
Scan-based competing death risk model for re-evaluating lung
cancer computed tomography screening eligibility

Anton Schreuder 1, Colin Jacobs 1, Nikolas Lessmann 1, Mireille J.M. Broeders2,3, Mario Silva4,5,
Ivana Išgum6,7, Pim A. de Jong8,9, Michel M. van den Heuvel10, Nicola Sverzellati5, Mathias Prokop1,
Ugo Pastorino4, Cornelia M. Schaefer-Prokop1,11 and Bram van Ginneken1,12

1Dept of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands. 2Radboud Institute for Health Sciences,
Radboud University Medical Center, Nijmegen, The Netherlands. 3Dutch Expert Centre for Screening, Nijmegen, The Netherlands. 4Unit
of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. 5Section of Radiology, Unit of Surgical Sciences,
Dept of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy. 6Dept of Biomedical Engineering and Physics, Amsterdam
UMC – Location AMC, Amsterdam, The Netherlands. 7Dept of Radiology and Nuclear Medicine, Amsterdam UMC – Location AMC,
Amsterdam, The Netherlands. 8Dept of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands. 9Utrecht University,
Utrecht, The Netherlands. 10Dept of Respiratory Diseases, Radboud University Medical Center, Nijmegen, The Netherlands. 11Dept of
Radiology, Meander Medisch Centrum, Amersfoort, The Netherlands. 12Fraunhofer MEVIS, Bremen, Germany.

Corresponding author: Anton Schreuder (antoniusschreuder@gmail.com)

Shareable abstract (@ERSpublications)
Lung cancer CT screening participants with a relatively low risk of lung cancer incidence and a
high risk of competing death can be identified by applying two respective post-scan risk models,
and in turn may benefit from other personalised trajectories https://bit.ly/2ZDe62K
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Abstract
Background A baseline computed tomography (CT) scan for lung cancer (LC) screening may reveal
information indicating that certain LC screening participants can be screened less, and instead require
dedicated early cardiac and respiratory clinical input. We aimed to develop and validate competing death
(CD) risk models using CT information to identify participants with a low LC risk and a high CD risk.
Methods Participant demographics and quantitative CT measures of LC, cardiovascular disease and
chronic obstructive pulmonary disease were considered for deriving a logistic regression model for
predicting 5-year CD risk using a sample from the National Lung Screening Trial (n=15000). Multicentric
Italian Lung Detection data were used to perform external validation (n=2287).
Results Our final CD model outperformed an external pre-scan model (CD Risk Assessment Tool) in both
the derivation (area under the curve (AUC) 0.744 (95% CI 0.727–0.761) and 0.677 (95% CI 0.658–0.695),
respectively) and validation cohorts (AUC 0.744 (95% CI 0.652–0.835) and 0.725 (95% CI 0.633–0.816),
respectively). By also taking LC incidence risk into consideration, we suggested a risk threshold where a
subgroup (6258/23096 (27%)) was identified with a number needed to screen to detect one LC of 216
(versus 23 in the remainder of the cohort) and ratio of 5.41 CDs per LC case (versus 0.88). The respective
values in the validation cohort subgroup (774/2287 (34%)) were 129 (versus 29) and 1.67 (versus 0.43).
Conclusions Evaluating both LC and CD risks post-scan may improve the efficiency of LC screening and
facilitate the initiation of multidisciplinary trajectories among certain participants.

Introduction
Various randomised controlled trials have demonstrated that lung cancer (LC) screening with low-dose
computed tomography (CT) significantly reduces the number of LC deaths compared with chest
radiography [1] or no screening [2, 3]. However, most deaths which occurred in these trials were among
LC-free participants [1–3]. Even among participants who died of LC, most were reported to have other
underlying causes of death. This indicates that preventing a LC death does not always lead to a gain in
life-years [4, 5].
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Screening eligibility is primarily based on two demographic predictors of LC incidence: age and smoking
history [6, 7]. In addition, people with contraindications for curative LC treatments may be excluded. This
is to ensure a sufficiently high detection rate of treatable LCs while avoiding potential harms caused by
false-positive findings [8]. Various LC risk models exist specifically for determining screening participant
eligibility among ever-smokers: the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial Model
2012 (PLCOM2012) and LC Risk Assessment Tool (LCRAT) are among the most renowned and best
performing [9, 10].

After the baseline screening round, chest CT biomarkers can be used to improve prediction accuracy.
Imaging features are especially beneficial for estimating nodule malignancy risk [11–17]. Moreover,
quantitative CT (QCT) measures of cardiovascular disease (CVD) and chronic obstructive pulmonary
disease (COPD) have also been validated as biomarkers in this setting [17–21]. However, determining
eligibility for future screening rounds is based on the same criteria as before the first scan [6, 7]. Whereas
post-scan LC incidence risk models have been developed to personalise screening intervals beyond 1 year
[11, 12, 16, 17, 22], there are currently no guidelines for re-evaluating screening eligibility using CT
information.

