-
activation model [4, 5], total body potassium and hydro-
densitometry [6] and is becoming one of the reference
methods for body composition analysis, but requires soph-
isticated technology. BIA is a method of measuring body
composition which is easy, noninvasive and inexpensive
[7]. BIA measurements have been validated in healthy
adults [8–10]. The relationship between body impedance
and body composition is dependent on age and sex [11,
12]. Over 20 different formulae permit the calculation of
the FFM and FM based on BIA measurements and have
generally been validated in healthy, young adults. SCHOLS et
al. [13] proposed a BIA formula validated against deute-
rium dilution for patients with chronic obstructive pulmo-
nary disease (COPD) (n=24), which included weight and
height2/resistance (ht2/R) as independent variables. Re-
cently, PICHARD et al. [14] were unable to obtain clinically
relevant correlations between FFM calculated by 12 BIA
formulae [8, 9, 11, 15–21], including SCHOLS et al. [13], and
DXA-determined FFM, and suggested that a specific for-
mula should be developed for patients with chronic se-
vere respiratory insufficiency.
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ABSTRACT: Malnutrition in patients with severe respiratory insufficiency can lead
to severe complications, justifying the use of objective nutritional assessment tech-
niques, such as bioelectrical impedance analysis (BIA), which is an easy, noninvasive
method of measuring body composition. The purpose of this study was to develop,
and validate against dual-energy X-ray absorptiometry (DXA), a BIA formula to pre-
dict fat-free mass (FFM) specific for patients with chronic severe respiratory insuffi-
ciency.

Seventy-five ambulatory patients (15 females and 60 males) with severe chronic
respiratory insufficiency (obstructive and restrictive) aged 63.6±19.2 yrs (mean±SD),
in a stable pulmonary and cardiac condition for Š2 months, were measured simulta-
neously with BIA and DXA. Patients younger than 45 yrs of age and with a body mass
index Š32 kg·m-2 were excluded.

The best-fitting multiple regression equation to predict FFM = -6.06 + (height ×
0.283) + (weight × 0.207) - (resistance × 0.024) + (sex (males=1, females=0) × 4.036),
gave a correlation coefficient of r=0.952, slope±SEM 0.902±0.034, standard error of the
estimate 1.670, and p<0.0001. The mean difference for FFM was 0.2±2.3 kg (mean±
SD) and percentage fat mass was -0.7±3.8%.

These results suggest that the bioelectrical impedance analysis formula specific to
patients with severe respiratory insufficiency give a better correlation and smaller
mean differences than 12 different bioelectrical impedance analysis formulae des-
cribed in the medical literature. A prediction equation, validated against dual-energy
X-ray absorptiometry and based on subjects with similar clinical characteristics, is
more applicable to the patients with respiratory insufficiency than a formula deve-
loped for healthy subjects.
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The purpose of this study was to develop a specific BIA
formula for patients >45 yrs old with chronic severe respi-
ratory insufficiency. A validated specific BIA formula
would allow the use of BIA for the sequential evaluation
of lean tissue and fat reserves and of evolutional changes
in these parameters in these patients.

Subjects and methods

Subjects

Seventy-five ambulatory patients (15 females and 60
males) with severe chronic respiratory insufficiency in a
stable clinical condition, aged 45–86 yrs, were included in
this study. Table 1 shows the physical characteristics and
diagnoses of the patients. Because pulmonary diseases of
young patients with respiratory insufficiency are usually
different (e.g. cystic fibrosis and myopathies) and patients
have different characteristics (table 1), patients under 45
yrs of age were excluded. Nearly 79% of the present pati-
ents suffer from COPD. Reviews of the incidence in COPD
have shown a male predominance of up to 10:1 in this dis-
ease [22] and therefore, fewer females than males were
included in this study. Because errors in prediction of FM
by BIA are increased in obese subjects [23], patients with
a body mass index (BMI) >32 kg·m-2 were also excluded.
Fifty-nine of the patients were diagnosed with COPD. The
remainder were patients with restrictive pulmonary disease
secondary to tuberculosis or kyphoscoliosis. Patients with
COPD, kyphoscoliosis and post-tuberculosis syndrome
have been shown to have increased cost of breathing and
increased resting energy expenditure [24] and are there-
fore at high risk for wasting of peripheral and respiratory
muscles. It was felt that these patients could be pooled for
body composition purposes. Patients with symptomatic oed-
ema and fluid retention (as determined by a positive sign
during pressure on the ankle or a gain of body weight Š1
kg during the last week) were excluded to minimize errors
in the prediction equation due to abnormal hydration lev-
els. Extracellular fluid retention is possible with CO2 re-
tention in these patients; however, the patients were in a
stable (nondecompensated) condition for a period of Š2
months. Thirty-six per cent of the patients were under

