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Scan-based competing death risk model for reevaluating lung cancer 

computed tomography screening eligibility 

Abstract 

Purpose 

A baseline CT scan for lung cancer (LC) screening may reveal information indicating that certain LC 

screening participants can be screened less, and instead require dedicated early cardiac and respiratory 

clinical input. We aimed to develop and validate competing death (CD) risk models using CT information 

to identify participants with a low LC and a high CD risk. 

Methods 

Participant demographics and quantitative CT measures of LC, cardiovascular disease, and chronic 

obstructive pulmonary disease were considered for deriving a logistic regression model for predicting 

five-year CD risk using a sample from the National Lung Screening Trial (n=15000). Multicentric Italian 

Lung Detection data was used to perform external validation (n=2287). 

Results 

Our final CD model outperformed an external pre-scan model (CDRAT) in both the derivation (Area 

under the curve = 0.744 [95% confidence interval = 0.727 to 0.761] and 0.677 [0.658 to 0.695], 

respectively) and validation cohorts (0.744 [0.652 to 0.835] and 0.725 [0.633 to 0.816], respectively). By 

also taking LC incidence risk into consideration, we suggested a risk threshold where a subgroup 

(6258/23096, 27%) was identified with a number needed to screen to detect one LC of 216 (vs. 23 in the 

remainder of the cohort) and ratio of 5.41 CDs per LC case (vs. 0.88). The respective values in the 

validation cohort subgroup (774/2287, 34%) were 129 (vs. 29) and 1.67 (vs. 0.43). 



 

Conclusions 

Evaluating both LC and CD risks post-scan may improve the efficiency of LC screening and facilitate the 

initiation of multidisciplinary trajectories among certain participants. 

 

Abstract word count: 250 

 

Take-Home Message 

Lung cancer CT screening participants with a relatively low risk of lung cancer incidence and a high risk 

of competing death can be identified by applying two respective post-scan risk models, who in turn may 

benefit from other personalized trajectories. 

 

Abbreviations 

CD = competing death 

CDRAT = Competing Death Risk Assessment Tool 

COPD = chronic obstructive pulmonary disease 

CT = low-dose computed tomography 

CVD = cardiovascular disease 

LC = lung cancer 

LCRAT = Lung Cancer Risk Assessment Tool 

MILD = Multicentric Italian Lung Detection 

NCI = National Cancer Institute 

NLST = National Lung Screening Trial 

PLCOM2012 = Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Model 2012 



 

Introduction 

Various randomized controlled trials have demonstrated that lung cancer (LC) screening with low-dose 

computed tomography (CT) significantly reduces the number of LC deaths compared to chest 

radiography (1) or no screening (2,3). However, most deaths which occurred in these trials were among 

LC-free participants (1–3). Even among participants who died of LC, most were reported to have other 

underlying causes of death. This indicates that preventing a LC death does not always lead to a gain in 

life years (4,5). 

Screening eligibility is primarily based on two demographic predictors of LC incidence: age and smoking 

history (6,7). In addition, people with contra-indications for curative LC treatments may be excluded. 

This is to ensure a sufficiently high detection rate of treatable LCs while avoiding potential harms caused 

by false-positive findings (8). Various LC risk models exist specifically for determining screening 

participant eligibility among ever-smokers; the Prostate, Lung, Colorectal, and Ovarian Cancer Screening 

Trial Model 2012 (PLCOM2012) and Lung Cancer Risk Assessment Tool (LCRAT) are among the most 

renown and best performing (9,10). 

After the baseline screening round, chest CT biomarkers can be used to improve prediction accuracy. 

Imaging features are especially beneficial for estimating nodule malignancy risk (11–17). Moreover, 

quantitative CT measures (QCT) of cardiovascular disease (CVD) and chronic obstructive pulmonary 

disease (COPD) have also been validated as biomarkers in this setting (17–21). However, determining 

eligibility for future screening rounds is based on the same criteria as before the first scan (6,7). 

Whereas post-scan LC incidence risk models have been developed to personalize screening intervals 

beyond one year (11,12,17,22,23), there are currently no guidelines for reevaluating screening eligibility 

using CT information. 

Regardless of their LC incidence risk, participants with a high risk of competing (i.e., non-LC) death (CD) 

may require multidisciplinary follow-up to benefit from screening. The ability to identify participants 



 

with a low risk of developing LC and a high risk of encountering a CD (low-LC-high-CD) may enable more 

personalized recommendations to continue benefiting those in need while reducing potential harms in 

others. Two primary objectives can be summarized for this study: to develop a risk model combining 

demographic information and QCTs for predicting CD among LC screening participants, and to 

demonstrate the potential implications of halting further participation of low-LC-high-CD screenees. A 

previously developed model which considers the same QCTs from the baseline scan (i.e., of LC, CVD, and 

COPD) was used to determine LC risk (17). A secondary objective was to investigate whether a CD risk 

model combining both demographics and QCTs as predictors is superior to only using one or the other. 

 

Methods 

The “Scans and data,” “Models and variables,” and “Data set formation” subsections have been 

previously and more extensively described in Schreuder et al. (17); the relevant sections are provided in 

the supplement. 

Scans and data 

Scans and meta data from the National Lung Screening Trial (NLST) (ClinicalTrials.gov NCT00047385) 

were used to derive models with permission from the National Cancer Institute (Cancer Data Access 

System project ID NLST-437) (1). The NLST was the first and largest randomized controlled trial to 

demonstrate the effectiveness of CT screening in the reduction of LC death. Inclusion criteria were an 

age between 55 to 74 years, a cigarette smoking history of at least 30 pack years, and a smoking quit 

time within 15 years (if applicable). 26722 participants were assigned to the CT cohort and 26732 to the 

radiography cohort. Between 2002 and 2010, both cohorts underwent three annual screening rounds 

and were subsequently followed-up for five years (median follow-up time = 6.5 years). 

