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Abstract 
Introduction  
Asthma is a heterogeneous disease with poorly defined phenotypes. Severe 
asthmatics often receive multiple treatments including oral corticosteroids (OCS). 
Treatment may modify the observed metabotype, rendering it challenging to 
investigate underlying disease mechanisms. Here, we aimed to identify dysregulated 
metabolic processes in relation to asthma severity and medication. 
 
Methods 
Baseline urine was collected prospectively from healthy participants (n=100), mild-to-
moderate asthmatics (n=87) and severe asthmatics (n=418) in the cross-sectional U-
BIOPRED cohort; 12-18-month longitudinal samples were collected from severe 
asthmatics (n=305). Metabolomics data were acquired using high-resolution mass 
spectrometry and analysed using univariate and multivariate methods. 
 
Results 
Ninety metabolites were identified, with 40 significantly altered (p<0.05, FDR<0.05) in 
severe asthma and 23 by OCS use. Multivariate modelling showed that observed 
metabotypes in healthy participants and mild-to-moderate asthmatics differed 
significantly from severe asthmatics (p=2.6×10-20), OCS-treated asthmatics differed 
significantly from non-treated (p=9.5×10-4), and longitudinal metabotypes 
demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-
independent decrease in severe asthma. Reduced carnitine levels were associated 
with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty 
acid metabolism and reduced expression of the carnitine transporter SLC22A5 in 
sputum and bronchial brushings. 
 
Conclusions 
This is the first large-scale study to delineate disease- and OCS-associated metabolic 
differences in asthma. The widespread associations with different therapies upon the 
observed metabotypes demonstrate the necessity to evaluate potential modulating 
effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is 
a potentially actionable therapeutic target that is independent of OCS treatment, 
highlighting the role of mitochondrial dysfunction in severe asthma. 
 
Take Home Message 
The severe asthma urinary metabotype is distinct from healthy individuals and mild-
to-moderate asthmatics. Observed metabotypes are modified in oral corticosteroid 
(OCS)-treated individuals; however, carnitine metabolism is downregulated in severe 
asthmatics independent of OCS. Findings suggest that carnitine metabolism is a 
potential therapeutic target in asthma management.  
 
Tweet 
Metabolomics identified a urinary metabotype of asthma driven by lower carnitine 
levels in an oral corticosteroid-independent manner. The carnitine transporter 
SLC22A5 was also decreased, suggesting carnitine metabolism as a potential 
therapeutic target. 
 
Key words 
asthma; metabolomics; metabolism; carnitine; mitochondria; corticosteroids  



 

Introduction 

Asthma is a heterogeneous inflammatory disease consisting of multiple phenotypes 

[1, 2]. Research has focused on identifying molecular descriptors of sub-groups in 

relation to clinical outcomes towards the aim of stratifying individuals for appropriate 

treatment strategies [3]. While it is ideal to interrogate the disease in the organ of 

manifestation, it is not feasible to perform routine sampling in the lung, especially in 

individuals with severe disease or at the population level. Accordingly, there is a need 

to identify molecular signatures in accessible biofluids (e.g., blood, urine, exhaled 

breath condensate) that indicate pathophysiologically-driven biochemical 

perturbations. Urine has been successfully used to investigate local physiology in the 

lung [4] and is well-suited to clinical applications due to accessibility and ease of 

collection.  

 

Mass spectrometry-based metabolomics in blood and urine has identified molecular 

signatures associated with both adult [5] and paediatric [6] asthma. In particular, 

metabolomics has detected metabolic signatures associated with aspirin-exacerbated 

respiratory disease [7], disease severity [8-10], bronchodilator response [11], 

pulmonary function [12], exacerbation [13], and corticosteroid resistance [14]. While 

these investigations have provided insight into metabolic dysregulation in association 

with disease, they have generally focused on smaller cohorts with little information on 

the longitudinal stability of the observed metabotypes [5, 14]. Furthermore, the 

potential modulating effects of asthma treatment on the observed metabotypes have 

not been evaluated. Oral corticosteroid (OCS) treatment is of particular interest as 

long-term OCS use is associated with multiple side effects including osteoporosis, 

adrenal suppression, metabolic disorders, psychiatric disorders, and infection [15].  



 

 

We hypothesise that systemic therapies such as oral corticosteroids (OCS) as well as 

disease severity are reflected in the urinary metabolome. Using the U-BIOPRED 

(Unbiased Biomarkers for the Prediction of Respiratory Disease outcomes) study [16], 

we demonstrate that urinary metabotypes of severe asthma are dysregulated relative 

to healthy individuals, stable for 12-18 months, and susceptible to associations with 

asthma medication on a metabolite-specific basis. 

 

Methods 

Study subjects and design 

Urine samples were prospectively collected for the cross-sectional U-BIOPRED study 

[16]; all available samples were included in the present study (Table 1). Participants 

were classified according to international guidelines into the following groups: healthy 

participants (n=100), mild-to-moderate asthmatics (n=87), non-smoking severe 

asthmatics (n=310), and smoking/ex-smoking severe asthmatics (n=108) [16]. Non-

smokers were defined as participants being never smokers or non-smokers for at least 

12 months prior to recruitment with a smoking history of less than 5 pack-years. 

Participants provided a urine sample within 28 days of initial screening (baseline visit); 

an additional urine sample was provided by 305 participants with severe asthma at a 

12-18-month longitudinal visit. An overview of participant characteristics is shown in 

Table 1, with a detailed description provided elsewhere [16]. Ethics approval was 

obtained from each clinical institution and all participants provided written informed 

consent (ClinicalTrials.gov identifier: NCT01976767). 

 

  



 

Treatment use and stratification 

Treatment use and stratification protocols are presented in detail in the online 

supplement and have been reported previously [4]. Briefly, all mild-to-moderate 

asthmatics were on ≤500 µg inhaled fluticasone equivalents/day (ICS), while severe 

asthmatics received ≥1000 µg fluticasone equivalents/day [16]. Reliever medication, 

such as short/long acting 2 agonists (SABA/LABA) or combination therapy, was used 

by all asthmatic subjects. Severe asthma non-smokers were stratified based upon 

treatment where use could be confirmed (OCS, omalizumab), and/or existing literature 

provides evidence for a confounding effect on the metabolome (OCS, theophylline) [8, 

9, 17-19], and/or a sufficient proportion of the individuals received treatment in order 

to render stratification meaningful (anticholinergics, leukotriene modifiers). 

 

Mass spectrometry analysis 

Metabolomics data were acquired by liquid chromatography–high resolution mass 

spectrometry (LC-HRMS) using previously published methods [20] that enabled 

detection of hydrophilic metabolites. Urine dilution was normalised to specific gravity 

prior to data acquisition [21]. Detailed methods are provided in the supplementary 

material. Tryptophan and 6 of its metabolites were quantified by reversed-phase liquid 

chromatography coupled to tandem mass spectrometry (LC-MS/MS) as described in 

the supplementary material.  

 

Transcriptomics and Genotyping 

Bronchial brushings [22], sputum [23], and peripheral blood mononuclear cells 

(PBMCs) [24] were collected and transcriptomics analyses performed as previously 



 

described. Bronchial bushings and sputum samples were genotyped on the Affymetrix 

Axiom® UK Biobank array [25].  

 

Statistical analysis  

Metabolomics data were not normally distributed (Lilliefors test); non-parametric 

univariate statistical tests were subsequently used. The Storey positive false discovery 

rate (FDR) [26] was calculated for all univariate analyses. Median fold-changes and 

confidence intervals were estimated using bootstrap resampling [8].  

 

To identify similarities between metabolites, hierarchical cluster analysis (HCA) was 

performed. The mean of the log-transformed and z-scaled data of the resulting clusters 

were plotted against clinical groups to qualitatively visualise metabolite patterns 

across clinical groups. Multivariate Principal Components–Canonical Variate Analysis 

(PC-CVA) was performed [8], to assess the multifactorial and correlated discrimination 

between clinical groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway mapping was performed using gene set variation analysis (GSVA) 

enrichment score (ES) determination of the genes identified as being part of the fatty 

acid metabolism pathway. The Type-2 patient stratification was based on the ES of 

the IL-13-induced gene expression patterns in human bronchial epithelial cells using 

GSVA [23, 27], and transcriptome-associated cluster (TAC) membership was 

assigned based upon previous work [23]. Participant clinical and biochemical data 

were collected from the U-BIOPRED TranSMART platform (eTRIKS). All statistical 

analyses were performed using MATLAB (Mathworks, Natick, MA, USA). 