home oxygen therapy. The patients' pulmonary character-
istics are shown in table 1. Patients with cardiovascular,
endocrine and neurological diseases were excluded. Main-
tenance medication included theophylline, inhaled or oral
corticosteroids and β-agonists (10% of patients). Patients
who chronically received steroids (>20 mg prednisone) or
diuretics were excluded. Height, weight, BIA and DXA
measurements were obtained during the same clinic visit
to ensure that the measurements were comparable.

Anthropometric measurements and bioelectrical impedance

Body height was measured to the nearest 0.5 cm and
body weight to the nearest 0.1 kg on a balance beam scale.
BIA was used to determine FFM and FM as previously
described [8, 10, 15, 25, 26]. Estimates are made of body
composition from whole-body bioelectrical impedance, V
= ρ × ht2/R, in which the conductive volume (V) is as-
sumed to represent FFM, ρ is the specific resistivity of the
conductor, height (ht) is taken as the length of the conduc-
tor, and whole-body resistance (R) is measured with four
surface electrodes placed on the wrist and ankle. Thus, the
volume of FFM is directly proportional to ht2/R. In brief,
an electrical current of 50 kHz and 0.8 mA was produced
by a generator (Bio-Z®; New Cardiocorp, Fribourg, Swit-
zerland) and applied to the skin using adhesive electrodes
(Sentry Silver Sircuit®; Sentry Medical Products, Irvine,
CA, USA) placed on all right side-limbs with the pati-
ent in decubitus dorsalis as described previously [27]. The
Bio-Z® generator has been cross-validated against the
RJL-109® and 101® analysers (RJL Systems, Clinton,
MI, USA) and at 50 kHz against the Xitron® analyser
(Xitron Technologies, San Diego, CA, USA). The cross-
validation produced results of ±5 Ω for the resistance and
can therefore be considered equivalent. Short-term and
long-term reliability of resistance measurements indicate
coefficients of variation of 1.8–2.9% [15, 28]. The skin
was cleaned with 70% alcohol. Age, sex, height, weight,
resistance and reactance were used as independent varia-
bles to predict FFM and FM as compared to DXA-derived
FFM and FM.

Dual-energy X-ray absorptiometry

The DXA-based technique for body composition meas-
urement requires: 1) general assumptions inherent in the
body compartment approach (i.e. soft tissue = body weight
- skeletal mass, and soft tissue = fat + water-equivalent tis-
sue), and 2) specific assumptions (soft tissue overlying
bone cannot be sampled and its composition has to be ex-
trapolated from the composition of adjacent tissue). DXA
is a scanning technique which measures the differential
attenuation of two different energy level X-rays as they
pass through the body. These measurements allow the de-
termination of bone mineral content and soft tissue mass
on a pixel-per-pixel basis. Then, the soft tissue mass is
partitioned into fat and nonfat lean body mass by a cali-
bration procedure based on the attenuation of the soft
tissue outside the bone and the attenuation of an extern-
al dedicated phantom [29, 30]. The advantage is that the
method permits, in a few minutes, the derivation of the total
FM directly rather than by subtracting the other body com-
partments [4]. The reproducibility of the measurements is

Table 1.  –  Physical characteristics and diagnosis of the
study group

Females
n=15

Males
n=60

All
n=75

Anthropometrics
Age  yrs
Height  cm
Weight  kg
BMI  kg·m-2

Diagnosis
COPD
Restrictive syndrome

Pulmonary function
FEV1  % pred
PO2  kPa
PCO2  kPa

60.8±11.1
158.4±7.3
53.7±11.7
21.7±5.9

9
6

33.6±9.2
9.4±1.9
5.8±1.2

66.8±8.2
170.9±8.1

54.8±9.3
18.8±2.8

50
10

36.8±13.7
8.3±1.3
5.7±0.9

65.6±9.1
168.4±9.4
54.6±9.8
19.3±3.7

36.2±13.0
8.5±1.5
5.7±1.0

Values are shown as mean±SD. BMI: body mass index (weight/
height2); COPD: chronic obstructive pulmonary disease; FEV1:
forced expiratory volume in one second; PO2: oxygen tension;
PCO2: carbon dioxide tension.
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excellent: 1.2% for the total FFM and FM [31, 32] and
0.5% for the bone mineral content. The FM derived from
DXA measurements correlates well with FM determined
by hydrodensitometry and total body 40K measurements
[4, 29, 32, 33]. An advantage of DXA over hydrodensit-
ometry, total body potassium and water dilution is that it
can provide information about the composition of body
segments and muscle mass and the distribution of fat be-
tween trunk and limbs [34]. All measurements were per-
formed using Hologic CDR-2000® (Hologic, Waltham,
MA, USA, Enhanced Whole-body 5.54 software version).