The Multicentric Italian Lung Detection (MILD) randomized controlled trial (ClinicalTrials.gov 

NCT02837809) was used for external validation purposes (2). MILD was the first trial to demonstrate the 



 

continued effectiveness of LC CT screening beyond the fifth year of screening. Inclusion criteria were an 

age greater or equal to 49 years, at least 20 pack years of smoking history, and a smoking quit time no 

longer than 10 years (if applicable). 1190 participants were assigned to annual CT screening, 1186 to 

biennial CT screening, and 1723 to no screening. Between 2005 and 2018, 93.5% of the participants 

were followed-up for at least nine years; the median time until the last screening round was six years. 

Models and variables 

Participant demographics and nodule CT features at baseline were directly provided by the NLST and 

MILD data sets. When multiple nodules were present in one scan, only the features from the nodule 

with the longest diameter were considered for the models. In the NLST, causes of death were 

determined by the endpoint verification process (or death certificate if unavailable). Causes of death for 

MILD were obtained exclusively from death certificates. Only underlying cause of death was considered 

for this study, either LC death or CD. 

QCTs of CVD and COPD were extracted from the baseline CT scans using validated computer algorithms. 

This included calcium volume and mean calcium density in the coronary arteries (combined), mitral 

valve, aortic valve, and transthoracic aorta (19), emphysema score (“the percentage of lung voxels 

below -950HU after resampling the CT images to 3mm slice thickness, normalization, and bullae 

analysis”) (24), and a reference parameter for measuring bronchial wall thickness called Pi10 (“the 

square root of the airway wall area for a theoretical 10mm lumen perimeter airway derived using the 

linear regression of the square root of segmented wall areas against the lumen perimeter extracted 

from the complete segmented airway tree”) (20). 

Three models for predicting the five-year risk of CD were derived: a model containing only self-reported 

demographic information (CDsurvey), a model containing only age, sex, and CT information (CDCT), and a 

final model considering all variables from the previous two models (CDfinal). The previously described 



 

LCifinal model was used to calculate the five-year LC incidence probability (Equations S1) (17); the model 

had been calibrated to each cohort. Table 1 lists all variables considered. 

Data set formation 

Subject exclusion criteria were the lack of a baseline CT scan, a baseline scan with a slice thickness 

>2.5mm, and missing data on LC incidence, death status, and times of event. The derivation cohort 

consisted of 15000 unique subjects from the NLST CT cohort which was the maximum allowed data 

extraction permitted by the National Cancer Institute (NCI) (Figure S1). This included all participants who 

were diagnosed with LC or died within the trial period (n=2106) and a random sample of those who did 

not encounter either of the events (n=12894); this latter group was resampled without replacement 

(n=8096), ultimately forming a derivation cohort of 23096 subjects. This method for weighted analysis 

was performed to simulate the original NLST cohort, hereby preventing an overestimation of risk. 

All 2287 subjects from the MILD CT cohort formed the validation cohort. Multiple imputation was used 

to create plausible values for other missing data (see supplemental “Methods” section). Missing QCTs 

were considered an exclusion criterion for the derivation cohort but not the validation cohort, which 

were given the respective median values from the MILD data set (n=24 for QCTs of CVD and n=132 for 

Pi10). In addition, a MILD subgroup of NLST-eligible participants was formed, namely those between 55 

and 74 years of age, at least 30 pack-years of smoking intensity, and no more than 15 years since 

smoking cessation if applicable (1). 

Statistical analysis 

All statistical analyses were performed in R version 3.4.3. The three parsimonious risk prediction models 

for competing death were derived using logistic regression. Variables were included in the model if the 

level of significance was <0.20 (backward elimination) (25). R function “mfp” (mfp package) was used to 

select factorial polynomials for continuous variables (level of significance <0.05) (26). Second-degree 



 

polynomials were considered for longest nodule diameter; only first-degree polynomials were 

considered for the remaining variables. 

Areas under the receiver operating characteristic curve (AUC) with 95% confidence intervals were 

calculated for our derived models (CDsurvey, CDCT, and CDfinal) and the previously described CD Risk 

Assessment Tool (CDRAT) (10). Internal validation was performed for each model with 1000 bootstraps 

to assess overfitting in the form of optimism (the difference between the average bootstrap sample AUC 

and original sample AUC). The values were compared with 500 bootstraps to test whether the 

discriminative performances were significantly different (p value < 0.05). Calibration is visualized in the 

form of calibration plots. The models were externally validated on the full MILD cohort. 

To demonstrate practical application, the cohorts were stratified into quintiles (five equally sized 

groups) based on five-year risk of LC incidence (LCifinal) and competing death (CDfinal). The quintiles were 

used to form five-by-five contingency tables showing the distribution of LC diagnoses and competing 

deaths within five-years’ follow-up. Based on visual findings, we suggest criteria to select low-LC-high-CD 

participants. The potential consequences of applying these selection criteria are summarized by 

calculating the number needed to screen to detect one LC (NNS) and the ratio of CDs per LC diagnosis. 

The same risk probability thresholds were applied to the full and NLST-eligible MILD cohorts for external 

validation. This analysis was repeated using external pre-scan risk models for LC risk (i.e., PLCOm2012 and 

LCRAT) and CD risk (i.e., CDRAT) (10,27), using risk probability thresholds based on model-dependent 

quintiles. McNemar’s test was used to determine whether the frequencies between the different low-

LC-high-CD groups were statistically different (28). 

 



 

Results 

Study participants 

Within five-years’ follow-up, 756 LC diagnoses (3.3%) and 800 competing deaths (3.5%) were reported in 

the derivation cohort (n=23096); 22 participants encountered both outcomes. The respective numbers 

in the validation cohort (n=2287) were 59 (2.6%) and 33 (1.4%), with two participants overlapping. On 

average, the NNS in the derivation and validation cohorts are 31 (23096/756) and 39 (2287/59), 

respectively. The respectively ratios of CDs per LC diagnosed within five years’ follow-up are 1.06 

(800/756) and 0.56 (33/59). Descriptive statistics are summarized in Table 1. 

Competing death risk prediction 

Three competing death risk models were derived; the variables and coefficients of the CDfinal, CDsurvey, 

and CDCT are reported in Tables 2, S1, and S2, respectively. AUC of CDfinal was 0.744 (95% confidence 

interval = 0.727 to 0.761), significantly greater than that of CDsurvey (0.707, 0.689 to 0.725) and CDCT 

(0.719, 0.701 to 0.737) (p<0.001) (Figure S2). Internal validation revealed an optimism no greater than 

0.006 (Table S3). The AUC of the CDRAT model was 0.677 (0.658 to 0.695), significantly inferior to that of 

CDsurvey (p<0.001). 