 

  



 

Results 

The identities of 90 urinary metabolites were confirmed against an in-house metabolite 

library. Using an FDR of 0.05, 40 metabolites were significantly (p<0.05) altered 

between the four study groups based on univariate analysis. Fold changes compared 

to healthy participants and all statistics (including post hoc pairwise group 

comparisons) are presented in Table E1.  

 

Clustering of correlated metabolites 

Hierarchical cluster analysis identified 7 metabolite clusters, revealing different 

metabolite abundance patterns across the four study groups (Figure 1). Cluster A was 

comprised of 20 metabolites, 6 of which were significant by univariate analysis (k=20; 

k=6, p<0.05). Both Clusters A and B (k=15; k=10, p<0.05) consisted primarily of amino 

acid metabolites and showed lower abundances in the severe asthmatics compared 

to the healthy participants and mild-to-moderate asthmatics. Cluster C (k=3, p<0.05) 

included carnitines, which decreased linearly with disease severity in the non-smoking 

groups. Severe asthma smokers showed elevated carnitine levels compared to non-

smokers. Cluster D (k=20; k=9, p<0.05) included diverse metabolite classes: amino 

acid metabolites, organic acids, biogenic amines, and purine nucleosides that 

increased with disease severity and also with smoking status in severe asthma. 

Cluster E (k=6; k=2, p<0.05) consisted of purine metabolites, methylthioadenosine, 

and phosphoethanolamine; all groups exhibited similar abundances. In Clusters F 

(k=7; k=5, p<0.05) and G (k=19; k=5, p<0.05), healthy participants and mild-to-

moderate asthmatics had similar levels, with severe asthmatics showing higher 

abundances. These clusters represented dietary and drug metabolites, with Cluster F 



 

consisting of caffeine metabolites and Cluster G containing sugars, gut microbial 

metabolites, and other dietary products.  

 

All clusters, except for E, qualitatively demonstrated temporal metabolic stability of 

non-smoking severe asthma, with metabolite levels at the 12-to-18-month longitudinal 

timepoint unchanged relative to the baseline values. Univariate analysis showed that 

4 Cluster E metabolites (7-methylguanine, phosphoethanolamine, uric acid, xanthine) 

had a significantly different distribution (p<0.05) between baseline and longitudinal 

timepoints (Table E2). 

 

Multivariate analysis 

PC-CVA supported the hierarchical clustering and univariate findings (Figure E1A) 

and identified correlated metabolic drivers of severe asthma not revealed by these 

analyses. The first canonical variate (CV1) showed that the severe asthma groups 

were highly significantly different from the healthy participants and mild-to-moderate 

asthma groups (p=2.6x10-20). A total of 46 metabolites significantly (p<0.05) 

contributed to this mean group difference (Figure E1C), 27 of which were also 

univariately significant (p<0.05, Table E1). Metabolites that most strongly drove this 

separation included short-chain acylcarnitines, histidine, taurine, uracil, 2-

deoxyinosine, and kynurenic acid (decreased in severe asthma), and sugars, proline, 

serotonin, N-methyl-D-aspartate (NMDA), glutamate, N-acetylputrescine, and 5-

hydroxyindole acetic acid (increased in severe asthma) (Figure E1C). When projected 

through the model, the mean scores (with 95% confidence intervals) of the longitudinal 

groups overlapped with the respective baseline groups (Figure E1B), further 

demonstrating temporal metabolic stability at the 12-to-18-month longitudinal visit.  



 

 

Treatment effects upon the urinary metabolome 

To delineate between metabolic dysregulation associated with disease and treatment 

(OCS, theophylline and omalizumab), severe asthmatics non-smokers were stratified 

based upon treatment (Table 1). Of the 90 metabolites reported, 23 (25%; Table 2, 

Table E3) were significantly different (p<0.05, FDR<0.05) between OCS-treated and 

non-treated severe asthmatic non-smokers. Of the 27 metabolites dysregulated in 

association with severe asthma by both univariate and multivariate analysis, 9 were 

altered in OCS-treated individuals (33%). Metabolite abundances in Clusters A (k=3), 

B (k=3), D (k=6), E (k=2), and G (k=9) were different between OCS-treated and non-

treated individuals, while metabolites in Clusters C and F were not significantly 

affected.  

 

Multivariate analysis using PC-CVA (Figure 2) corroborated the univariate findings. 

CV1 described a significant mean difference between healthy and severe asthma 

participants (p=7.8x10-12). CV2 described a significant mean difference between OCS-

treated and OCS-not treated severe asthmatic non-smokers (p=9.5x10-4). Metabolites 

from Clusters A, B, and C were less abundant in severe asthmatics (Figures 2C, 3). 

Four of the six Cluster A and B metabolites were further reduced in OCS users. The 

carnitines (Cluster C) had the largest effect on the PC-CVA model (Figures 2C, 3) 

and were not altered in the OCS-treated group. While metabolites in Cluster D were 

increased in severe asthmatics (Figure 2C), further inspection revealed that the 

increases for all metabolites except for glutamate were associated with OCS 

treatment, independent of asthma diagnosis (Table 2). Conversely, the Cluster D 

metabolite glutamate and all Cluster E metabolites were elevated in severe asthmatics 



 

(Figure 2C) and decreased in the OCS-treated individuals (Table 2). The combined 

multivariate response showed that Cluster G metabolites were uniquely elevated in 

OCS-treated individuals (Figure 2C); univariate analysis showed varied associations 

with disease and OCS use (Table 2). Projection of longitudinal metabolite profiles into 

the multivariate model (Figure 2B) showed temporal stability for the OCS-treated 

group, but less stability for the non-treated group. Two Cluster E metabolites 

(phosphoethanolamine, p=0.0043; uric acid, p=0.016) were significantly different 

between the two time points. 

 

The abundances of 4 metabolites were significantly different (p<0.05, FDR<0.05) 

between theophylline-treated and non-treated severe asthmatic non-smokers (Table 

E4); these included metabolites from Clusters A (k=1), B (k=1), and F (k=2). PC-CVA 

multivariate analysis showed that while there is a mean difference between 

theophylline-treated and non-treated individuals, it is less pronounced than OCS 

effects (Figures E3, E4). Omalizumab treatment was associated with few differences 

in urinary metabotypes, with only 2 metabolites (3-methylxanthine, ornithine) being 

significantly different (p<0.05, FDR<0.05) between omalizumab-treated and IgE-

matched non-omalizumab treated severe asthmatic non-smokers (Table E5). 

Anticholinergics (Table E6) and leukotriene modifiers (Table E7) were not associated 

with any significant differences (p<0.05, FDR<0.05) between users and non-users. 

Table E8 provides fold change analysis for all metabolites significantly affected by at 

least one treatment or smoking.  

 

  



 

Carnitine metabolism 

The strongest observed metabolic shift in association with asthma severity was in the 

carnitines (Cluster C). Given that this alteration was independent of OCS treatment, it 

was explored in more detail. While urinary carnitine levels were lower in females 

relative to males, this effect was independent of asthma diagnosis (Figure E5). 

Confounder correction, which included sex, age, and BMI as predictor variables 

(Table E9), showed that the significantly reduced carnitine abundances observed in 

the severe asthmatic non-smoking group were independent of these potential 

confounders. In addition, the carnitine species were also evaluated for recruitment site 

bias and found to be independent of collection centre (p>0.8, Figure E6). The 3 

carnitine species were then z-scaled and concatenated (Figure 4A), which further 

demonstrated a strong decrease in association with asthma severity (p=4.0x10-9).  

 

We then examined carnitine metabolism using KEGG pathway enrichment scores 

(ES) for fatty acid -oxidation, which decreased with asthma severity in sputum 

(p=8.02x10-6, Figure 4B), but did not change in bronchial brushings (p=0.82, data not 

shown). The ES for fatty acid metabolism also decreased with asthma severity in 

sputum (p=6.29x10-6, Figure 4C) and bronchial brushings (p=0.08, data not shown). 

In addition, expression of the carnitine transporter SLC22A5 gene was evaluated due 

to its known association with genetic risk of asthma [25, 28]. SLC22A5 expression 

decreased with asthma severity in sputum (p=5.96x10-5, Figure 4D) and bronchial 

brushings (p=0.058, Figure 4E), and correlated with lung function (FEV1% predicted 

r=0.416, p=2.2x10-5; Figure 5). SCL22A5 levels were lower in bronchial brushings of 

Type-2 high individuals (p=9.7x10-4; Figure E7D), as was fatty acid metabolism ES 

(p=0.038; Figure E7B). Similar findings were observed in sputum (Figure E7C). 