Regardless of their LC incidence risk, participants with a high risk of competing (i.e. non-LC) death (CD)
may require multidisciplinary follow-up to benefit from screening. The ability to identify participants with
a low risk of developing LC and a high risk of encountering a CD (low-LC-high-CD) may enable more
personalised recommendations to continue benefiting those in need while reducing potential harms in
others. Two primary objectives can be summarised for this study: 1) to develop a risk model combining
demographic information and QCT measures for predicting CDs among LC screening participants, and
2) to demonstrate the potential implications of halting further participation of low-LC-high-CD screenees.
A previously developed model which considers the same QCT measures from the baseline scan (i.e. of
LC, CVD and COPD) was used to determine LC risk [17]. A secondary objective was to investigate
whether a CD risk model combining both demographics and QCT measures as predictors is superior to
only using one or the other.

Methods
The “Scans and data”, “Models and variables” and “Dataset formation” subsections have been previously
and more extensively described in SCHREUDER et al. [17]; more details are provided in the supplementary
material.

Scans and data
Scans and metadata from the National Lung Screening Trial (NLST) (ClinicalTrials.gov: NCT00047385)
were used to derive models with permission from the National Cancer Institute (NCI) (Cancer Data Access
System project: NLST-437) [1]. The NLST was the first and largest randomised controlled trial to
demonstrate the effectiveness of CT screening in the reduction of LC death. Inclusion criteria were age 55–
74 years, cigarette smoking history ⩾30 pack-years and a smoking quit time within 15 years (if applicable).
26722 participants were assigned to the CT cohort and 26732 to the radiography cohort. Between 2002
and 2010, both cohorts underwent three annual screening rounds and were subsequently followed-up for
5 years (median follow-up time 6.5 years).

The Multicentric Italian Lung Detection (MILD) randomised controlled trial (ClinicalTrials.gov:
NCT02837809) was used for external validation purposes [2]. MILD was the first trial to demonstrate the
continued effectiveness of LC CT screening beyond the fifth year of screening. Inclusion criteria were age
⩾49 years, ⩾20 pack-years of smoking history and a smoking quit time no longer than 10 years (if
applicable). 1190 participants were assigned to annual CT screening, 1186 to biennial CT screening and
1723 to no screening. Between 2005 and 2018, 93.5% of the participants were followed-up for at least
9 years; the median time until the last screening round was 6 years.

Models and variables
Participant demographics and nodule CT features at baseline were directly provided by the NLST and
MILD datasets. When multiple nodules were present in one scan, only the features from the nodule with
the longest diameter were considered for the models. In the NLST, causes of death were determined by the
end-point verification process (or death certificate if unavailable). Causes of death for MILD were obtained
exclusively from death certificates. Only underlying cause of death was considered for this study, either
LC death or CD.
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QCT measures of CVD and COPD were extracted from the baseline CT scans using validated computer
algorithms. These included calcium volume and mean calcium density in the coronary arteries (combined),
mitral valve, aortic valve and transthoracic aorta [19], emphysema score (percentage of lung voxels
< −950 HU after resampling the CT images to 3 mm slice thickness, normalisation and bullae analysis)
[23], and a reference parameter for measuring bronchial wall thickness called Pi10 (the square root of the
airway wall area for a theoretical 10 mm lumen perimeter airway derived using the linear regression of the
square root of segmented wall areas against the lumen perimeter extracted from the complete segmented
airway tree) [20].

Three models for predicting the 5-year risk of CD were derived: a model containing only self-reported
demographic information (CDsurvey), a model containing only age, sex and CT information (CDCT), and a
final model considering all variables from the previous two models (CDfinal). The previously described
LCifinal model was used to calculate the 5-year LC incidence probability (supplementary equations S1)
[17]; the model had been calibrated to each cohort. Table 1 lists all variables considered.

Dataset formation
Subject exclusion criteria were the lack of a baseline CT scan, a baseline scan with a slice thickness
>2.5 mm, and missing data on LC incidence, death status and times of event. The derivation cohort
consisted of 15000 unique subjects from the NLST CT cohort, which was the maximum allowed data
extraction permitted by the NCI (supplementary figure S1). This included all participants who were
diagnosed with LC or died within the trial period (n=2106) and a random sample of those who did not
encounter either of the events (n=12894); this latter group was resampled without replacement (n=8096),
ultimately forming a derivation cohort of 23096 subjects. This method for weighted analysis was
performed to simulate the original NLST cohort, thereby preventing an overestimation of risk.