External validation resulted in AUCs of 0.744 (0.652 to 0.835), 0.721 (0.627 to 0.815), 0.756 (0.667 to 

0.844), and 0.725 (0.633 to 0.816) for CDfinal, CDsurvey, CDCT, and CDRAT, respectively (no statistically 

significant differences) (Figure S3). The calibration curves of CDfinal in the derivation and validation 

cohort are shown in Figures S4 and S5, respectively. Note that the deviation of the calibration curve 

from the diagonal in the validation cohort is caused by one outlier case (five-year CD risk probability = 

19.7%). 

Decision curve analysis of the CD models are available in the supplement (Figures S6, S7) (29). 



 

Stratification by lung cancer risk and competing death risk 

Figure 1 is a collection of three-dimensional column charts and two-by-two contingency tables divided 

into cells based on risk quintiles according to CDfinal (vertical axis) and LCifinal (horizontal axis). The cut-off 

values are reported in Table S4. Contingency tables for the validation cohort are given in Table S5 and 

Figure S6. 

Based on the 5-year risk estimate, we determined visually that participants with a LCifinal risk ≤0.79%, 

LCifinal risk ≤1.38% and CDfinal risk >2.93%, or LCifinal risk ≤2.18% and CDfinal risk >4.92% had a relatively 

high ratio (generally >3) of CDs per LC diagnosis. 27% (6258/23096) of the derivation cohort fit these 

criteria and were stratified into the low-LC-high-CD group (Table 3). 4% (29/756) of the LC cases and 20% 

(157/800) of the CDs occurred in this group; the NNS was 216 (full derivation cohort average = 31) and 

5.41 CDs occurred per LC diagnosis (average = 1.06). 

The same threshold risk probabilities were applied for external validation (Table 3). 34% (774/2287) of 

MILD participants fell into the low-LC-high-CD group, consisting of 10% (6/59) of the LC cases and 30% 

(10/33) of the CDs. The NNS was 129 (full validation cohort average = 39) and 1.67 CDs occurred per LC 

diagnosis (average = 0.56). When only considering NLST-eligible MILD participants, the resulting 

proportions, ratios, and NNS were closer to those from the derivation cohort. 

The performance of three external pre-scan models were also assessed using the same methods, first by 

combining LCRAT with CDRAT, then combining PLCOM2012 with CDRAT (Table 4). Note that the risk 

probability criteria were changed according to each model’s quintile cut-off points in the derivation 

cohort. Compared to the post-scan models, significantly more LC cases (p<0.001 for both LCRAT and 

PLCOM2012) and fewer CDs (p=0.048 for LCRAT and p=0.012 for PLCOM2012) were stratified to the low-LC-

high-CD groups based on pre-scan model risk. A similar trend was found in the validation cohort, but the 

differences between the pre- and post-test models were not statistically significant. In the NLST-eligible 



 

validation cohort, the external models resulted in a lower ratio of CDs per LC diagnosis in the low-LC-

high-CD group than in the high-LC-low-CD group. 

The outcomes of using CDCT, CDsurvey, or CDRAT for stratifying a low-LC-high-CD group given the same LC 

risk thresholds (LCifinal) are available for comparison in Table S6. 

 

Discussion 

Competing death risk prediction 

Three five-year CD risk prediction models were derived, including only self-reported patient 

demographics (CDsurvey), only QCTs (CDCT), or both (CDfinal). CDCT and CDfinal are the first models using the 

baseline CT scan for this purpose. CDsurvey and the external model CDRAT were used to quantify the 

added value of CT information in addition to pre-scan information (Figures S2, S3) (10). 

The discriminative performance of CDfinal was significantly superior to the other models in the derivation 

cohort (Figure S2). Due to the small differences in AUC and smaller sample size of MILD, no significant 

differences were determined between the models in the validation cohort (Figure S3). However, the 

trend remained that CT-based models (CDCT and CDfinal, 0.756 and 0.744, respectively) had a higher 

accuracy than pre-scan models (CDRAT and CDsurvey, 0.725 and 0.721, respectively). This suggests that a 

model based exclusively on QCTs (CDCT) may be a viable option for automatically calculating risk scores 

in a high-risk population. 

Assessment of model predictors 

The most notable observation of the variables included in CDfinal is the lack of nodule CT features. 

Despite there being a seemingly high correlation between the risks of LC and CD (Figures 1 and S6), 

nodule information is not sufficiently distinctive compared to the contribution of other risk factors of 

non-LC causes of death. In CDCT, only the presence of a solid opacity as the largest nodule was included; 

this had a negative beta coefficient, suggesting that participants with a nodule were more likely to 



 

encounter a LC death instead of a CD. In turn, QCTs of CVD and COPD significantly improved the 

accuracy of CDfinal and CDCT. It had been previously shown that these QCTs consistently contributed to 

the prediction of CVD death, COPD death, LC death, and LC incidence (17). 

Regarding measures of cardiovascular calcifications, we observed that a lower aorta mean calcium 

density was associated with a greater CD risk. A lower plaque density may indicate instability in an 

elderly population and therefore be more likely to be the cause of death (17,30,31). This population 

with overall high CVD risk may represent a niche for specific risk stratification as opposed to the 

Agatston score used in populations with much broader risk ranges (32). Conversely, a positive 

association was observed between mitral valve mean calcium density and CD risk (CDCT) which suggests 

that the pathophysiological mechanism of plaques is location dependent. 

No other unexpected relationships between the variables and CD were observed. Note that no tests for 

multi-collinearity or interactions between variables were performed for this study. Therefore, causative 

relations between variables and outcomes should not be deduced based solely on these findings. 

Stratification by lung cancer risk and competing death risk 

The NELSON results suggested that fixed screening intervals greater than two years are contraindicated 

(33,34). At the same time, the idea that screening intervals can be lengthened among participants 

determined to have a post-scan low LC risk is gaining momentum (2,11,12,17,22). Schreuder et al. (17) 

proposed screening intervals extending past two years among participants with a sufficiently low LC risk. 