 

Stratification based upon previously published sputum transcriptome-associated 

clusters (TACs [23]) found that fatty acid metabolism ES (p=2.1x10-14) and SCL22A5 

levels (p=1.2x10-10) in sputum were higher in paucigranulocytic individuals with milder 

disease (TAC3) (Figure E8). One SLC22A5 eQTL (rs2522051, T/C) was found in 

sputum (effect allele C: beta=0.234, SD=0.148, p=0.119; Figure 5C) and bronchial 

brushings (effect allele C: beta=0.138, SD=0.057, p=0.028; Figure 5D). With respect 

to allele T, the direction of rs2522051 increases the risk of asthma while decreasing 

the expression of SLC22A5, indicating that activating SLC22A5 may reduce the risk 

of asthma. However, these data should be interpreted with caution due to the low 

sample number.  

 

Discussion 

We identified distinct urinary metabotypes of individuals with severe asthma that 

demonstrated temporal stability over at least 12-18 months; however, the 

metabotypes were sensitive to common treatment modalities. Cluster C, the carnitine 

species, displayed the largest alteration in association with severe asthma and was 

the only metabolite cluster unaffected by treatment. Findings in both sputum and 

bronchial brushings supported the observed systemic dysregulation in carnitine 

metabolism. Reduced fatty acid metabolism, -oxidation (in sputum), and levels of the 

carnitine transporter SLC22A5 in severe asthmatics further implicate carnitine and 

central energy metabolism dysregulation in asthma. Single nucleotide polymorphisms 

(SNPs) in SLC22A5 have been previously reported to affect asthma risk [25, 28] and 

we identified rs2522051 to be an SLC22A5 eQTL that increases asthma risk while 

decreasing SLC22A5 expression, in agreement with earlier work [29]. While the limited 

power warrant caution in the conclusions drawn, these findings suggest that there is 



 

a genetic component to the observed carnitine dysregulation in severe asthma and 

support a link between genetic determinants and systemic carnitine levels.  

 

Carnitine is a small water-soluble molecule that possesses important physiological 

roles including transport of fatty acids into the mitochondrial matrix for -oxidation, 

while short-chain acylcarnitines (primarily acetylcarnitine) transport organic acids out 

of the mitochondria and peroxisomes [30, 31]. Beyond its role in -oxidation, carnitine 

also acts as a free radical scavenger [32] and can reduce oxidative stress-induced 

apoptosis [33]. Carnitine deficiency has been reported to cause pathological 

symptoms [30]. For example, reduced carnitine levels can result in a concomitant 

decline in mitochondrial free CoA and increased acyl-CoA, which has been linked with 

progressive emphysema [33, 34]. Studies have also shown systemic carnitine 

reduction during and after paediatric asthma exacerbation [35] and plasma levels were 

reported to be reduced in a guinea pig model of allergic asthma [36]. Sex-specific 

differences in circulating carnitine levels have been previously established, with lower 

constitutive levels in women [37]. While we also observed this pattern, the magnitude 

of the decrease associated with severe asthma was similar in both sexes (Figure 

E5C). Lower carnitine levels in women have been linked to sex hormones [38], with 

post-menopausal hormone replacement therapy use shown to further decrease 

circulating carnitine levels [39], suggesting that carnitine metabolism may play a role 

in the known link between female sex hormones and lung disease [40, 41].  

 

These observations collectively suggest that carnitine metabolism may represent an 

actionable therapeutic target. For example, experimental allergic asthma models show 

mitochondrial functional changes that are reversed by an anti-IL-4 monoclonal 



 

antibody [42]. Conversely, inhibiting carnitine palmitoyl transferase 1 (CPT1), the rate-

limiting enzyme for -oxidation in the mitochondria, with etomoxir reduced fatty acid 

metabolism and enhanced IL-4 expression in a mouse model of multiple sclerosis [43]. 

Carnitine supplementation has shown beneficial effects in several diseases [30], with 

decreased C-reactive protein (CRP), IL-6, and TNF-, and increased superoxide 

dismutase (SOD) reported in randomised control trials [44]. Carnitine supplementation 

attenuated the development of porcine pancreatic elastase-induced emphysema [33]. 

This study highlights the importance of carnitine and central energy biochemistry in 

asthma, especially given that these processes are non-responsive to OCS treatment. 

Central energy metabolism is known to drive immune cell activation, with glycolysis 

and the pentose phosphate pathway promoting pro-inflammatory responses and -

oxidation, and oxidative phosphorylation promoting anti-inflammatory responses [45]. 

The deterministic cause of the shifted metabolic response remains unclear, 

particularly as to whether the observed altered mitochondrial function is a 

consequence of the chronic tissue hypoxia in asthma or dysfunction at the level of the 

mitochondria. Because there is no definitive mechanistic insight into the aetiological 

role that carnitine plays in asthma, future studies are warranted to elucidate this as 

well as the potential therapeutic benefit of carnitine supplementation in asthma. 

 

Because OCS treatment may modulate observed metabolite concentrations, we 

stratified severe asthmatics by historical prescription of OCS and objective 

quantification of urinary prednisone (Table 2, Figures 2-3). Over 25% of the observed 

metabolites were significantly different in the OCS-treated group (Table 2, Figure 2), 

demonstrating that OCS treatment is a significant confounder in metabolomics-based 

investigations. We directly investigated the metabolic differences of OCS treatment 



 

alone or in association with asthma (Figure 6) and identified metabolites that were 

dysregulated with asthma and appeared to respond to OCS treatment. Cluster E 

metabolites (purines including uric acid, methylthioadenosine, phosphoethanolamine), 

as well as the Cluster D metabolite glutamate, increased with asthma and decreased 

to levels of healthy participants in association with OCS treatment (Figure 2). 

Glutamate is a strong NMDA receptor agonist that can promote excitotoxicity, cough 

hypersensitivity [46], and pulmonary hypertension [47]. Polyamines promote cell 

differentiation and proliferation as well as airway smooth muscle contraction in asthma 

[48]. Methylthioadenosine is a biproduct of polyamine synthesis; we recently reported 

its increase in the serum of severe asthmatics [8]. Methylthioadenosine is 

subsequently catabolised via purine metabolism to uric acid (independent of OCS), 

which drives Type-2-mediated inflammation in asthma [49]. These shifts agree with in 

vitro research showing that dexamethasone treatment reduces both polyamine and 

purine synthesis [50] and may provide insights into OCS mechanisms of action in 

treating asthma. While it remains unclear whether these metabolites responded to 

OCS treatment, they should be evaluated as candidate treatment efficacy biomarkers 

in future steroid interventional trials. 

 

Several metabolites showed OCS-associated metabolic differences independent of 

asthma diagnosis (Table 2, Figure 2). N-acetylputrescine, NMDA, S-

adenosylhomocysteine (Cluster D), and allantoin (Cluster G) only increased (p<0.05) 

in the OCS-treated group (Figure 6). Allantoin is a non-enzymatic oxidation product 

of the purine catabolic product uric acid and marker of oxidative stress [51], while N-

acetylputrescine is an intermediary breakdown product of polyamines. S-

adenosylhomocysteine is the product of methyltransferase reactions and metabolically 



 

linked to the aminopropyl reactions required for polyamine synthesis (Figure 6). 

NMDA, which is another methyltransferase product, is an alternate agonist to 

glutamate for NMDA receptors. It has been shown to elicit contractile responses in 

human airway smooth muscle cells in vitro [52] and, surprisingly, bronchorelaxation 

responses in the murine house dust mite model of asthma [53]. While the 

consequences of these observed differences are unclear, they warrant further 

investigation to improve our understanding of the metabolic effects of OCS treatment, 

as well as provide insight into possible links to treatment side effects. 

 

A number of recent asthma metabolomics studies have reported altered caffeine 

metabolism [9, 17-19]. As theophylline is a caffeine metabolite, the potential 

confounding effects of theophylline treatment in these interpretations remains unclear. 

Here we show that theophylline treatment is associated with differences in caffeine 

metabolism (Cluster F) as well as amino acid metabolism (Cluster A), dietary 

metabolites (Cluster G), and uracil (Table E4). While the global metabolic differences 

associated with theophylline treatment are less pronounced than OCS treatment 

(Figure E3), these findings suggest that metabolomics studies should be interpreted 

cautiously in the absence of theophylline treatment data. Conversely, the limited 

metabolic differences observed in association with omalizumab and no differences in 

association with anticholinergics or leukotriene modifier treatment demonstrate the 

need to evaluate potential metabolic confounders on a treatment-by-treatment basis. 

 

There is significant interest in the potential role of tryptophan and its metabolites in 

multiple inflammatory diseases [54] including obstructive lung disease [55]. While the 

downstream metabolites of tryptophan were dysregulated with asthma severity, the 



 

magnitude of the alterations was modest (Figure E9, Table E10). The strongest 

observed changes were in the indoleamine 2,3-dioxygenase (IDO) pathway, which 

has previously been reported to be associated with allergic airway inflammation [55]. 