All 2287 subjects from the MILD CT cohort formed the validation cohort. Multiple imputation was used
to create plausible values for other missing data (supplementary methods). Missing QCT measures were
considered an exclusion criterion for the derivation cohort, but not the validation cohort, and were given
the respective median values from the MILD dataset (n=24 for QCT measures of CVD and n=132 for
Pi10). In addition, a MILD subgroup of NLST-eligible participants was formed, namely those 55–74 years
of age, ⩾30 pack-years of smoking intensity and no more than 15 years since smoking cessation (if
applicable) [1].

Statistical analysis
All statistical analyses were performed in R version 3.4.3 (www.r-project.org). The three parsimonious risk
prediction models for CD were derived using logistic regression. Variables were included in the model if
the level of significance was <0.20 (backward elimination) [24]. R function “mfp” (mfp package) was used
to select factorial polynomials for continuous variables (level of significance <0.05) [25]. Second-degree
polynomials were considered for the longest nodule diameter; only first-degree polynomials were
considered for the remaining variables.

Area under the receiver operating characteristic curve (AUC) values with 95% confidence intervals were
calculated for our derived models (CDsurvey, CDCT and CDfinal) and the previously described CD Risk
Assessment Tool (CDRAT) [10]. Internal validation was performed for each model with 1000 bootstraps to
assess overfitting in the form of optimism (the difference between the average bootstrap sample AUC and
original sample AUC). The values were compared with 500 bootstraps to test whether the discriminative
performances were significantly different (p<0.05). Calibration was visualised in the form of calibration
plots. The models were externally validated on the full MILD cohort.

To demonstrate practical application, the cohorts were stratified into quintiles (five equally sized groups)
based on 5-year risk of LC incidence (LCifinal) and competing death (CDfinal). The quintiles were used to
form 5×5 contingency tables showing the distribution of LC diagnoses and CDs within 5 years of
follow-up. Based on visual findings, we suggest criteria to select low-LC-high-CD participants. The
potential consequences of applying these selection criteria are summarised by calculating the number
needed to screen (NNS) to detect one LC and the ratio of CDs per LC diagnosis. The same risk probability
thresholds were applied to the full and NLST-eligible MILD cohorts for external validation. This analysis
was repeated using external pre-scan risk models for LC risk (i.e. PLCOM2012 and LCRAT) and CD risk
(i.e. CDRAT) [10, 26], using risk probability thresholds based on model-dependent quintiles. McNemar’s
test was used to determine whether the frequencies between the different low-LC-high-CD groups were
statistically different [27].
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TABLE 1 Distribution of variables by 5-year competing death (CD) event or not

Derivation cohort (NLST) Validation cohort (MILD)

CD (n=800) No CD (n=22296) CD (n=33) No CD (n=2254)

Patient characteristics
Age, years 63.6±5.5 61.3±5.0 62.8±5.8 57.5±5.9
Female 223 (27.9) 9286 (41.6) 8 (24.2) 717 (31.8)
Race or ethnicity
White 714 (89.3) 19963 (89.5) 33 (100) 2250 (99.8)
Black 51 (6.4) 1000 (4.5) 0 0
Asian 6 (0.8) 542 (2.4) 0 2 (0.1)
Hispanic 7 (0.9) 335 (1.5) 0 1 (0.0)
Mixed or other 22 (2.8) 456 (2.0) 0 1 (0.0)

Educational level, 0–5# 3.6±1.7 3.7±1.6 1.7±1.5ƒ 1.4±1.4ƒ

BMI, kg·m−2 27.1 (24.0–30.9) 27.2 (24.4–30.5) 26.1 (22.4–30.5) 25.7 (23.5–28.4)
Current smoker 455 (56.9) 10564 (47.4) 22 (66.7) 1544 (68.5)
Smoking intensity, pack-years 54 (43–76) 48 (39–66) 45 (34–59) 39 (32–51)
Smoking duration, years 43.2±7.4 39.7±7.3 43.1±7.1 38.1±6.7
Smoking quit time, years¶ 7 (3–12) 8 (4–12) 4 (2–6) 5 (3–8)
LC in family+

1 141 (17.6) 4088 (18.3) 3 (9.1) 550 (24.4)
⩾2 30 (3.8) 712 (3.2) NA NA

Work asbestos 58 (7.3) 1017 (4.6) 2 (6.1) 195 (8.7)
COPD diagnosis§ 217 (27.1) 3943 (17.7) 6 (18.2) 266 (11.8)
Asthma diagnosis 102 (12.8) 2158 (9.7) 3 (9.1) 143 (6.3)
Diabetes diagnosis 145 (18.1) 2062 (9.2) 4 (12.1) 132 (5.9)
Heart disease diagnosis 195 (24.4) 2707 (12.1) 4 (12.1) 277 (12.3)
Hypertension diagnosis 363 (45.4) 7665 (34.4) 14 (42.4) 619 (27.5)
Stroke diagnosis 58 (7.3) 565 (2.5) 2 (6.1) 20 (0.9)