However, an approach which focuses solely on LC risk may not be optimal because the potential 

benefits of early LC detection may be humbled by underlying competing morbidities. Other pre-scan risk 

models have hereby applied approaches based on the likelihood to survive LC screening, namely by 

predicting LC death risk (10,35) or life-years gained (4,5). 

Based on this idea that low-LC-high-CD participants are less likely to benefit from LC screening, we 

propose to consider multidisciplinary follow-up among a small group of individuals. This may involve 



 

proactive trajectories according to cardiac and respiratory disease management guidelines for 

participants who are not yet under the care of a physician. An example of opportunistic risk assessment 

is given by the Manchester Lung Screening Pilot, which found that 47% of the participants at high risk of 

CVD (QRISK2 score ≥10%) were not taking lipid-lowering medication which is indicated for primary 

prevention (36). 

Additionally, a longer screening interval of up to five years can be considered based on post-scan risk 

prediction. In the derivation cohort, one fourth (27%, 6258/23096) of the screenees would have 

received a counter-indication to continue participating. This would be at the expense of delaying the LC 

diagnosis in 4% (29/756) of the participants who would develop LC. We considered this a pessimistic 

estimate because the analysis did not consider participants undergoing additional follow-up CTs in 

response to suspicious findings in the baseline scan (4/29 participants were diagnosed within one year 

of the baseline scan); this group also includes participants which were both diagnosed with LC and 

encountered a CD (1/29). In exchange, 6229 people may have hypothetically avoided four annual 

screening rounds which would not have resulted in a LC diagnosis. 2.5% (157/6258) of low-LC-high-CD 

participants encountered competing deaths within five years, equivalent to 20% of all CDs (157/800). 

We caution that advocating no further screening may negate some of the positive psychological 

benefits, e.g., interest in lifestyle advice (37). 

Using the same risk probability thresholds, a similar trend occurred in the validation cohort. A greater 

proportion of participants fell within the low-LC-high-CD group (34%, 774/2287) because the median 

five-year calibrated LC incidence risk was lower than in the derivation cohort (1.28% and 1.73%, 

respectively); this was despite the median CD risk also being lower (1.40% and 2.36%, respectively). This 

would have resulted in a greater proportion of both LC diagnoses (10%, 6/59) and CDs (30%, 10/33) 

within the low-LC-high-CD group. 



 

Compared to pre-scan models, using LCifinal and CDfinal resulted in higher values for both the NNS and CDs 

per LC diagnosis in the low-LC-high-CD group. The differences were not statistically significant in the 

validation cohort despite the similar trend. The risk thresholds used for stratification in our study were 

merely suggestive; we encourage adjusting the thresholds to satisfy each screening program’s aims and 

values. At certain thresholds, a pre-scan CD model may even perform equivalently to a post-scan CD 

model. 

Limitations 

The primary limitation is that the external validation cohort had a low number of events of interest 

(<100). This was reflected in the wide confidence intervals. It was therefore also not considered useful 

to calibrate or retrain the model to MILD data. Once more LC screening CT data becomes available, 

more extensive model validation is recommended before considering implementation in practice. 

Not having used Cox proportional hazards regression to model CD also introduces possible biases 

related to censoring (i.e., loss to follow-up) and competing risk from LC-specific mortality. However, 

logistic regression does not need to assume proportional hazards and is easier to interpret and 

implement as a risk model, which was sufficient for the purpose of this study (38,39). Though the 

coefficients of logistic regression may be a bit inflated compared to those from Cox regression, it is the 

predictive performance rather than the association between the predictors and outcome which is 

relevant. Also consider that the interpretation is complicated by ignoring the fact that most participants 

who died of LC were reported to have multiple secondary causes of death. The risk score was arbitrarily 

restricted to a five-year post-scan period to limit the loss to follow-up while being considerably longer 

than the standard one-year screening interval. 

Another limitation is that nodule diameter was measured manually in the NLST (no volumetric data 

available), and only the data from the nodule with the longest diameter was considered when multiple 

nodules were detected. Volume (or mean diameter) obtained by semi-automatic software would offer 



 

better discrimination (40,41). Whereas nodule size is the most predictive variable for malignancy (given 

a single scan), this risk can be further modified based on other features, mainly nodule type, location, 

and presence of spiculation (11,13,17). Note that nodule spiculation was not recorded by MILD. Also, 

QCTs automatically obtained from scans with slice thickness greater than 1 mm (namely from the NLST) 

may not be reliable (i.e., emphysema score, Pi10, calcium scores). Another possible issue with the 

measurement of CT calcium volume and density is that the scans were not ECG-gated, but prior studies 

indicate a strong predictive value (42) and high concordance with gated calcium scores (43). 

Future directions 

Additional diagnostic interventions (usually in the form of follow-up CTs) are recommended for nodules 

with an indeterminate malignancy risk (44,45). In current screening practice, this additional work up 

does not affect the timing of the subsequent annual screening rounds. We hypothesize that it would be 

of added value to know the outcome of additional diagnostic tests before deciding on post-scan 

screening eligibility (or screening interval length). Besides nodule growth, the availability of follow-up 

scans would enable the estimation of CVD and COPD progression rates. An alternative would be to 

manage nodules independently of other decisions: for example, a low-LC-high-CD participant with an 

indeterminate nodule would still be followed-up according to nodule guideline recommendations while 

being ineligible for further screening. Regardless, future studies should simulate decision trees at 

multiple time points while taking time-varying risk factors into consideration. 

Conclusion 

We derived five-year CD risk models using either self-reported patient characteristics (CDsurvey), chest CT 

image biomarkers (CDCT), or both (CDfinal). QCTs of CVD and COPD were included in the CT-based models; 

pulmonary nodule morphological features were not found to be significant predictors. CT information 

provides an added value to the AUC of at least two percentage points. In a high-risk screening 

population, there may be little or no added value of patient demographics for predicting CD when QCTs 



 

have been extracted: a CT scan alone may elucidate personalized susceptibility to smoke damage, aging, 

and other risk factors for CD. 