Interestingly, IDO1 mRNA levels were increased in bronchial brushings, sputum, and 

PBMCs (Table E11), suggesting an upregulation of this pathway that was reflected in 

the urinary metabotype and was temporally stable (discussed in the supplemental 

information). Thus, significant tryptophan dysregulation occurs in asthma, but its 

impact is minor. 

 

The current study is unique and represents the only large-scale mass spectrometry-

based investigation of the urinary metabolome in adult asthmatics performed to date. 

However, there are limitations to this study that should be considered. While the mass 

spectrometry method was untargeted, reported metabolites were limited to those with 

identifications confirmed by chemical standards. Accordingly, the availability of 

additional analytical standards could increase the number of identified metabolites. 

Although the observed metabotypes provided insight into disease mechanisms and 

treatment stratification, they did not possess sufficient molecular resolution to identify 

unbiased endotypes of severe asthma. While a particular strength is that we confirmed 

adherence to OCS medication, the observed association between OCS and 

metabolite levels raises the question of whether ICS and reliever medication 

(SABA/LABA) evidence similar effects. Because current use of ICS and SABA/LABA 

were inclusion criteria for all U-BIOPRED subjects, it was not possible to stratify 

asthmatics for these treatments. Future studies could investigate this question using 

a dose-dependent interventional design. Performing similar stratifications in other 

disease contexts (e.g., inflammatory bowel disease, rheumatoid arthritis) could help 



 

establish the effects of corticosteroid use on observed metabolism. However, it would 

be necessary to perform an intervention study to definitively describe the temporal and 

dose-response relationship between OCS treatment and observed metabotypes, and 

to identify metabolic biomarkers of treatment efficacy. It is also challenging to separate 

the effect of omalizumab upon the urinary metabolome versus the effect of the 

qualifying (atopic) phenotype. Lastly, it is important to highlight that it remains for future 

studies to determine if the consistent metabolite profiles discerned in this study relate 

to the systemic inflammation in asthma or to more local tissue inflammation. 

 

We demonstrate that severe asthmatics possess a dysregulated systemic metabotype 

relative to healthy individuals that it is temporally stable up to 12-18 months. The 

observed metabolic shifts are modulated by asthma-related therapeutics on a 

metabolite- and treatment-specific basis. In the current study, OCS treatment was 

associated with a difference in 25% of the observed metabolites, further highlighting 

the importance of evaluating this confounder in molecular studies. Short chain 

carnitines represented the strongest metabolic signature associated with asthma 

severity, decreased in an OCS-independent manner and were temporally stable, 

providing a metabolic link to the mitochondrial dysfunction associated with severe 

asthma and presenting a potential therapeutic target in asthma management.  
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Table 1. Study characteristics of U-BIOPRED participants used for urinary metabolomics 

 

 Baseline Longitudinal 

Column1 Healthy Controls Mild-to-Moderate 
Asthma 

Severe Asthma 
non-smokers1 

Severe Asthma 
ex/smokers 

Severe Asthma 
non-smokers 

Severe Asthma 
ex/smokers 

Subjects 100 87 310 108 225 80 

Age years 35 (27-49) 43 (28-53) 53 (43-62) 55 (48-61) 55 (44-62) 55 (49-63) 

Females 38 (38%) 43 (49%) 204 (68%) 56 (52%) 146 (65%) 37 (46%) 

BMI kg/m2 24.9 (22.8-27.5) 24.8 (23.0-28.8) 27.7 (24.6-33.6) 28.9 (25.1-32.6) 27.7 (24.5-33.3) 28.5(25.1-32.5) 

FEV1 % Pred (Pre-
salbutamol) 

101.8 (93.6-110.3) 91.6 (76.0-100.3) 67.4 (50.7-84.8) 66.2 (52.4-78.2) 67.85 (50.0-84.8) 60.4 (52.2-75.7) 

FEV1/FVC (Pre-salbutamol) NA 72.7 (65.6-77.5) 63.4 (54.1-73.4) 60.1 (52.7-69.3) 62.2 (52.4-72.0) 60.8 (50.2-67.2) 

FEV1/FVC (Post-salbutamol) NA 77.7 (72.0-83.1) 66.9 (56.9-77.4) 63.5 (54.8-72.6) 66.1 (54.4-76.0) 60.5 (53.8-68.9) 

Exacerbations in previous 
year (n) 

NA 0 (0-1) 2 (1-3) 2 (1-4) 2 (0-4) 1 (0-4) 

Smoking history pack-years 0.9 (0.3-3.5) 4 (0.7-4.6) 2 (1-4) 17.1 (10-26) NA NA 

Serum IgE IU⋅mL-1 23 (9-62) 89 (50-244) 117 (40-347) 122 (60-328) NA NA 

Blood eosinophils x 10-3 ul-1 100 (90-200) 200 (100-300) 220 (110-405) 200 (100-405) 209 (100-401) 255 (148-450) 

Sputum eosinophils % 0.4 (0.2-0.9) 1.3 (0.7-3.9) 4.5 (1.2-13.7) 4.1 (1.3-26.5) 1.8 (0.4-8.8) 3.2 (0.8-16.5) 

FeNO ppb 19.5 (13.8-29) 25.5 (18-55) 22.5 (12-42) 26.5 (15.9-47.6) 24.0 (15.0-42.5) 20.8 (13.4-36.9) 

Serum periostin ng⋅mL-1 49.7 (44.1-57.6) 48.3 (40.9-54.5) 43.8 (36.3-59.3) 49.7 (41.9-60.1) 51.7 (43.4-63.0) 48.8 (39.6-64.7) 

hCRP mg⋅L-1 0.8 (0.4-1.6) 0.8 (0.4-2.1) 2.3 (1-4.8) 2.1 (0.9-4.8) 2 (0.8-4.9) 3.5 (1.4-6.0) 

IL13 pg⋅mL-1 0.39 (0.28-0.62) 0.59 (0.4-0.86) 0.52 (0.3-1.11) 0.61 (0.31-1.14) 0.61 (0.31-1.23) 0.73 (0.36-1.20) 

Atopy test positive 36/89 (40.4%) 68/77 (88.3%) 178/239 (74.5%) 46/78 (58.9%) NA NA 

Participants prescribed OCS NA NA 160/310 (52%) 50/108 (46%) 85/225 (37.8%) 28/80 (32.9%) 

Prescribed OCS dose (mg 
prednisolone eq.) 

NA NA 12 (9-20) 16 (10-21) 15 (9-29) 16 (9-29) 

Prednisolone detected in 
urine (n) 

NA NA 101/310 (32.6%) 31/108 (28.7%) 61/225 (27.1%) 24/80 (28.2%) 



 

Confirmed OCS users2 NA NA 66/310 (21.3%) 25/108 (23.1%) 29/225 (12.9%) 12/80 (15%) 

Prescribed OCS dose (mg 
prednisolone eq.) in 
confirmed OCS users 

NA NA 10 (7.5-15) 10 (10-20) 10 (5-15) 10(10-20) 

Confirmed OCS non-users3 NA NA 123/310 (39.7%) 49/108 (45.3%) 100/225 (44.4%) 40/80 (50%) 

Theophylline users4 NA NA 54/310 (17.4%) 22/108 (20.3%) 39/225 (17.3%) 16/80 (20%) 

Theophylline non-users5 NA NA 245/310 (79%) 85/108 (78.7%) 178/225 (79.1%) 64/80 (80%) 

Omalizumab users NA NA 39/310 (12.5%) 13/108 (12.0%) 33/225 (14.7%) 10/80 (12.5%) 

Serum-IgE matched 
omalizumab non-users6 

NA NA 71/310 (22.9%) 26/108 (24.1%) 54/225 (24.0%) 26/80 (32.5%) 

Anticholinergic users4 NA NA 68/310 (21.9%) 31/108 (28.7%) 54/225 (24.0%) 23/80 (28.8%) 

Anticholinergic non-users5 NA NA 230/310 (74.2%) 75/108 (69.4%) 152/225 (67.6%) 51/80 (63.8%) 

Leukotriene modifier users4 NA NA 131/310 (42.3%) 42/108 (38.9%) 87/225 (38.7%) 28/80 (35%) 

Leukotriene modifier non-
users5 

NA NA 169/310 (54.5%) 62/108 (57.4%) 117/225 (52.0%) 48/80 (60.0%) 