Statistical analysis

Results are expressed as mean±SD. Multiple regressions
were calculated to test correlations between DXA and the
various independent variables (sex, age, height, weight, re-
sistance, reactance, ht2/R) to predict FFM by BIA. BLAND

and ALTMAN [35] analysis was used to compare the FFM
results generated by DXA to those of BIA. The differen-
ces between the values are plotted against the DXA-de-
rived FFM. This analysis allows the calculation of the bias
(estimated by the mean differences) and the limits of agree-
ment (two standard deviations of the difference) [35]. Sta-
tistical significance was set at p<0.05 for all tests.

Results

Table 1 summarizes the physical characteristics, diag-
noses and pulmonary functions of the study group. The
patients had a mean age of 65.6±9.1 yrs, weight of 54.6±
9.8 kg and BMI of 19.3±3.7 kg·m-2, which is below the
normal range for this age of population.

Table 2 shows the results of the five different multire-
gression calculations for FFM and FM by BIA compar-
ed to DXA in males, females and both groups combined.

Various combinations of dependent variables including age,
height, weight, resistance, reactance and ht2/R were used
to determine the best fit.  The best correlation coefficients
for FFM were obtained when the parameters age, height,
weight, resistance and reactance, and sex if males and
females were combined, were included (males r=0.93, fe-
males r=0.96, both sexes r=0.95). Slightly lower correla-
tion coefficients were noted for females (r=0.95) when
age (not shown), and age and reactance were eliminated.
Using ht2/R in place of height and resistance decreased the
performance of the multiple regressions (males r=0.88,
females r=0.89, both sexes r=0.93), lowered the slope of
the regression and increased the SEE from 1.48 kg (ma-les),
1.53 kg (females) and 1.67 kg (both sexes) to 1.75 kg
(males), 2.17 kg (females) and 1.94 kg (both sexes). Elim-
ination of weight from the multiple regression further dec-
reased the performance of the various regressions. While
multiple regression calculations can predict FM well when

Table 2.  –  Correlations, slope and standard error of the estimate (SEE) for fat-free mass (FFM) and fat mass (FM)
measured by bioelectrical impedance analysis (BIA) or dual-energy X-ray absorptiometry (DXA)

BIA formula variables FFM FM

r slope±SEM SEE

kg
TE

kg
r slope±SEM SEE

kg
TE

kg

Both sexes (n=75)
Age, sex, ht, wt, R, Xc
Sex, ht, wt, R
Sex, wt, ht2, R
Sex, ht, R, Xc
Sex, ht2/R, Xc