By calculating both post-scan LC incidence risk (LCifinal) and CD risk (CDfinal), a group of participants with a 

relatively low risk of the former and high risk of the latter can be identified (low-LC-high-CD). This means 

that the baseline scan can be used to help identify participants who may benefit from multidisciplinary 

action and can safely be recommended longer screening intervals. Using our suggested criteria for 

contra-indicating LC screening participation within the next five years may reduce the number of 

screenees by approximately one-fourth, of whom more than 200 would need to continue participating 

to detect one LC. Valuable health care resources could simultaneously be redirected towards the 

prevention of common competing deaths among low-LC-high-CD participants.  
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Figure captions 
 

 

Figure 1: Outcomes per lung cancer and competing death risk quintile (derivation cohort) 
Three-dimensional column charts of (a) lung cancer diagnoses, (b) competing deaths, (c) screening participants, 
and (d) competing deaths per lung cancer diagnosis (y-axis truncated at 10). Each competing death risk quintile is 
differently shaded, where a darker shade corresponds to a higher risk. The columns are divided into grey and 
orange columns indicating the suggested separation of screening participants into a group which should continue 
to be screened (grey) and a group with a relatively low lung cancer risk and high risk of competing death (orange). 

Q#, risk quintile where Q1 represents the lowest quintile and Q5 the highest. 

 



 

Table 1: Distribution of variables by five-year competing death event or not 

Variables Derivation cohort 
(NLST) 

 Validation cohort 
(MILD) 

 

 Competing death 
(n=800) 

No competing 
death (n=22296) 

Competing death 
(n=33) 

No competing 
death (n=2254) 

Patient characteristics    

Age (SD), years 63.6 (5.5) 61.3 (5.0) 62.8 (5.8) 57.5 (5.9) 
Female sex (%) 223 (27.9) 9286 (41.6) 8 (24.2) 717 (31.8) 
Race or ethnicity     
     White (%) 714 (89.3) 19963 (89.5) 33 (100) 2250 (99.8) 
     Black (%) 51 (6.4) 1000 (4.5) 0 0 
     Asian (%) 6 (0.8) 542 (2.4) 0 2 (0.1) 
     Hispanic (%) 7 (0.9) 335 (1.5) 0 1 (0.0) 
     Mixed or other (%) 22 (2.8) 456 (2.0) 0 1 (0.0) 
Educational level (SD), 0-5 3.6 (1.7) 3.7 (1.6) 1.7 (1.5)b 1.4 (1.4)b 

BMI (IQR), kg/m2 27.1 (24.0 to 30.9) 27.2 (24.4 to 30.5) 26.1 (22.4 to 30.5) 25.7 (23.5 to 28.4) 
Current smoker (%) 455 (56.9) 10564 (47.4) 22 (66.7) 1544 (68.5) 
Smoking intensity (IQR), pack years 54 (43 to 76) 48 (39 to 66) 45 (34 to 59) 39 (32 to 51) 
Smoking duration (SD), years 43.2 (7.4) 39.7 (7.3) 43.1 (7.1) 38.1 (6.7) 
Smoking quit time (IQR), yearsa 7 (3 to 12) 8 (4 to 12) 4 (2 to 6) 5 (3 to 8) 
Lung cancer in family     

1 (%) 141 (17.6) 4088 (18.3) 3 (9.1) 550 (24.4) 
≥2 (%) 30 (3.8) 712 (3.2) NA NA 

Work asbestos (%) 58 (7.3) 1017 (4.6) 2 (6.1) 195 (8.7) 
COPD diagnosis (%) 217 (27.1) 3943 (17.7) 6 (18.2) 266 (11.8) 
Asthma diagnosis (%) 102 (12.8) 2158 (9.7) 3 (9.1) 143 (6.3) 
Diabetes diagnosis (%) 145 (18.1) 2062 (9.2) 4 (12.1) 132 (5.9) 
Heart disease diagnosis (%) 195 (24.4) 2707 (12.1) 4 (12.1) 277 (12.3) 
Hypertension diagnosis (%) 363 (45.4) 7665 (34.4) 14 (42.4) 619 (27.5) 
Stroke diagnosis (%) 58 (7.3) 565 (2.5) 2 (6.1) 20 (0.9) 

Nodule CT features     
Nodule attenuation     

No nodule (%) 600 (75.0) 16296 (73.1) 18 (54.5) 980 (43.5) 
Solid (%) 152 (19.0) 4636 (20.8) 11 (33.3) 1004 (44.5) 



 

Partsolid (%) 14 (1.8) 359 (1.6) 0 61 (2.7) 
Nonsolid (%) 34 (4.3) 1005 (4.5) 4 (12.1) 209 (9.3) 

Longest diameter (IQR), mma 7 (5 to 11) 6 (5 to 9) 4.6 (3.7 to 8.5) 4.9 (3.5 to 7.4) 
Perpendicular diameter (IQR), mma 5 (4 to 8) 5 (4 to 7) 3.5 (3.0 to 5.1) 3.9 (2.8 to 5.8) 
Nodule in upper lobe (%)a 88 (41.7) 2496 (39.1) 7 (21.2) 370 (16.4) 
Nodule spiculation (%)a 30 (14.2) 789 (12.4) NA NA 
Nodule count (IQR)a 1 (1 to 2) 1 (1 to 2) 1 (1 to 2) 1 (1 to 2) 

Quantitative CT measures of CVD   
Coronary calcium volume (IQR), mm3 188 (36 to 788) 48 (2 to 267) 114 (21 to 466) 23 (0 to 154) 
Coronary mean calcium density (IQR), HU 226 (190 to 264) 207 (141 to 251) 286 (227 to 314) 255 (0 to 311) 
Transthoracic aorta calcium volume (IQR), 
mm3 

1134 (314 to 2894) 403 (89 to 1282) 948 (200 to 2992) 200 (45 to 694) 

Transthoracic aorta mean calcium density 
(IQR), HU 

326 (277 to 377) 311 (251 to 378) 418 (375 to 451) 434 (363 to 523) 