Number (%), median (IQR), n/N (%) 
NA, not applicable; OCS, oral corticosteroids 
1Non-smoking status was defined as being never smokers or non-smokers for at least the last 12 months with less than 5 pack-year smoking 
history 
2Reported at least daily use of OCS and positive detection of the presence of prednisolone or prednisone, methylprednisolone, 16-OH-

prednisolone, 20-dihydroprednisolone, or desacetyl deflazacort in urine 
3Reported no prior use of OCS, and OCS metabolites were not detected in urine 
4Reported at least daily use 
5Reported no prior use 
6Serum-IgE matched individuals with no prior omalizumab use 
 



 

 

Table 2. Metabolites associated with oral corticosteroid (OCS)* 
 

Metabolite Cluster† SAns (n=123)‡ SAns + OCS (n=66) p-value§ FDR 

Cystathionine A 0.87 (0.71,1.14) 1.1 (0.85,1.53) 0.005 0.003 

Histidine A 0.87 (0.73,0.98) 0.77 (0.61,0.85) 0.005 0.003 

Isoleucine A 1.1 (0.92,1.2) 0.92 (0.77,1.06) 0.029 0.010 

5-Aminolevulinic acid B 0.91 (0.76,1.12) 0.76 (0.58,0.92) 0.046 0.015 

Kynurenic acid B 0.89 (0.78,1.04) 0.82 (0.73,0.95) 0.047 0.014 

Uracil B 0.86 (0.73,1.01) 0.66 (0.52,0.78) 2.16E-4 0.001 

5-Hydroxyindoleacetic acid D 1.06 (0.96,1.19) 1.19 (1.04,1.34) 0.022 0.008 

Aspartic acid D 1.17 (0.98,1.35) 0.86 (0.73,1.07) 0.001 0.001 

Glutamic acid¶ D 1.16 (1.04,1.37) 1.04 (0.90,1.20) 0.058 0.015 

N-Acetylputrescine D 1.06 (0.94,1.25) 1.24 (1.04,1.42) 0.035 0.012 

N-Methyl-D-aspartic acid D 0.92 (0.82,1) 1.16 (1.05,1.3) 7.52E-5 0.001 

S-Adenosylhomocysteine D 1 (0.83,1.16) 1.15 (1.04,1.38) 0.004 0.003 

Serotonin D 1.23 (1.06,1.44) 1.41 (1.17,1.83) 0.017 0.007 

Methylthioadenosine E 1.25 (1.07,1.65) 0.9 (0.72,1.26) 0.003 0.003 

Xanthine E 1.16 (0.97,1.39) 0.96 (0.69,1.18) 0.008 0.004 

2-Furoylglycine G 0.68 (0.47,0.9) 2.05 (1.24,3.15) 0.003 0.003 

4-Pyridoxic acid G 0.94 (0.84,1.05) 1.06 (0.88,1.36) 0.048 0.014 

Allantoin G 1.02 (0.84,1.26) 1.17 (0.95,1.47) 0.019 0.008 

Aminovaleric acid G 1.19 (0.71,1.78) 0.83 (0.44,1.21) 0.014 0.006 

Glucosamine G 0.87 (0.77,1.06) 1.18 (0.97,1.43) 0.003 0.003 

Maltose G 1.09 (0.91,1.49) 1.84 (1.19,2.86) 0.003 0.003 

Methylhippuric acid G 0.89 (0.71,1.16) 1.18 (0.94,1.49) 0.014 0.006 

Sucrose G 1.13 (0.83,1.51) 1.78 (1.34,2.35) 2.35E-04 0.001 

Xylose G 1 (0.82,1.16) 1.44 (1.01,2.04) 0.002 0.003 

*All fold change estimates are in comparison to healthy participants 
†Cluster assignment as shown in Figure 1 
‡SAns=non-smoking severe asthmatics 
§Wilcoxon Rank-Sum test between OCS-treated and non-treated groups 
¶Glutamic acid was included due to its high magnitude of effect on the corresponding 
multivariate PC-CVA model (Figure 2) 
 

 
  



 

Figure Captions 

 

Figure 1. Hierarchical cluster analysis (HCA) of metabolite abundances. HCA 

was performed using multivariate Spearman correlation distance metric and Ward’s 

group linkage. (A) Resulting metabolite clusters are presented as a polar dendrogram 

(differentially coloured and labelled as A-G). Black text, metabolite not significant in 



 

either univariate or multivariate analysis; red text, metabolite significant in univariate 

and/or multivariate analysis. *, p<0.05 univariate analysis; †, p<0.05, Canonical 

Variate 1 (CV1, see Figure E1C). (B) The mean of log-transformed and z-scaled data 

of the resulting clusters plotted against the clinical groups. HC, healthy control 

participants; MMA, mild-to-moderate asthma; SAns, severe asthma non-smokers; 

SAs, severe asthma ex/smokers; L, longitudinal data. 

  



 

 

 

Figure 2. Principal Components – Canonical Variate Analysis (PC-CVA) with 

non-smoking severe asthmatics stratified by oral corticosteroid (OCS) use. 

Cross validation showed that 5 Principal Components were the optimal number to use 

in the CVA model (Figure E2). (A) Scores plot of baseline data, labelled by clinical 

class. Red, healthy controls; yellow, mild-to-moderate asthma (MMA); green, severe 

asthma non-smokers (SAns); blue, severe asthma non-smokers taking OCS treatment 

(SAns + OCS). (B) Longitudinal data for severe asthma groups projected into the 



 

baseline model. L, longitudinal data. +, mean of each baseline group; •, mean of each 

longitudinal group; solid circles, 95% confidence intervals of the mean of baseline 

groups; dashed circles, 95% confidence interval of the mean of longitudinal groups. 

(C) Loadings plot displaying metabolites that significantly (p<0.05) contribute to the 

model. Metabolite position displays the magnitude and direction of affect in CV1 (x-

axis) and CV2 (y-axis). The quadrant positions of metabolites are related to those of 

the clinical groups in the scores plots. In other words, metabolites are most abundant 

in the clinical groups with which they share a quadrant. Metabolites are colour-coded 

based on corresponding cluster as identified in Figure 1 and according to the figure 

legend.  

  



 

 

 



 

Figure 3. Individual Canonical Variate (CV) loadings for the PC-CVA with non-

smoking severe asthmatics stratified by oral corticosteroid (OCS) use. Loadings 

plots for Canonical Variate 1 (CV1, left panel) and CV2 (right panel) are shown. Clinical 

group labels at the top of each panel reflect the group position along the CV axis, as 

described by the model; clinical groups were not combined for this analysis. Red, 

metabolites that significantly (p<0.05) contribute to separation in the CV based on 500 

iterations of bootstrap resampling / remodelling; blue, metabolites that do not 

significantly contribute to the separation in the CV. Metabolites are ordered and colour-

coded by cluster (Figure 1). The cluster label is presented on the left side of the figure. 

  



 

 

 

  



 

Figure 4. Molecular signatures of carnitine metabolism. Scatter-overlaid boxplots 

stratified by clinical class. (A) Urinary carnitine composite variable. Relative 

abundances of carnitine, acetylcarnitine and propionylcarnitine were log-transformed, 

z-scaled, and summed (p=4x10-9). (B) Sputum fatty acid -oxidation gene set variance 

analysis (GSVA) enrichment score (ES) (p=8.02x10-6). (C) Sputum fatty acid 

metabolism GSVA ES (p=6.29x10-6). (D) Sputum SLC22A5 expression levels 

(p=5.69x10-5). (E) Bronchial brushings (BB) SLC22A5 expression levels (p=0.0583). 

Open circles, observations; box, median and interquartile range (IQR) of the data; 

whiskers, range of data up to 1.5 times of IQR above Q3 or below Q1; +, outliers. 

Kruskal-wallis p-values are reported here, with posthoc pairwise comparisons shown 

on the figure. *, p<0.05; **, p<0.01; ***, p<0.001. HC, healthy control participants; 

MMA, mild-to-moderate asthma; SAns, severe asthma non-smokers; SAs, severe 

asthma ex/smokers; L, longitudinal data. 

  



 

 

 

Figure 5. Relationship of SLC22A5 gene expression levels with lung function 

and genotype. (A) Correlation between FEV1/FVC ratio pre-salbutamol and sputum 

SLC22A5 gene expression levels. (B) Correlation between FEV1% predicted and 

sputum SLC22A5 gene expression levels. All assumptions for parametric analysis 

were verified, thus Pearson correlation was used. Dots, observations; solid line, 

regression; dashed lines, 95% confidence intervals of the regression. A weak linear 

correlation was also observed between the urinary carnitine composite and FEV1% 

predicted (r=0.15, p=1.43x10-4), but not FEV1/FVC ratio pre-salbutamol (p=0.90). (C) 

Relationship between sputum SLC22A5 gene expression levels and genotype (effect 

allele C: beta=0.234, SD=0.148, p=0.119; n=91) (D) Relationship between bronchial 

brushing SLC22A5 gene expression levels and genotype (effect allele C: beta=0.138, 



 

SD=0.057, p=0.028; n=118). The p-value of the effect size/coefficient of genotype in 

the regression model was used to test if the SNP was significantly associated with the 

gene expression. Open circles, observations; box, median and interquartile range 

(IQR) of the data; whiskers, range of data up to 1.5 times of IQR above Q3 or below 

Q1; +, outliers. BB, bronchial brushings; HC, healthy control participants; MMA, mild-

to-moderate asthma; SAns, severe asthma non-smokers; SAs, severe asthma 

ex/smokers. 