Nodule CT features
Nodule attenuation
No nodule 600 (75.0) 16296 (73.1) 18 (54.5) 980 (43.5)
Solid 152 (19.0) 4636 (20.8) 11 (33.3) 1004 (44.5)
Part solid 14 (1.8) 359 (1.6) 0 61 (2.7)
Nonsolid 34 (4.3) 1005 (4.5) 4 (12.1) 209 (9.3)

Longest diameter, mm¶ 7 (5–11) 6 (5–9) 4.6 (3.7–8.5) 4.9 (3.5–7.4)
Perpendicular diameter, mm¶ 5 (4–8) 5 (4–7) 3.5 (3.0–5.1) 3.9 (2.8–5.8)
Nodule in upper lobe¶ 88 (41.7) 2496 (39.1) 7 (21.2) 370 (16.4)
Nodule spiculation¶ 30 (14.2) 789 (12.4) NA NA
Nodule count¶ 1 (1–2) 1 (1–2) 1 (1–2) 1 (1–2)

Quantitative CT measures of CVD
Coronary calcium volume, mm3 188 (36–788) 48 (2–267) 114 (21–466) 23 (0–154)
Coronary mean calcium density, HU 226 (190–264) 207 (141–251) 286 (227–314) 255 (0–311)
Transthoracic aorta calcium volume, mm3 1134 (314–2894) 403 (89–1282) 948 (200–2992) 200 (45–694)
Transthoracic aorta mean calcium density, HU 326 (277–377) 311 (251–378) 418 (375–451) 434 (363–523)
Mitral valve calcium volume, mm3 0 (0–18) 0 (0–0) 0 (0–2) 0 (0–0)
Mitral valve mean calcium density, HU 0 (0–206) 0 (0–0) 0 (0–203) 0 (0–0)
Aortic valve calcium volume, mm3 0 (0–20) 0 (0–0) 0 (0–33) 0 (0–0)
Aortic valve mean calcium density, HU 0 (0–181) 0 (0–0) 0 (0–241) 0 (0–0)

Quantitative CT measures of COPD
Total lung volume, L 5.6 (4.7–6.7) 5.4 (4.5–6.4) 6.2 (5.2–6.9) 5.9 (5.1–6.8)
Mean lung density, HU −834 (−857–−808) −839 (−858–−815) −845 (−872–−834) −846 (−861–−828)
Emphysema score 0.39 (0.08–1.77) 0.24 (0.05–1.12) 0.08 (0.00–1.22) 0.03 (0.00–0.17)
Pi10 3.0 (2.5–3.6) 2.8 (2.3–3.3) 2.5 (2.2–3.0) 2.4 (2.2–2.6)

Data are presented as mean±SD, n (%) or median (interquartile range). NLST: National Lung Screening Trial; MILD: Multicentric Italian Lung
Detection; BMI: body mass index; LC: lung cancer; COPD: chronic obstructive pulmonary disease; CT: computed tomography; NA: not applicable;
CVD: cardiovascular disease; Pi10: measure of bronchial wall thickness. #: a categorical variable applied as a continuous variable, where 0=did not
complete high school, 1=high school graduate, 2=post-high school training but no college, 3=some college, 4=bachelor’s degree and 5=graduate
school or higher; ¶: of those applicable (regarding nodule features, applies to only the nodule with the longest diameter); +: number of first-degree
family members diagnosed with LC (a value of “2” was given when two or more family members were diagnosed); §: includes prior diagnosis
of COPD, emphysema and/or chronic bronchitis; ƒ: on a scale of 0–4. Inter-cohort statistics (p-values and effect sizes) are reported in
SCHREUDER et al. [17].
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Results
Study participants
Within 5 years of follow-up, 756 LC diagnoses (3.3%) and 800 CDs (3.5%) were reported in the
derivation cohort (n=23096); 22 participants encountered both outcomes. The respective numbers in the
validation cohort (n=2287) were 59 (2.6%) and 33 (1.4%), with two participants overlapping. On average,
the NNS in the derivation and validation cohorts was 31 (23096/756) and 39 (2287/59), respectively. The
respective ratios of CDs per LC diagnosed within 5 years of follow-up were 1.06 (800/756) and 0.56
(33/59). Descriptive statistics are summarised in table 1.