Mitral valve calcium volume (IQR), mm3 0 (0 to 18) 0 (0 to 0) 0 (0 to 2) 0 (0 to 0) 
Mitral valve mean calcium density (IQR), HU 0 (0 to 206) 0 (0 to 0) 0 (0 to 203) 0 (0 to 0) 
Aortic valve calcium volume (IQR), mm3 0 (0 to 20) 0 (0 to 0) 0 (0 to 33) 0 (0 to 0) 
Aortic valve mean calcium density (IQR), HU 0 (0 to 181) 0 (0 to 0) 0 (0 to 241) 0 (0 to 0) 

Quantitative CT measures of COPD   

Total lung volume (IQR), liters 5.6 (4.7 to 6.7) 5.4 (4.5 to 6.4) 6.2 (5.2 to 6.9) 5.9 (5.1 to 6.8) 
Mean lung density (IQR), HU -834 (-857 to -808) -839 (-858 to -815) -845 (-872 to -834) -846 (-861 to -828) 
Emphysema score (IQR) 0.39 (0.08 to 1.77) 0.24 (0.05 to 1.12) 0.08 (0.00 to 1.22) 0.03 (0.00 to 0.17) 
Pi10 (IQR) 3.0 (2.5 to 3.6) 2.8 (2.3 to 3.3) 2.5 (2.2 to 3.0) 2.4 (2.2 to 2.6) 

a Of those applicable; regarding nodule features, applies to only the nodule with the longest diameter. 
b On a scale of 0 to 4. 
Continuous variables with a normal distribution are given in mean and SD; continuous variables with a non-normal distribution are given in median and IQR; 
categorical variables are given in %. Educational level: a categorical variable applied as a continuous variable, where 0 = did not complete high school, 1 = high 
school graduate, 2 = post high school training but no college, 3 = some college, 4 = bachelor’s degree, and 5 = graduate school or higher. Lung cancer in family: 
number of first-degree family members diagnosed with lung cancer (a value of “2” was given when two or more family members were diagnosed). COPD 
diagnosis: includes prior diagnosis of COPD, emphysema, and/or chronic bronchitis. Mean lung density was centered at -1000. Inter-cohort statistics are 
reported by Schreuder et al. (17). 
BMI, body-mass index; COPD, chronic obstructive pulmonary disease; CVD, cardiovascular disease; HU, Hounsfield units; IQR, interquartile range; MILD, 
Multicentric Italian Lung Detection; NA, not applicable; NLST, National Lung Screening Trial; Pi10, measure of bronchial wall thickness; SD, standard deviation. 



 

Table 2: Final competing death risk model (CDfinal) 

Variable Beta coefficient Odds ratio 95% CI P value 

Model intercept -3.73776 0.02 0.01 to 0.10 <0.001 

Age, per year 0.02399 1.02 1.01 to 1.04 0.006 

Sex, female -0.54489 0.58 0.49 to 0.69 <0.001 

White race, reference N/A N/A N/A N/A 

 Black race, yes 0.39969 1.49 1.08 to 2.01 0.011 

 Asian race, yes -1.24615 0.29 0.11 to 0.60 0.003 

 Hispanic race, yes -0.36998 0.69 0.29 to 1.37 0.341 

 Mixed or other race, yes 0.34995 1.42 0.88 to 2.16 0.123 

Body mass index, per kg/m2* 3.35128 28.54 5.52 to 143.16 <0.001 

Current smoker, yes 0.27488 1.32 1.11 to 1.56 0.002 

Smoking duration, per year* -0.04392 0.96 0.92 to 0.99 0.016 

Hypertension diagnosis, yes 0.12417 1.13 0.97 to 1.32 0.118 

Diabetes diagnosis, yes 0.45764 1.58 1.29 to 1.93 <0.001 

Heart disease diagnosis, yes 0.20551 1.23 1.01 to 1.48 0.034 

Stroke diagnosis, yes 0.55247 1.74 1.28 to 2.32 <0.001 

Asthma diagnosis, yes 0.33797 1.40 1.11 to 1.75 0.004 

COPD diagnosis, yes 0.25723 1.29 1.08 to 1.54 0.004 

Emphysema score, per point 0.05331 1.05 1.04 to 1.07 <0.001 

Bronchial wall thickness (Pi10), per point 0.16154 1.18 1.06 to 1.30 0.001 

Mean lung density, per HU* -1.83652 0.16 0.08 to 0.33 <0.001 

Aorta calcium volume, per mm3* 0.18081 1.20 1.14 to 1.26 <0.001 

Aorta calcium mean density, per HU* -1.53207 0.22 0.09 to 0.50 0.001 

Coronary calcium volume, per mm3* 0.14995 1.16 1.05 to 1.28 0.003 

Mitral valve calcium volume, per mm3* 0.06940 1.07 1.05 to 1.10 <0.001 
* Transformed as follows: (body mass index/10)-2; (smoking duration/100)-2; ((mean lung density + 1000)/100)-1; 

ln((aorta calcium volume + 0.1)/1000); (aorta calcium mean density/1000); (coronary calcium volume/1000); 

ln((mitral valve calcium volume + 0.1)/100). 

To calculate the five-year risk probability of lung cancer incidence, first find the sum of the products of each 

(transformed) variable and their respective beta coefficient to obtain the linear predictor, then insert the value 

into the following equation: 
1

1+𝑒−(𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟) 

CI, confidence intervals.  



 

Table 3: Clinical outcomes of risk stratification 

Risk models used  Risk group Participants 
(%) 

5-year LC 
diagnoses 
(%) 

5-year CDs 
(%) 

Number needed 
to screen to 
detect 1 LC 

CDs per LC 
diagnosis 

Derivation cohort (NLST) 

LCifinal & CDfinal 
High-LC-low-CD 16838 (73) 727 (96) 643 (80) 23 0.88 
Low-LC-high-CD 6258 (27) 29 (4) 157 (20) 216 5.41 

LCRAT & CDRAT 
High-LC-low-CD 17335 (75) 677 (90) 668 (84) 26 0.99 
Low-LC-high-CD 5761 (25) 79 (10) 132 (16) 73 1.67 

PLCOM2012 & 
CDRAT 

High-LC-low-CD 17277 (75) 686 (91) 675 (84) 25 0.99 
Low-LC-high-CD 5819 (25) 70 (11) 125 (16) 83 1.79 