Males (n=60)
Age, ht, wt, R, Xc
Ht, wt, R
Wt, ht2/R
Ht, R, Xc
Ht2/R, Xc

Females (n=15)
Age, ht, wt, R, Xc
Ht, wt, R
Wt, ht2/R
Ht, R, Xc
Ht2/R, Xc

0.95
0.95
0.93
0.90
0.86

0.93
0.93
0.88
0.88
0.78

0.96
0.95
0.89
0.65
0.51

0.91±0.03
0.90±0.03
0.87±0.04
0.81±0.05
0.74±0.05

0.87±0.04
0.86±0.46
0.78±0.05
0.78±0.05
0.61±0.06

0.92±0.08
0.91±0.08
0.79±0.11
0.42±0.14
1.14±0.54

1.67
1.67
1.94
2.25
2.53

1.41
1.48
1.75
1.75
2.05

1.49
1.53
2.17
2.65
2.71

1.73
1.75
2.06
2.47
2.88

1.50
1.57
1.96
1.95
2.60

1.49
1.52
2.28
3.83
3.75

0.98
0.98
0.97
0.55
0.55

0.98
0.97
0.96
0.44**
0.39**

0.99
0.98
0.97
0.67
0.45†

0.95±0.03
0.95±0.03
0.93±0.03
0.30±0.05
0.30±0.05

0.95±0.03
0.95±0.03
0.92±0.04
0.19±0.05
0.15±0.05

0.97±0.05
0.97±0.05
0.93±0.07
0.46±0.14
0.20±0.11

1.70
1.72
2.02
3.67
3.67

1.48
1.55
1.91
2.74
2.46

1.51
1.60
2.36
4.63
3.62

1.72
1.76
2.06
6.59
6.60

1.51
1.56
1.96
6.10
6.27

1.51
1.60
2.28
6.37
7.71

ht: height; wt: weight; R: resistance; Xc: reactance. Total error (TE)=Ð (FFMBIA - FFMDXA)2/n. **: p<0.01; †: p=nonsignificant; all
others p<0.0001.
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Fig. 1.  –  Bland-Altman plot. The mean difference of fat-free mass (FFM)
(bioelectrical impedance analysis (BIA) minus dual-energy X-ray absorp-
tiometry (DXA)) is plotted against the FFMDXA. The mean difference
(——) and its limits of agreement (±2 SD; - - -) are shown.
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four or more dependent variables are used, the prediction
of FM is not considered to be reliable. BIA measures total
body water and electrolytes and extrapolates FM from the
difference between weight and FFM. Therefore, the multi-
ple regression formula which included sex, height, weight
and resistance was chosen to predict the FFM in males
and females grouped together as follows: FFM = -6.06 +
(height × 0.283) + (weight × 0.207) - (resistance × 0.024) +
(sex (males = 1, females = 0) × 4.036) giving a correlation
coefficient of r=0.952.

Figure 1 shows the mean difference of FFM plotted
against the DXA-derived FFM, including the limits of
agreement of ±2 SD of 3.3 kg.

Table 3 shows the results of the comparison of the FFM
and FM as measured by BIA and DXA, including a mean
difference in FFM of 0.2±1.8 kg and a mean difference of
-0.4±3.1% FM. The mean differences between BIA and
DXA were small and equal in both sexes.

Discussion

With the availability of portable BIA machines, the cli-
nical use of BIA has markedly increased in recent years
and has facilitated the assessment of nutritional status of
healthy and ill individuals. A progressive change in body
composition is anticipated in patients with chronic respi-
ratory diseases with increasing age, progression of the dis-
ease, severe disability and lack of mobility. The precision
of formulae published in the literature, however, depends
on a number of factors, including age and state of hydra-
tion. The purpose of this study was to determine the best
regression equation for the prediction of FFM determined
by BIA in comparison to DXA-derived FFM in patients
with severe chronic respiratory insufficiency.

Patient population

Patients had a severe chronic ventilatory insufficiency
(mean forced expiratory volume in one second (FEV1) =
36.2±13.0% of predicted) and suffered from obstructive or
restrictive pulmonary diseases, with various consequences
on their nutritional status. Nutritional assessment by BIA
or DXA is desirable because it permits the detection of
low FFM in patients who may not be significantly below
ideal body weight, but who have an excess of FM that
may mask protein malnutrition. Given that a large portion
of the population studied was underweight, this validation
is limited. Indeed, most of the subjects in this study had a

low BMI and could be reasonably well detected as being
undernourished by height, weight, age and sex alone. Sev-
erely obese patients (BMI Š32 kg·m-2) were excluded from
the study to eliminate a possible methodological bias in-
troduced by excessive FM in obese patients [21, 23]. Half
of the subjects included in this study were underweight,
with a BMI of ð18.5 kg·m-2, and a few of the subjects were
overweight (BMI 27–32 kg·m-2). Such a distribution
reflects the usual body weight in a population of respira-
tory insufficiency and adds further value to the study re-
sults.

Fewer females were included in the study, because fewer
females subjects with respiratory insufficiency presented
themselves to the outpatient clinic and it has been shown
that the incidence of COPD has a male predominance of
up to 10:1 [22].

Comparison of two methods of body composition

The rationale was to compare two different methods for
measuring body composition that measure independent
parameters, i.e. electrical variation (BIA) versus photon
absorption (DXA). BIA has been cross-validated with hy-
drodensitometry [9], skinfold measurements [36, 37] and
deuterium dilution in healthy subjects [38, 39]. Disease
and body composition compartments that deviate from
normal may result in changes that invalidate the prediction
equations derived from healthy adults with normal weight
[40]. Therefore, prediction equations for this subgroup of
respiratory patients should be validated.