CD risk prediction
Three CD risk models were derived; the variables and coefficients of CDfinal, CDsurvey and CDCT are
reported in table 2, and supplementary tables S1 and S2, respectively. The AUC of CDfinal in
the derivation cohort was 0.744 (95% CI 0.727–0.761), significantly greater than that of CDsurvey (0.707,
95% CI 0.689–0.725) and CDCT (0.719, 95% CI 0.701–0.737) (p<0.001) (supplementary figure S2).
Internal validation revealed an optimism no greater than 0.006 (supplementary table S3). The AUC of the
CDRAT model was 0.677 (95% CI 0.658–0.695), significantly inferior to that of CDsurvey (p<0.001).

External validation resulted in AUCs of 0.744 (95% CI 0.652–0.835), 0.721 (95% CI 0.627–0.815), 0.756
(95% CI 0.667–0.844) and 0.725 (95% CI 0.633–0.816) for CDfinal, CDsurvey, CDCT and CDRAT,
respectively (no statistically significant differences) (supplementary figure S3). The calibration curves of
CDfinal in the derivation and validation cohort are shown in supplementary figures S4 and S5, respectively.
Note that the deviation of the calibration curve from the diagonal in the validation cohort is caused by one
outlier case (5-year CD risk probability 19.7%).

Decision curve analyses of the CD models are available in supplementary figures S6 and S7 [28].

TABLE 2 Final competing death risk model (CDfinal)

Variable β coefficient OR (95% CI) p-value

Model intercept −3.73776 0.02 (0.01–0.10) <0.001
Age, per year 0.02399 1.02 (1.01–1.04) 0.006
Sex, female −0.54489 0.58 (0.49–0.69) <0.001
White race, reference NA NA NA
Black race, yes 0.39969 1.49 (1.08–2.01) 0.011
Asian race, yes −1.24615 0.29 (0.11–0.60) 0.003
Hispanic race, yes −0.36998 0.69 (0.29–1.37) 0.341
Mixed or other race, yes 0.34995 1.42 (0.88–2.16) 0.123
BMI, per kg·m−2# 3.35128 28.54 (5.52–143.16) <0.001
Current smoker, yes 0.27488 1.32 (1.11–1.56) 0.002
Smoking duration, per year# −0.04392 0.96 (0.92–0.99) 0.016
Hypertension diagnosis, yes 0.12417 1.13 (0.97–1.32) 0.118
Diabetes diagnosis, yes 0.45764 1.58 (1.29–1.93) <0.001
Heart disease diagnosis, yes 0.20551 1.23 (1.01–1.48) 0.034
Stroke diagnosis, yes 0.55247 1.74 (1.28–2.32) <0.001
Asthma diagnosis, yes 0.33797 1.40 (1.11–1.75) 0.004
COPD diagnosis, yes 0.25723 1.29 (1.08–1.54) 0.004
Emphysema score, per point 0.05331 1.05 (1.04–1.07) <0.001
Bronchial wall thickness (Pi10), per point 0.16154 1.18 (1.06–1.30) 0.001
Mean lung density, per HU# −1.83652 0.16 (0.08–0.33) <0.001
Aorta calcium volume, per mm3# 0.18081 1.20 (1.14–1.26) <0.001
Aorta calcium mean density, per HU# −1.53207 0.22 (0.09–0.50) 0.001
Coronary calcium volume, per mm3# 0.14995 1.16 (1.05–1.28) 0.003
Mitral valve calcium volume, per mm3# 0.06940 1.07 (1.05–1.10) <0.001

BMI: body mass index; COPD: chronic obstructive pulmonary disease; NA: not applicable. To calculate the
5-year risk probability of lung cancer incidence, first find the sum of the products of each (transformed)
variable and their respective β coefficient to obtain the linear predictor, then insert the value into the following
equation: 1/(1+e−(linear predictor)). #: transformed accordingly as: (BMI/10)−2, (smoking duration/100)−2, ((mean
lung density+1000)/100)−1, ln((aorta calcium volume+0.1)/1000), (aorta calcium mean density/1000), (coronary
calcium volume/1000) and ln((mitral valve calcium volume+0.1)/100).
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Stratification by LC risk and CD risk
Figure 1 is a collection of three-dimensional column charts and 2×2 contingency tables divided into cells
based on risk quintiles according to CDfinal (vertical axis) and LCifinal (horizontal axis). The cut-off values
are reported in supplementary table S4. Contingency tables for the validation cohort are given in
supplementary table S5 and supplementary figure S8.

Based on the 5-year risk estimate, we determined visually that participants with a LCifinal risk ⩽0.79%,
LCifinal risk ⩽1.38% and CDfinal risk >2.93%, or LCifinal risk ⩽2.18% and CDfinal risk >4.92%, had a
relatively high ratio (generally >3) of CDs per LC diagnosis. 27% (6258/23096) of the derivation cohort
fit these criteria and were stratified into the low-LC-high-CD group (table 3). Four percent (29/756) of the
LC cases and 20% (157/800) of the CDs occurred in this group; the NNS was 216 (cohort average 31) and
5.41 CDs occurred per LC diagnosis (cohort average 1.06).