 
Full derivation 
cohort 

23096 (100) 756 (100) 800 (100) 31 1.06 

Validation cohort (MILD) 

LCifinal & CDfinal 
High-LC-low-CD 1513 (66) 53 (90) 23 (70) 29 0.43 
Low-LC-high-CD 774 (34) 6 (10) 10 (30) 129 1.67 

LCRAT & CDRAT 
High-LC-low-CD 1511 (66) 48 (81) 22 (67) 31 0.46 
Low-LC-high-CD 776 (34) 11 (19) 11 (33) 71 1.00 

PLCOM2012 & 
CDRAT 

High-LC-low-CD 1568 (69) 51 (86) 28 (85) 31 0.55 
Low-LC-high-CD 719 (31) 8 (14) 5 (15) 90 0.63 

 Full validation 
cohort 

2287 (100) 59 (100) 33 (100) 39 0.56 

NLST-eligible validation cohort (MILD) 

LCifinal & CDfinal 
High-LC-low-CD 980 (80) 44 (94) 18 (72) 22 0.41 
Low-LC-high-CD 245 (20) 3 (6) 7 (28) 82 2.33 

LCRAT & CDRAT 
High-LC-low-CD 995 (81) 39 (83) 21 (84) 26 0.54 
Low-LC-high-CD 230 (19) 8 (17) 4 (16) 29 0.50 

PLCOM2012 & 
CDRAT 

High-LC-low-CD 1088 (89) 43 (91) 25 (100) 25 0.58 
Low-LC-high-CD 137 (11) 4 (9) 0 (0) 34 0.00 

 NLST-eligible 
validation cohort 

1225 (100) 47 (100) 25 (100) 26 0.53 

CD, competing death; CDfinal, final competing death model; CDRAT, Competing Death Risk Assessment Tool (10); 
High-LC-low-CD, risk group considered to have a relatively high LC risk and low risk of competing death (criteria 

described in the Figure 1 caption); LC, lung cancer; LCifinal, final lung cancer incidence model; LCRAT, Lung Cancer 

Risk Assessment Tool; Low-LC-high-CD, risk group considered to have a relatively low LC risk and high risk of 

competing death; MILD, Multicentric Italian Lung Detection; NLST, National Lung Screening Trial, PLCOM2012, 

Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Model 2012. 
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Methods 

Data selection (NLST) 
We obtained baseline patient characteristics, nodule features, follow-up outcomes, and chest CT images from 

National Lung Screening Trial (NLST) participants (1). The data was cleaned (missing data was given blank values) and 

new patient characteristics variables were created, i.e., body mass index (BMI), time since smoking quit, number of 

first-degree family members diagnosed with lung cancer, diagnosis of any cancer prior to trial, the follow-up time 

from randomization to event or date last known alive, and disease-specific causes of death (as determined by the 

endpoint verification process [EVP] and death certificate). Lung cancer mortality, lung cancer incidence, and other 

causes of death were provided. 

In the NLST data set, the variables race, ethnicity and education were separated into the following categories: Race 

was divided into White, Black or African-American, Asian, American Indian or Alaskan native, Native Hawaiian or 

other Pacific Islander, and more than one race; ethnicity was binary: Hispanic or Latino, or neither; educational level 

completed ranged from 8th grade or less, 9th to 11th grade, high school graduate or General Educational 

Development, post high school training (excluding college), associate degree or some college, bachelor’s degree, 

graduate school, and other. As most other studies and models did not record race and ethnicity as separate 

variables, we merged ethnicity with race by allocating all participants who had both a Hispanic or Latino ethnicity 

and White race into a new race category (Hispanic or Latino). Furthermore, due to the low prevalence (<1%) of the 

race groups “American Indian or Alaskan native” and “Native Hawaiian or other Pacific Islander” and the ambiguity 

of the “mixed” race group, the three were merged to form the “mixed or other” group. To make the education 

variable more applicable to other educational systems and due to their low frequencies, “8th grade or less” and “9th 

to 11th grade” were merged as “did not complete high school,” and “graduate school” and “other” were merged to 

“graduate school or higher.” Furthermore, education is a categorical variable but was applied as a continuous 

variable similar to in the PLCOm2012 (2); “11th grade or less” was set zero, plus one per increase in level up to five. 

Age (years) and sex (male vs female) were considered for all models. Detailed patient characteristics (which would 

normally only be obtained via a survey) were race or ethnicity (White, Black or African-American, Asian, Hispanic or 

Latino, or mixed or other), educational level (range: 0 to 5), BMI (kg/m2), smoking status (current vs former), 

smoking intensity (pack years), smoking duration (years), smoking quit time (years, 0 if current smoker), number of 

first-degree family members diagnosed with lung cancer (range: 0 to 2 [a value of “2” was given when two or more 

family members were diagnosed due to a very low prevalence of those with three or more]), exposure to asbestos at 

work for at least one year (yes vs no), and the prior diagnosis of chronic obstructive pulmonary disease (COPD), 

asthma (child or adult), diabetes, heart disease, hypertension, and stroke (yes vs no). The prior diagnosis of COPD 

was also considered positive if the subject had a prior diagnosis of chronic bronchitis and/or emphysema. The NLST 

listed other diseases in their survey, but these were not available in the MILD cohort and were therefore not 

considered for modelling. 

The list of prospectively detected pulmonary nodules as reported by radiologists who participated in the NLST was 

used. The following nodule features were considered in our study: longest diameter (mm), longest perpendicular 

diameter (mm), attenuation (solid [soft tissue], nonsolid [ground glass], or partsolid [mixed]), upper lobe location 

(yes vs no), spiculation (yes vs no), and nodule count. If more than one nodule was recorded, the features of the 

nodule with the longest diameter was used; subjects who did not have a nodule were given a null value for all 

nodule features. Note that the NLST only reported non-calcified nodules of at least 4 mm in longest diameter. 

Nodules reported to have a longest diameter of 20 mm or greater were visually inspected and corrected if necessary. 