PICHARD et al. [14] tested 12 different prediction equa-
tions [8, 9, 11, 13, 15–21] from the medical literature in a
group of patients with respiratory insufficiency and found
that correlation coefficients varied from r=0.66 to 0.94
with variations in mean FFM of -1.9– +8.0 kg [14]. Such
variations preclude clinical utilization. The COPD-speci-
fic formula by SCHOLS et al. [13], which included 24 males
and 8 females, correlated ht2/R to deuterium-determined
total body water. Their formula overestimated the FFM by
5.1±3.1 kg in females and by 3.8±3.1 kg in males, with
similar pathologies to the patients in the study by PICHARD et
al. [14]. Their patient sample may have been too small to
control adequately for patient variability. SEGAL et al. [9]
and VAN LOAN and MAYCLIN [17] noted sex differences in FFM
and FM. Sex-based formulae appear to improve the pre-
diction of BIA [41]. The lack of concordance noted
between the results of SCHOLS et al. [13] and those of PICHARD

et al. [14] is also likely to be due to the different validation
criteria (deuterium dilution versus DXA).

Table 3.  –  Comparison of fat-free (FFM) and fat (FM) mass as measured by bioelectrical impedance analysis (BIA) and
dual-energy X-ray absorptiometry (DXA)

Females (n=15) Males (n=60) All (n=75)

BIA DXA BIA DXA BIA DXA

Resistance  Ω
Reactance  Ω
FFM  kg
FM  kg
% FM

577.3±88.0
64.7±16.9
36.0±4.0
17.7±9.7
31.1±10.8

35.8±5.2
17.9±8.9
31.8±10.4

522.8±83.7
63.3±19.9
45.1±3.9
9.7±6.7

16.7±7.4

44.9±4.2
9.9±6.9

17.0±7.7

533.7±86.7
63.6±19.2
43.3±5.4
11.3±7.8
19.5±9.7

43.1±5.7
11.5±7.9
19.9±10.2

Difference FFM(BIA-DXA)  kg
Difference % FM(BIA-DXA)

0.2±2.3
-0.7±3.8

0.2±1.6
-0.3±3.0

0.2±1.8
-0.4±3.1

Values are shown as mean±SD.
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The best-fit prediction equation for this group of res-
piratory insufficiency patients was: FFM = -6.06 + (height
× 0.283) + (weight × 0.207) - (resistance × 0.024) + (sex
(males = 1, females = 0) × 4.036), with r=0.952. The pre-
diction equation developed in this study has an SEE of 1.67
kg and can be considered ideal as rated according to the
system reported by HOUTKOOPER et al. [42]. Patients with
BMI Š32 kg·m-2 were excluded because the degree of var-
iation in FM is greater in more obese individuals and leads
to greater prediction errors [21, 23].

Variables influencing prediction accuracy of bioelectrical
impedance analysis equations

HOUTKOOPER et al. [42] noted ht2/R to be the best single pre-
dictor of body composition. The addition of other inde-
pendent variables such as age and sex was thought to
adjust for the geometric complexity of the human body
and helped to improve the fit of the prediction model. Be-
cause sex has been shown to be a factor that influences
FFM and FM, the males and females were examined sepa-
rately [9]. However, the goal was to combine the males
and females if this was justified by the results of the ana-
lysis. For practical application of the BIA in the clinical
setting, it would be an advantage to have only one equa-
tion, as long as the prediction ability of the equation is not
compromised.

In the present subjects the best prediction equation for
FFM was obtained when height, weight, age, resistance,
reactance and sex (if males and females were combined)
(r=0.95, SEE=1.67 kg) were included. Age and reactance,
however, did not significantly influence the prediction equa-
tion (p=0.44 and 0.32, respectively). Therefore the predic-
tion equation chosen was the one that included height,
weight, resistance and sex as independent variables. Re-
sistance by itself was not a good predictor of body compo-
sition (r=0.52, SEE=4.9 kg), because it is not an indicator of
body size or volume. However, when resistance was com-
bined with height (r=0.88, SEE=2.7 kg), it predicted FFM
better than height and weight (r=0.81, SEE=3.4 kg) and ht2/R
(r=0.82, SEE=3.3 kg) (data not shown). STOLARCZYK et al. [21]
found that prediction equations which included weight as
well as height2 and resistance as independent variables
improved the prediction accuracy of BIA. This was con-
firmed in the present study (r=0.93 and 0.95, SEE= 1.67 and
1.94 kg, respectively). Prediction formulae that included
ht2/R with or without weight and resistance and reactance
without weight decreased the prediction accuracy of BIA
in all three groups (males, females and both sexes com-
bined).