  



 

 

 

Figure 6. Biochemical pathways underlying severe asthma observed in the 

current study. (A) Metabolism associated with OCS use. (B) Carnitine metabolism. 

Green, OCS-associated alteration in severe asthma; pink, OCS-independent 

alteration in asthma; blue, OCS-associated, disease-independent alteration; orange, 



 

no change observed; grey, metabolites not detected in the current study; black, notes 

on metabolic reactions; yellow boxes, known pathogenic mechanisms of asthma. 

Arrows indicate direction of change. Abbreviations: AMD1, adenosylmethionine 

decarboxylase; ASM, airway smoother muscle; CAC, carnitine-acylcarnitine carrier; 

CPT, carnitine palmitoyltransferase; dcSAM, decarboxylated SAM; OCTN, organic 

cation transporter novel; SAM, S-adenosylmethionine. *, shift observed via 

multivariate analysis only. 
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Methods 

Study Subjects and Design 

A total of 605 participants from the pan-European U-BIOPRED study (Unbiased 

Biomarkers for the Prediction of Respiratory Disease outcomes) were included (Table 

1). Participants from 15 clinical sites were included and asthma was classified 

according to international guidelines on severe asthma with the following groups; 

healthy controls (HC, n=100), mild-to-moderate asthmatics (MMA, n=87), non-smoking 

severe asthmatics (SAns, n=310), and smoking/ex-smoking severe asthmatics (SAs, 

n=108) [1]. All participants provided a urine sample within 28 days of initial screening 

(baseline visit); an additional urine sample was provided by 225 SAns and 80 SAs 

participants at a longitudinal follow-up visit 12-18 months later. A brief overview of 

baseline and longitudinal clinical and demographic characteristics is shown in (Table 

1), with a more detailed baseline description found elsewhere [1]. Ethics approval was 

obtained from each participating clinical institution and all participants provided written 

informed consent. U-BIOPRED adhered to standards outlined by the International 

Conference on Harmonisation and Good Clinical Practice and is registered on 

ClinicalTrials.gov (identifier: NCT01976767). 

 

Medication use 

All MMA subjects were on ≤500 µg inhaled fluticasone equivalents/day (ICS), while all 

SA subjects received ≥1000 µg fluticasone equivalents/day. Of the severe asthmatics, 

50% were prescribed oral corticosteroids (OCS), 18% were prescribed theophylline, 

and 12% were treated with anti-IgE therapy (i.e., omalizumab). Regular use of non-

steroidal anti-inflammatory drugs (NSAIDs) was part of the exclusion criteria. Reliever 

medication, such as short/long acting b2 agonists (SABA/LABA) or combination 



therapy was used by all asthmatic subjects. In sub-groups of asthmatics 

anticholinergics and chromoglycate was used among others, of which use was 

reported to be 18% and 2%, respectively. 

 

Participant stratification by asthma treatment 

Severe asthmatic non-smoker participants were stratified by treatment. OCS 

stratification was previously described [2]. Participants reporting at least daily use of 

OCS and had detectable OCS metabolites in their urine were classified as confirmed 

OCS users. Participants reporting never or previous use of OCS and did not have 

detectable OCS metabolites in their urine were classified as confirmed non-users of 

OCS. Theophylline stratifications were based on participant reported use. Participants 

reporting at least daily use of theophylline were considered users; those reporting no 

prior use were considered non-users. Omalizumab stratification was based on medical 

records of administration. Serum-IgE matched individuals with no prior use were 

considered non-users using a 2:1 nested case-control design as described by Kolmert 

et al. [2]. 

 

Metabolomics analysis 

Metabolomics data were acquired by liquid chromatography – high resolution mass 

spectrometry (LC-HRMS) using previously described methods [3]. The analytical 

sequence (injection order) was randomised by clinical group, sex, age, BMI, collection 

site, and ethnicity to avoid analytical bias [4]; matching baseline and longitudinal 

samples were placed together in the analytical sequence in alternating order. To 

normalise for urine concentration and to reduce matrix effects [5], the specific gravity 

(SG) was measured. Prior to analysis, batches of 100 x 5 ml urine samples were 



thawed at 4°C, then centrifuged for 5 minutes at 250 rcf to pellet any precipitate. For 

each sample, 100 µL was used to measure SG on a refractometer (Atago UG-a), 100 

µL was used to create a pooled quality control (QC) sample and 5 x 500 µl aliquots 

were prepared and returned to -80°C. A pooled QC was made for each daily batch. 

After the final batch, all daily pooled QC samples were thawed to prepare a final pooled 

QC; the SG was measured for this sample and sub-aliquots were prepared for each 

analytical batch. In total, samples were analysed in 17 batches with pooled quality 

control (QC) samples analysed after every 5th sample to monitor analytical drift and 

measure precision [6]. On the day of analysis, urine samples were diluted with LC-MS 

grade water (Sigma-Aldrich, St. Louis, MO, USA) to the lowest SG (1.00x) 

measurements of the sample set and prepared as described [3]. Metabolite extraction 

was then performed by adding 180 µL of LC-MS grade acetonitrile (Fisher Scientific, 

Loughborough, UK) containing internal standards to 20 µL of SG-diluted urine. 

Samples were vortexed briefly then centrifuged at 13,000 x g for 15 minutes at 4°C; 40 

µL of the supernatant was transferred to an LC-MS vial containing an insert for 

analysis.  

 

Data were acquired using a 1290 Infinity II ultra-high performance liquid 

chromatography system coupled to an Agilent 6550 iFunnel Q-TOF mass 

spectrometer (Agilent Technologies, Santa Clara, CA, USA). Metabolites were 

separated using hydrophilic interaction liquid chromatography (SeQuant ZIC-HILIC 

column 100 Å, 100 × 2.1 mm, 3.5 μm particle size) coupled to a 2.1 × 2 mm, 3.5 μm 

particle size guard column (Merck, Darmstadt, Germany) and an inline-filter. Mass 

spectral data were acquired in both electrospray ionisation (ESI) positive and negative 

modes. The mobile phases for ESI-positive ionization mode were water containing 



0.1% formic acid (solvent A) and acetonitrile containing 0.1% formic acid (solvent B), 

and for ESI-negative ionization mode were 10 mM ammonium acetate pH 6.7 (solvent 

A) and acetonitrile (solvent B). The elution gradient was as follows: 1.5 min at 95% [B], 

95 to 40% [B] in 12 min, maintained at 40% [B] for 2 min, then decreasing to 25% [B] 

at 14.2 min, maintained for 2.8 min, then returned to initial conditions over 1 min, and 

then the column was equilibrated at initial conditions for 7 min. The flow rate was 0.3 

mL/min; injection volume was 2 μL, and the column oven was maintained at 25 °C  

 

Data were acquired in a mass range of 40–1200 m/z using the following settings: 

sheath gas, N2, 8 L/min; drying gas, N2, 15 L/min; gas temperature, 250°C; nebulizer 

pressure, 35 psi; voltage, 3000 V; fragmentor voltage, 380 V. All data were acquired 

using all ions fragmentation (AIF) mode; this included three sequential experiments at 

three alternating collision energies (0 eV, 10 eV, and 30 eV). The data acquisition rate 

was 6 scans/s. 

 

Peak deconvolution and metabolite identification were performed using Agilent TOF-

Quant software (version B.07.00, Agilent Technologies) as described [3]. To ensure 

accurate metabolite identification, metabolites were matched against retention time, 

accurate mass, and MS/MS fragmentation patterns of 408 chemical reference 

standards in an in-house database. Metabolites were only included for statistical 

analysis if the accurate mass, retention time, and MS/MS fragmentation pattern 

matched to an authentic standard; thus, all metabolites reported have a Level 1 

identification level as defined by the Metabolite Standards Initiative [7].  