The same risk probability thresholds were applied for external validation (table 3). 34% (774/2287) of
MILD participants fell into the low-LC-high-CD group, consisting of 10% (6/59) of the LC cases and 30%
(10/33) of the CDs. The NNS was 129 (full validation cohort average 39) and 1.67 CDs occurred per LC
diagnosis (average 0.56). When only considering NLST-eligible MILD participants, the resulting
proportions, ratios and NNS were closer to those from the derivation cohort.

The performance of three external pre-scan models was also assessed using the same methods, first by
combining LCRAT with CDRAT and then by combining PLCOM2012 with CDRAT (table 3). Note that the
stratification criteria were dependent on the models used and their risk probability distributions in the
derivation cohort. Compared with the post-scan models, significantly more LC cases (p<0.001 for both
LCRAT and PLCOM2012) and fewer CDs (p=0.048 for LCRAT and p=0.012 for PLCOM2012) were
stratified to the low-LC-high-CD groups based on pre-scan model risk. A similar trend was found in the
validation cohort, but the differences between the pre- and post-test models were not statistically
significant. In the NLST-eligible validation cohort, the external models resulted in a lower ratio of CDs per
LC diagnosis in the low-LC-high-CD group than in the high-LC-low-CD group.

The outcomes of using CDCT, CDsurvey or CDRAT for stratifying a low-LC-high-CD group given the same
LC risk thresholds (LCifinal) are available for comparison in supplementary table S6.

Discussion
CD risk prediction
Three 5-year CD risk prediction models were derived, including only self-reported patient demographics
(CDsurvey), only QCT measures (CDCT) or both (CDfinal). CDCT and CDfinal are the first models using the
baseline CT scan for this purpose. CDsurvey and the external model CDRAT were used to quantify the
added value of CT information in addition to pre-scan information (supplementary figures S2 and S3) [10].

The discriminative performance of CDfinal was significantly superior to the other models in the derivation
cohort (supplementary figure S2). Due to the small differences in AUC and smaller sample size of MILD,
no significant differences were determined between the models in the validation cohort (supplementary
figure S3). However, the trend remained that CT-based models (CDCT and CDfinal: AUC 0.756 and 0.744,
respectively) had a higher accuracy than pre-scan models (CDRAT and CDsurvey: AUC 0.725 and 0.721,
respectively). This suggests that a model based exclusively on QCT measures (CDCT) may be a viable
option for automatically calculating risk scores in a high-risk population.

Assessment of model predictors
The most notable observation of the variables included in CDfinal is the lack of nodule CT features. Despite
there being a seemingly high correlation between the risks of LC and CD (figure 1 and supplementary
figure S8), nodule information is not sufficiently distinctive compared with the contribution of other risk
factors of non-LC causes of death. In CDCT, only the presence of a solid opacity as the largest nodule was
included; this had a negative β coefficient, suggesting that participants with a nodule were more likely to
encounter a LC death instead of a CD. In turn, QCT measures of CVD and COPD significantly improved
the accuracy of CDfinal and CDCT. It had been previously shown that these QCT measures consistently
contributed to the prediction of CVD death, COPD death, LC death and LC incidence [17].

Regarding measures of cardiovascular calcifications, we observed that a lower aorta mean calcium density
was associated with a greater CD risk. A lower plaque density may indicate instability in an elderly
population and therefore be more likely to be the cause of death [17, 29, 30]. This population with overall
high CVD risk may represent a niche for specific risk stratification as opposed to the Agatston score used
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in populations with much broader risk ranges [31]. Conversely, a positive association was observed
between mitral valve mean calcium density and CD risk (CDCT), which suggests that the
pathophysiological mechanism of plaques is location dependent.
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No other unexpected relationships between the variables and CD were observed. Note that no tests for
multicollinearity or interactions between variables were performed for this study. Therefore, causative
relations between variables and outcomes should not be deduced based solely on these findings.

Stratification by LC risk and CD risk
The NELSON LC screening trial results suggested that fixed screening intervals of >2 years are
contraindicated [32, 33]. At the same time, the idea that screening intervals can be lengthened among
participants determined to have a post-scan low LC risk is gaining momentum [2, 11, 12, 17, 22].
SCHREUDER et al. [17] proposed screening intervals extending past 2 years among participants with a
sufficiently low LC risk. However, an approach which focuses solely on LC risk may not be optimal
because the potential benefits of early LC detection may be humbled by underlying competing morbidities.
Other pre-scan risk models have applied approaches based on the likelihood to survive LC screening,
namely by predicting LC death risk [10, 34] or life-years gained [4, 5].