The predictive capacity of BIA using height, weight, re-
sistance and sex for FM was excellent in males and fe-
males, separately or combined, in this study; however, the
use of BIA to predict FM is not recommended. BIA meas-
ures body conductivity based on water and electrolyte
content, appears to be quantitatively related to lean mass
and measures FM neither quantitatively (kg of fat) nor
qualitatively (fat as a percentage of total body weight [9].
Since arms and legs contribute approximately 80% of re-
sistance and reactance, it is possible that the FM could be
underestimated in older subjects with primarily truncal fat
accumulation.

No attempt was made to predict total body water, since
isotope dilution studies were not used in the subjects of
this study. Variations in hydration could affect the pre-
dictive capacity of BIA formulae. In haemodialysis and
intensive care patients, it has been noted that excess intra-
cellular or extracellular fluid causes an overestimation of
the total body water. When the hydration level of the FFM
is >73%, BIA overestimates the FFM and underestimates
the FM. In these patients, BIA no longer permits accurate
estimation of FFM with prediction equations that were
developed for healthy subjects with normal hydration lev-
els. Patients with visible oedema and fluid retention were
excluded to minimize errors as a result of hydration status.
All patients were in a clinically stable state (no decom-
pensation for Š2 months). While it is possible that the sub-
jects in this study differed in hydration state and therefore
in body density from the normal population, an attempt
was made to have excluded patients with excess fluid of
>1 L and error due to abnormal hydration levels was min-
imized.

Dual-energy X-ray absorptiometry

Although DXA is not yet considered to be "the" gold
standard for measuring body composition, it is one of the
best reference methods [43]. DXA estimates the FM with-
out making assumptions related to lean mass, potassium
concentration or density, which are the basis of traditional
methods, such as underwater weight, total body potassium
and total body water techniques [44]. DXA measures the
soft tissue and bone mass independently and then separa-
tes the soft tissue into lean mass and FM. There remains,
however, some discussion about comparability of different
hardware and software, and previous studies have noted
that caution must be exercised when making comparisons
between studies if different hardware and software ver-
sions have been used [45–47]. TOTHILL et al. [46] found that
percentage FM measured by Hologic DXA was not signif-
icantly different from that obtained by underwater weigh-
ing. They also noted that Hologic instruments re-ported
lower FM than Lunar and Norland DXA. SNEAD et al. [47]
suggested that DXA underestimates the percentage FM in
older and obese subjects, owing to an underestimation of
truncal fat [47]. Hologic Enhanced Version 5.54 software
was used in this study. In a number of measurements it
was found that the percentage FM was 2.2± 3.6% greater
with this software version than with a previous version
(whole-body 5.35). Therefore the problem of underesti-
mation of FM appears to have been corrected with newer
versions of the Hologic software.

A limitation of DXA is that it does not measure total
body water separately from the FFM. Therefore excess
body hydration would result in overestimation of the
FFM, as is noted with BIA. Further validation studies in
ill subjects using DXA as a criterion measure should sim-
ultaneously measure water compartments (i.e. deuterium
oxide dilution) to determine abnormalities in hydration
state.

Sixty-eight per cent of patients in this study with respi-
ratory insufficiency walked <1,000 m·day-1, as assessed by
a podometer (unpublished data). Subjects with similar
heights and weights have different quantities of FFM and
FM depending on the amount of physical activity tolerated
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by individual patients. PICHARD et al. [48] found that BIA
formulae that resulted in excellent correlations in normal
healthy controls resulted in poor correlations in elite run-
ners and vice versa. It is, therefore, possible that the vali-
dity of BIA formulas depends on the degree of activity
rather than on pathology. Further research into the valida-
tion of BIA should, therefore, look at ambulatory capacity
in ill subjects and investigate whether physical activity
must be considered as a factor in choosing the prediction
equation for estimating the FFM and FM in subjects, re-
gardless of primary diagnosis.

Study limitations

A limitation of this study was the relatively small sub-
ject pool. In addition, the statistical analysis used popula-
tion-based concepts which are not directly applicable to
individual subjects. Further validation is necessary to con-
firm the robustness of the proposed equation.

Conclusions

The present results suggest that bioelectrical impedance
analysis, a simple and noninvasive procedure, is relevant
in the clinical assessment of body composition of patients
with severe respiratory insufficiency when using a pre-
diction equation based on subjects with similar charac-
teristics. The best-fitting multiple regression equation to
predict fat-free mass included height, weight, resistance
and sex. The present prediction equation should be used
with caution in individuals younger than 45 yrs of age and
with a body mass index Š32 kg·m-2.
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