 



Systematic experimental within- and between-batch variation was corrected using the 

QC- Robust Spline Correction (QC-RSC) algorithm [8]. Metabolite abundances were 

then plotted against injection order and visually inspected to identify deconvolution 

problems; deconvolution was optimised and repeated as necessary. Following this 

procedure, the relative standard deviation of the pooled QC samples (QCRSD) and the 

ratio of QC variance to sample variance (D-ratio) were calculated for each metabolite, 

aligning to community quality control best practice [6]. Quality assessment revealed 

high quality data as evidenced by an average relative standard deviation (RSDQC) of 

3.3%, an average D-Ratio of 8.2%, and 1.38% total missing values. 

 

Tryptophan quantification 

Tryptophan and 6 of its metabolites were quantified by reversed-phase liquid 

chromatography coupled to mass spectrometry (LC-MS/MS). Briefly, the urine 

samples were diluted 100 times in purified water and centrifuged (Eppendorf 

Centrifuge 5430 R) at 15,000 rcf for 10 min at 4°C. Part of the supernatant (200 μl) 

was transferred to a 96 deep well plate (Thermo Scientific 26052) and capped with a 

mat. Calibration curves were diluted in purified water and run together with the 

samples. Samples were analysed on an Agilent 1290 Infinity II system with multiwash 

function and an Agilent 6490 Ion Funnel triple quadrupole mass spectrometer. 5 μl of 

the sample extract was injected into a Zorbax Eclipse RRHD C18 column (50 × 2.1 

mm, 1.8 μm particle size). A short gradient (0.5 ml/min flow rate, 40°C column oven) 

using 0.1 % formic acid in HPLC water (mobile phase A) (Milli-Q, Millipore) and 0.1 % 

formic acid in HPLC acetonitrile (mobile phase B) (Rathburn Chemicals) was applied. 

The gradient started at 2 % B increasing to 40 % B after 2 min and directly to a washing 

step at 95 % B for 0.6 minutes and then returned to initial conditions followed by an 



0.8-minute column re-equilibration. Mass spectrometry data (MRM, multiple reaction 

monitoring) were acquired in positive electrospray ionization mode, using the 

transitions 225.09>109.9, 209.09>146.0, 205.1>188.1, 192.07>145.9, 190.05>144.0, 

177.1>160.0 and 168.03>105.9 for 3-hydroxykynurenine, kyrunenine, tryptophan, 5-

hydroxyindoleacetic acid, kynurenic acid, serotonin and quinolinic acid, respectively. 

Fragmentor voltage was set to 380 V and the Collision energies ranged from 10 to 18 

V. In positive mode, the capillary voltage was 4.0 kV with a sheath gas temperature of 

400°C and gas flow of 12 l/min. The Ion Funnel parameters were 200 and 110 for the 

high and low pressure radio frequencies. Data handling and quantification was 

performed using Agilent MassHunter B06.00 software. Samples were randomized 

across each batch to prevent potential confounding signal drift. 

 

Genotyping 

Sputum and bronchial brushing cis-eQTL summary statistic data were obtained in U-

BIOPRED. The U-BIOPRED genotype data was imputed by IMPUTE2 [9] using 

1000Genome phase 3 data [10] as the reference panel. The sputum eQTL analysis 

was performed on 91 U-BIOPRED participants that had both genetic and gene 

expression data in sputum available, and the bronchial brushing eQTL analysis was 

performed on 118 U-BIOPRED participants that had both genetic and gene expression 

data in bronchial brushings available. The eQTL analysis was performed with 

matrixEQTL in R [11] using age, sex and 10 principle components as covariates. The 

asthma GWAS summary statistics were also downloaded from a recent large scale 

GWAS study [12]. The number of cases and controls in the adult-onset GWAS were 

26,582 and 327,253, respectively. The genome build used for both the eQTL and 

GWAS summary statistic was GRCh37. To determine if any of the SLC22A5 cis-eQTLs 



overlapped with the asthma GWAS hits, a p-value threshold of 0.05 was applied for 

sputum and bronchial brushing eQTLs and genome-wide threshold of 5e-8 for GWAS 

SNPs. A lenient threshold was applied for the eQTL due to the fact that the eQTLs in 

sputum and bronchial brushing were underpowered due to the small sample size. We 

then subset the eQTLs with their asthma GWAS summary statistics also available, and 

aligned them to have the same effect allele with their GWAS summary statistics. 

 

Statistical analysis  

Missing values were imputed using the K-nearest neighbour (K=3) method, as is 

standard practice for metabolomics [13]. Metabolomics data, expressed as relative 

abundances, were not normally distributed (Lilliefors test); non-parametric univariate 

statistical tests were subsequently used. The null hypothesis (H0), that the distribution 

of each metabolite was the same across outcomes, was tested using the Wilcoxon 

Rank-sum (2 outcomes) and Kruskal-Wallis test (more than 2 outcomes). The H0, that 

baseline and longitudinal distributions were the same for each metabolite, was tested 

using the Wilcoxon signed-rank test. The Storey positive false discovery rate (FDR) 

[14] was calculated for all univariate analyses. Median fold-changes and confidence 

intervals were estimated using 500 iterations of bootstrap resampling [15] as previously 

reported [16]. Confounder correction was performed on the log urinary carnitine 

abundances using multiple linear regression, adjusting the clinical outcome for sex, 

age, and BMI. To provide robustness against heteroscedasticity, Huber’s sandwich 

estimator for the regression coefficient standard errors was used [17]. Collection site-

specific batch effects upon the observed metabotypes were evaluated and found to 

vary with metabolite. 

 



To identify similarities between metabolites, hierarchical cluster analysis (HCA) was 

performed using a multivariate Spearman correlation distance metric and Ward’s group 

linkage. The most similar metabolites form the lowest linkages in the resulting circular 

dendrogram; thus, emergent clusters represent similar trends. The mean of the log-

transformed and z-scaled data of the resulting clusters were plotted against clinical 

groups to qualitatively visualise metabolite patterns across clinical groups. Principal 

Components – Canonical Variate Analysis (PC-CVA) was then performed, as 

previously described [16], to assess the multifactorial and correlated discrimination 

between clinical groups. Leave-one-out cross validation was used to determine the 

optimal number of PCs to be used in the model (Figure E1). 

 

The targeted tryptophan data included 7 metabolites, including tryptophan and 6 

downstream intermediates along 3 different pathways. Univariate analyses were 

performed using non-parametric tests (as described above). To visualise and assess 

clinical group differences across each pathway, mean data were presented in a bar 

graph and MANOVA was performed. Prior to MANOVA, data were normalised to 

tryptophan, log-transformed, and z-scaled.  

 

In order to investigate the genetic impact of SLC22A5 on gene expression, we applied 

a linear regression framework to identify the cis-eQLTs associated with expression of 

SLC22A5. SNPs that were up to 1 MB (megabase) away from the TSS (transcription 

start site) of the gene were used in the association test. In the regression model, the 

genetic effect was assumed to be “additive”, and standard linear regression was 

considered to model the genetic association with gene expression in SLC22A5:  

 



𝐸 = 𝛽! + 𝛽"𝐺 +&𝛽#

$

#%&

𝐶# 

 

Where E is log2-scaled gene expression, 𝛽! is the intercept term, 𝐺 is the copies of 

effect allele, 𝐶#%&,(…$ 	are the covariates including age, sex, asthma groups and 10 

principal components extracted from the genetic related matrix. Our null hypothesis 

(𝐻!)	was that effect size 𝛽"=0, i.e., there was no genetic association to the gene 

expression. A p-value of 𝛽" 	less than a given threshold was then used to determine 

the significant genetic association. We used a p-value threshold 0.05 here without 

considering the multiple testing correction due to the smaller sample size, and we have 

therefore emphasised caution when interpreting the result. 

 

Individual subject clinical and biochemical data were collected from the U-BIOPRED 

TranSMART platform (eTRIKS). All statistical analyses were performed using the 

MATLAB scripting language (Mathworks, Natick, MA, USA), R (3.4.4, CRAN Network), 

and STATA v14 (StataCorp LLC, College Station, TX, USA). 

  



Results of the tryptophan pathway analyses 

Targeted quantitative analyses were performed to further elucidate tryptophan 

metabolite alterations (Figure E9, Table E10). No changes were observed in 

tryptophan levels. Given the variability in the response, downstream metabolites were 

normalized to tryptophan levels on an intra-individual basis (Figure E9). Tryptophan 

metabolism was divided into 3 metabolic pathways: Monoamine oxidase (MAO), 

Indoleamine 2,3-dioxygenase (IDO), and Kynurenine 3-monooxygenase (KMO). Mild-

to-moderate asthmatics had similar levels in all 3 pathways relative to healthy 

participants, while severe asthmatics were dysregulated relative to healthy 

participants. Smoking status exerted a minor effect upon the pathways. The observed 

patterns reached significance for the IDO and KMO pathways (p=0.01 and 0.03, 

respectively) and were replicated at the 12-to-18-month follow-up. Tryptophan 

metabolism was further probed at the mRNA level (Table E11). Of the detected 

transcripts from enzymes in these pathways, the majority exhibited no change in 

association with asthma status. However, IDO1 transcripts significantly increased in 

bronchial brushings, PBMCs, and sputum. The magnitude of the observed shifts for 

other transcripts was nominal and most likely not of importance. 