Based on this idea that low-LC-high-CD participants are less likely to benefit from LC screening, we
propose to consider multidisciplinary follow-up among a small group of individuals. This may involve
proactive trajectories according to cardiac and respiratory disease management guidelines for participants
who are not yet under the care of a physician. An example of opportunistic risk assessment is given by the
Manchester Lung Screening Pilot, which found that 47% of the participants at high risk of CVD (QRISK2
score ⩾10%) were not taking lipid-lowering medication, which is indicated for primary prevention [35].

Additionally, a longer screening interval of up to 5 years can be considered based on post-scan risk
prediction. In the derivation cohort, around a fourth (27% (6258/23096)) of the screenees would have
received a counter-indication to continue participating. This would be at the expense of delaying the LC

TABLE 3 Clinical outcomes of risk stratification

Risk models used Risk group# Participants 5-year LC
diagnoses

5-year
CDs

NNS to
detect 1 LC

CDs per LC
diagnosis

Derivation cohort (NLST)
LCifinal and CDfinal High-LC-low-CD 16838 (73) 727 (96) 643 (80) 23 0.88

Low-LC-high-CD 6258 (27) 29 (4) 157 (20) 216 5.41
LCRAT and CDRAT High-LC-low-CD 17335 (75) 677 (90) 668 (84) 26 0.99

Low-LC-high-CD 5761 (25) 79 (10) 132 (16) 73 1.67
PLCOM2012 and CDRAT High-LC-low-CD 17277 (75) 686 (91) 675 (84) 25 0.99

Low-LC-high-CD 5819 (25) 70 (11) 125 (16) 83 1.79
Full derivation cohort 23096 (100) 756 (100) 800 (100) 31 1.06

Validation cohort (MILD)
LCifinal and CDfinal High-LC-low-CD 1513 (66) 53 (90) 23 (70) 29 0.43

Low-LC-high-CD 774 (34) 6 (10) 10 (30) 129 1.67
LCRAT and CDRAT High-LC-low-CD 1511 (66) 48 (81) 22 (67) 31 0.46

Low-LC-high-CD 776 (34) 11 (19) 11 (33) 71 1.00
PLCOM2012 and CDRAT High-LC-low-CD 1568 (69) 51 (86) 28 (85) 31 0.55

Low-LC-high-CD 719 (31) 8 (14) 5 (15) 90 0.63
Full validation cohort 2287 (100) 59 (100) 33 (100) 39 0.56

NLST-eligible validation cohort (MILD)
LCifinal and CDfinal High-LC-low-CD 980 (80) 44 (94) 18 (72) 22 0.41

Low-LC-high-CD 245 (20) 3 (6) 7 (28) 82 2.33
LCRAT and CDRAT High-LC-low-CD 995 (81) 39 (83) 21 (84) 26 0.54

Low-LC-high-CD 230 (19) 8 (17) 4 (16) 29 0.50
PLCOM2012 and CDRAT High-LC-low-CD 1088 (89) 43 (91) 25 (100) 25 0.58

Low-LC-high-CD 137 (11) 4 (9) 0 (0) 34 0.00
NLST-eligible validation

cohort
1225 (100) 47 (100) 25 (100) 26 0.53

Data are presented as n (%) or n. LC: lung cancer; CD: competing death; NNS: number needed to screen; NLST: National Lung Screening Trial;
LCifinal: final LC incidence model; CDfinal: final CD model; LCRAT: LC Risk Assessment Tool; CDRAT: CD Risk Assessment Tool; PLCOM2012: Prostate,
Lung, Colorectal and Ovarian Cancer Screening Trial Model 2012; MILD: Multicentric Italian Lung Detection. #: high-LC-low-CD: group with LC risk
>60th percentile, LC risk >40th percentile and CD risk ⩽80th percentile, or LC risk >20th percentile and CD risk ⩽60th percentile; low-LC-high-CD:
group with LC risk ⩽20th percentile, LC risk ⩽40th percentile and CD risk >60th percentile, or LC risk ⩽60th percentile and CD risk >80th percentile.
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diagnosis in 4% (29/756) of the participants who would develop LC. We considered this a pessimistic
estimate because the analysis did not consider participants undergoing additional follow-up CTs in
response to suspicious findings in the baseline scan (4/29 participants were diagnosed within 1 year of the
baseline scan); this group also includes participants which were both diagnosed with LC and encountered a
CD (1/29). In exchange, 6229 people may have hypothetically avoided four annual screening rounds which
would not have resulted in a LC diagnosis. 2.5% (157/6258) of low-LC-high-CD participants encountered
CDs within 5 years, equivalent to 20% of all CDs (157/800). We caution that advocating no further
screening may negate some of the positive psychological benefits, e.g. interest in lifestyle advice [36].