 

Discussion of the tryptophan pathway analyses 

There is significant interest in the potential role of tryptophan and its metabolites in 

multiple inflammatory diseases [18], including obstructive lung disease [19]. However, 

the literature is unclear in relation to asthma. We accordingly used the scale of the U-

BIOPRED study to address this question. Tryptophan itself was unchanged in 

association with asthma severity or smoking status. However, the downstream 

metabolites were dysregulated with asthma severity and further perturbed by smoking 



status (Figure E9). In the current study, the strongest observed changes were in the 

IDO pathway, which has previously been reported to be associated with allergic airway 

inflammation [19]. Of particular interest is that the transcript levels of IDO1 increased 

in bronchial brushings, sputum, and PBMCs, suggesting a systemic upregulation in 

this pathway that was reflected in the urinary metabotype. These profiles were 

generally stable at the 12-18 months longitudinal sampling. Serotonin was affected by 

smoking status as previously reported [20, 21], as well as OCS treatment. An intriguing 

hypothesis is that the tryptophan metabolites are produced by microbiota involved in 

the gut-lung axis [22], reflecting asthma-associated dysbiosis.  
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Figure E1. Principal Components – Canonical Variate Analysis (PC-CVA). (A) 
Scores plot of baseline data, labelled by clinical class. Blue, healthy controls; yellow, 
mild-to-moderate asthma (MMA); red, severe asthma non-smokers (SAns); green, 
severe asthma smokers (SAs). (B) Longitudinal data for severe asthma groups 
projected into the baseline model. B, baseline data; L, longitudinal data. +, mean of 
each baseline group; •, mean of each longitudinal group; solid circles, 95% confidence 
intervals of the mean of baseline groups; dashed circles, 95% confidence interval of 
the mean of longitudinal groups. (C) Loadings plots for Canonical Variate 1 (CV1, left 
panel) and CV2 (right panel). Red, metabolites that significantly (p<0.05) contribute to 
separation in the CV; blue, metabolites that do not significantly contribute to the 
separation in the CV. (D) Leave-one-out cross validation; 5 principal components were 
chosen as the number of optimal components to use in the model. 



 

 
 
Figure E2. Cross Validation for the PC-CVA model presented in Figure 2. Leave-
one-out cross validation was performed, identifying 5 principal components as the 
optimal number for the model. 
 
 
 
  



 
 
Figure E3. Principal Components – Canonical Variate Analysis (PC-CVA) with 
non-smoking severe asthmatics stratified by theophylline use. (A) Leave-one-out 
cross validation; 6 principal components were chosen as the number of optimal 
components to use in the model. (B) Scores plot labelled by outcome. HC, healthy 
control participants; MMA, mild-to-moderate asthmatics; SAns, severe asthma non-
smokers; SAns + Theophylline, severe asthma non-smokers taking theophylline 
treatment. +, mean of each group; dashed circles, 95% confidence interval of the mean 
of each group. (C) Loadings plot displaying metabolites that significantly (p<0.05) 
contribute to the model. Metabolite position displays the magnitude and direction of 
affect in CV1 (x-axis) and CV2 (y-axis). The quadrant positions of metabolites are 
related to those of the clinical groups in the scores plots. In other words, metabolites 
are most abundant in the clinical groups with which they share a quadrant. Metabolites 
are colour-coded based on corresponding cluster as identified in Figure 1 and 
according to the figure legend.  



Figure E4. Individual 
Canonical Variate (CV) 
loadings for the PC-CVA 
with non-smoking severe 
asthmatics stratified by 
theophylline use. Loadings 
plots for Canonical Variate 1 
(CV1, left panel) and CV2 
(right panel) are shown. 
Red, metabolites that 
significantly (p<0.05) 
contribute to separation in 
the CV based on 500 
iterations of bootstrap 
resampling / remodelling; 
blue, metabolites that do not 
significantly contribute to the 
separation in the CV. 
Metabolites are ordered and 
colour-coded by cluster as 
defined in Figure 1. The 
cluster label is presented on 
the left side of the figure. 
HC, healthy control 
participants; MMA, mild-to-
moderate asthma; SAns, 
severe asthma non-
smokers; SAs, severe 
asthma ex/smokers; T, 
theophylline. 
 
  



 
 
Figure E5. Sex-specific differences in urinary carnitine levels. (A) The four U-
BIOPRED groups stratified by sex. (B) The four U-BIOPRED groups compared 
separately for each sex. C) The fold-change estimates with 95% confidence intervals 
of the 3 carnitine species within each U-BIOPRED group stratified by sex relative to 
healthy participants. The urinary carnitine composite value was calculated by summing 
the log-transformed, z-scaled relative abundances of acetylcarnitine, carnitine, and 
propionylcarnitine. MMA, mild-to-moderate asthma; SAns, severe asthma non-
smokers; SAs, severe asthma smokers and ex-smokers; SAnsL, severe asthma non-
smokers longitudinal; SAsL, severe asthma smokers and ex-smokers longitudinal.  



 
 
Figure E6. Dependency of urinary carnitine levels upon clinical recruitment site. 
The U-BIOPRED study consisted of 15 different patient recruitment sites across 
Europe. Boxplots are shown of the relative abundance of each carnitine metabolite 
stratified by clinical recruitment site code. Data are shown as post QC-corrected 
intensity values from the mass spectrometer in units of relative abundance. The 
Kruskal-Wallis p-values are reported in the figure. 
 
  



 
 
Figure E7. Molecular signatures of carnitine metabolism. Scatter-overlaid boxplots 
stratified by Type-2 classification. (A) Urinary carnitine composite variable. Relative 
abundances of carnitine, acetylcarnitine, and propionylcarnitine were log-transformed, 
z-scaled, and summed (p=0.031). (B) Sputum and (C) Bronchial brushings (BB) fatty 
acid metabolism enrichment score (ES) (p=0.038). (D) Sputum SLC22A5 expression 
levels. (E) Bronchial brushings (BB) SLC22A5 expression levels (p=9.7x10-4). 
Inferential statistics were not performed for (B) and (D) due to small sample sizes. The 
Type-2 patient stratification was based on the ES of the IL-13-induced gene expression 
patterns in human bronchial epithelial cells using GSVA [23, 24]. Open circles, 
observations; box, median and interquartile range (IQR) of the data; whiskers, range 
of data up to 1.5 times of IQR above Q3 or below Q1; +, outliers. Kruskal-wallis p-
values are reported, with posthoc pairwise comparisons shown on the figure. *, p<0.05; 
***, p<0.001. HC, healthy control participants; Low, Type-2 low; High, Type-2 high.  



 
 
Figure E8. Molecular signatures of carnitine metabolism. Scatter-overlaid boxplots 
stratified by transcriptome-associated cluster (TAC) classification membership [23]. 
(A) Sputum fatty acid metabolism enrichment score (ES) (p=2.1x10-14). (B) Sputum 
SLC22A5 expression levels (p=1.2x10-8). Open circles, observations; box, median and 
interquartile range (IQR) of the data; whiskers, range of data up to 1.5 times of IQR 
above Q3 or below Q1; +, outliers. Kruskal-wallis p-values are reported here, with 
posthoc pairwise comparisons shown on the figure. ***, p<0.001.  
 
  



 
 
Figure E9. Tryptophan metabolism. Tryptophan and 6 downstream metabolites 
were quantified in urine and divided into 3 biochemical pathways: monoamine oxidase 
(MAO), indoleamine 2,3-dioxygenase (IDO), and kynurenine 3-monooxygenase 
(KMO). Downstream metabolites were normalised to tryptophan levels on an intra-
individual basis, log-transformed, then z-scaled. To visualise and assess clinical group 
differences across each pathway, mean data were presented in a bar graph and 
MANOVA was performed. The quantified metabolite levels are provided in Table E7. 
Trp, tryptophan; Ser, serotonin; HIAA, 5-hydroxyindoleacetic acid; Kyn, kynurenine; 
KynA, kynurenic acid; QuinA, quinolinic acid. HC, healthy control participants; MMA, 
mild-to-moderate asthma; SAns, severe asthma non-smokers; SAs, severe asthma 
ex/smokers; L, longitudinal data. 
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