Using the same risk probability thresholds, a similar trend occurred in the validation cohort. A greater
proportion of participants fell within the low-LC-high-CD group (34% (774/2287)) because the median
5-year calibrated LC incidence risk was lower than in the derivation cohort (1.28% and 1.73%,
respectively); this was despite the median CD risk also being lower (1.40% and 2.36%, respectively). This
would have resulted in a greater proportion of both LC diagnoses (10% (6/59)) and CDs (30% (10/33))
within the low-LC-high-CD group.

Compared with pre-scan models, using LCifinal and CDfinal resulted in higher values for both the NNS and
CDs per LC diagnosis in the low-LC-high-CD group. The differences were not statistically significant in
the validation cohort despite the similar trend. The risk thresholds used for stratification in our study were
merely suggestive; we encourage adjusting the thresholds to satisfy each screening programme’s aims and
values. At certain thresholds, a pre-scan CD model may even perform equivalently to a post-scan CD
model.

Limitations
The primary limitation is that the external validation cohort had a low number of events of interest (less
than 100). This was reflected in the wide confidence intervals. It was therefore also not considered useful
to calibrate or retrain the model to MILD data. Once more LC screening CT data become available, more
extensive model validation is recommended before considering implementation in practice.

Not having used Cox proportional hazards regression to model CD also introduces possible biases related
to censoring (i.e. loss to follow-up) and competing risk from LC-specific mortality. However, logistic
regression does not need to assume proportional hazards and is easier to interpret and implement as a risk
model, which was sufficient for the purpose of this study [37, 38]. Although the coefficients of logistic
regression may be a bit inflated compared with those from Cox regression, it is the predictive performance
rather than the association between the predictors and outcome which is relevant. The analyses also
ignored the fact that most participants who died of LC were reported to have multiple secondary causes of
death. The risk score was arbitrarily restricted to a 5-year post-scan period to limit the loss to follow-up
while being considerably longer than the standard 1-year screening interval.

Another limitation is that nodule diameter was measured manually in the NLST (no volumetric data were
available) and only the data from the nodule with the longest diameter were considered when multiple
nodules were detected. Volume (or mean diameter) obtained by semiautomatic software would offer better
discrimination [39, 40]. Whereas nodule size is the most predictive variable for malignancy (given a single
scan), this risk can be further modified based on other features, mainly nodule type, location and presence
of spiculation [11, 13, 17]. Note that nodule spiculation was not recorded by MILD. Also, QCT measures
automatically obtained from scans with slice thickness >1 mm (namely from the NLST) may not be
reliable (i.e. emphysema score, Pi10 and calcium scores). Another possible issue with the measurement of
CT calcium volume and density is that the scans were not ECG-gated, but prior studies indicate a strong
predictive value [41] and high concordance with gated calcium scores [42].

Future directions
Additional diagnostic interventions (usually in the form of follow-up CTs) are recommended for nodules
with an indeterminate malignancy risk [43, 44]. In current screening practice, this additional work-up does
not affect the timing of the subsequent annual screening rounds. We hypothesise that it would be of added
value to know the outcome of additional diagnostic tests before deciding on post-scan screening eligibility
(or screening interval length). Besides nodule growth, the availability of follow-up scans would enable the
estimation of CVD and COPD progression rates. An alternative would be to manage nodules
independently of other decisions, e.g. a low-LC-high-CD participant with an indeterminate nodule would
still be followed-up according to nodule guideline recommendations while being ineligible for further
screening. Regardless, future studies should simulate decision trees at multiple time-points while taking
time-varying risk factors into consideration.
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Conclusions
We derived 5-year CD risk models using either self-reported patient characteristics (CDsurvey), chest CT
image biomarkers (CDCT) or both (CDfinal). QCT measures of CVD and COPD were included in the
CT-based models; pulmonary nodule morphological features were not found to be significant predictors.
CT information provides an added value to the AUC of at least 2 percentage points. In a high-risk
screening population, there may be little or no added value of patient demographics for predicting CD
when QCT measures have been extracted: a CT scan alone may elucidate personalised susceptibility to
smoke damage, ageing and other risk factors for CD.

By calculating both post-scan LC incidence risk (LCifinal) and CD risk (CDfinal), a group of participants
with a relatively low risk of the former and high risk of the latter can be identified (low-LC-high-CD). This
means that the baseline scan can be used to help identify participants who may benefit from
multidisciplinary action and can safely be recommended longer screening intervals. Using our suggested
criteria for contraindicating LC screening participation within the next 5 years may reduce the number of
screenees by approximately a fourth, of whom more than 200 would need to continue participating to
detect one LC. Valuable healthcare resources could simultaneously be redirected towards the prevention of
CDs among low-LC-high-CD participants.
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