Validation data set preparation (MILD) 
We obtained baseline patient characteristics, nodule features, follow-up outcomes, and chest CT images from 

Multicentric Italian Lung Detection (MILD) trial participants. The data was cleaned (missing data was given blank 

values) and the variables were created and transformed to be interchangeable with that of the NLST. Educational 

level was available in five levels: elementary school graduate, middle school graduate, high school graduate, 

university attendee, business school graduate, and bachelor’s degree. “elementary school graduate” and “middle 

school graduate” were classified as “did not complete high school,” “university attendee” was classified as “post high 

school training (excluding college),” and “business school graduate” was classified as “associate degree or some 



college.” The “first-degree family members diagnosed with lung cancer” variable only mentions whether there was 

at least one or none; the exact number is not given. All other patient characteristics variables selected from the NLST 

were available. 

We utilized the MILD data set of lung nodules retrospectively detected using computer-aided diagnosis, which does 

not correspond to the data set of nodules retrospectively detected by computer-aided diagnosis (3,4). Only a 

maximum of five nodules were reported per scan per time point; nodules only counted in the nodule count if larger 

than or equal to 20 mm3 in volume. The same nodule features as from the NLST were considered except for 

spiculation, which was not available and therefore given a null value when applicable. The longest perpendicular 

diameter was considered the longest diameter in one of the other two planes which was not the plane which the 

longest diameter was measured.  

Quantitative CT measures 
The CT images were used to obtain quantitative CT measures (QCT) of CVD – calcium volume and mean density of 

the coronary arteries, mitral valve, aortic valve, and transthoracic aorta (5,6) – and chronic obstructive pulmonary 

disease (COPD) – lung volume, mean lung density, normalized emphysema score (the percentage of lung voxels 

below -950 HU after resampling the CT images to 3mm slice thickness, normalization, and bullae analysis) (7), and 

bronchial wall thickness (Pi10, the square root of the airway wall area for a theoretical 10mm lumen perimeter 

airway derived using the linear regression of the square root of segmented wall area against the lumen 

perimeter)(8). As quality control, cases with extreme outlier values were excluded, i.e., mean lung density > -300 HU, 

mean lung density < -1000 HU, Pi10 < 0.8, and Pi10 > 6.5. 

Data set formation 
The primary NLST subject inclusion criterion was the availability of a baseline CT image of slice thickness ≤2.5 mm. 

Participants with missing data on lung cancer incidence, death status, time of event, nodule features, QCTs of CVD, 

or QCTs of COPD were excluded from the NLST cohort (Figure 1). All remaining participants who were diagnosed 

with lung cancer, all who died within the study period, and a random sample of all other participants from the CT 

screening cohort up to a maximum of 15000 unique subjects were included in the NLST cohort. This was due to the 

limit of NLST CT images used for one project set by the Cancer Data Access System, project ID “NLST-437. 

Subsequently, the proportion of non-deceased participants without a lung cancer diagnosed were resampled 

without replacement to simulate the full NLST cohort. This was calculated by taking the proportion of deceased or 

participants diagnosed with lung cancer included in our study out of those in the CT arm with a baseline scan, then 

applying that proportion to the non-deceased participants without a lung cancer diagnosis in the CT arm with a 

baseline scan to obtain the total number of non-deceased participants without a lung cancer diagnosis who should 

be included after resampling. This was to maintain the original probabilities of events which occurred in the NLST, in 

turn preventing the models from overestimating the risk. Resampling was not necessary for the validation cohort as 

there were no limitations on CT image usage. Furthermore, almost all CT images from MILD were available in 1 mm 

slice thickness (2271/2287, 99.3%). 

Mean lung density was centered to –1000 HU (i.e., 1000 was added to the actual value of the mean lung density) to 

circumvent modelling issues with negative values. 

Multiple imputation using the ‘mice’ function (R package ‘mice’, ‘cart’ method) was performed to impute missing 

data using classification and regression trees. Of the 15000 NLST subjects included in the NLST data set (before 

resampling), there was missing data from race (n=13), education (n=21), BMI (n=41), first-degree family history of 

lung cancer (n=623), exposure to asbestos at work (n=20), and the prior diagnoses of COPD (n=43), asthma (n=15), 

diabetes (n=14), heart disease (n=33), hypertension (n=16), and stroke (n=14). 

2303 subjects were considered for the validation cohort. Of these, 8/2303 (0.3%) were not part of the first screening 

round and 9/2303 (0.4%) were missing baseline scans. Of the 2287 subjects included, some QCTs of CVD (n=24) and 

Pi10 values (n=132) could not be extracted from the scans; in contrast to excluding these cases as was done with the 

NLST cohort, the missing values were replaced with the corresponding median values from the MILD cohort set to 

avoid excluding cases. 

  



Equations S1: Final lung cancer incidence model equation (LCifinal) 
 
𝐿𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

= (𝑓𝑒𝑚𝑎𝑙𝑒 × 0.12611) + (
𝐵𝑀𝐼

10
× (−0.19128)) + ((

𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

100
)

−2

× (−0.10613))

+ (
𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

10
× 0.25895) + (

𝑠𝑚𝑜𝑘𝑖𝑛𝑔 𝑞𝑢𝑖𝑡 𝑡𝑖𝑚𝑒

10
× (−0.30764))

+ (𝑙𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟 𝑖𝑛 𝑓𝑎𝑚𝑖𝑙𝑦 × 0.18273) + (ln(𝑒𝑚𝑝ℎ𝑦𝑠𝑒𝑚𝑎 𝑠𝑐𝑜𝑟𝑒 + 0.1) × 0.18683)

+ ((
𝑚𝑒𝑎𝑛 𝑙𝑢𝑛𝑔 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 1000

100
)

−1

× (−0.74125)) + (𝑃𝑖10 × 0.09703)

+ (ln (
𝑎𝑜𝑟𝑡𝑎 𝑐𝑎𝑙𝑐𝑖𝑢𝑚 𝑣𝑜𝑙𝑢𝑚𝑒 + 0.1

100
× 0.17668))

+ ((
𝑎𝑜𝑟𝑡𝑎 𝑐𝑎𝑙𝑐𝑖𝑢𝑚 𝑚𝑒𝑎𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 0.1

100
)

0.5

× (−0.57768))

+ ((
𝑛𝑜𝑑𝑢𝑙𝑒 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 + 1

10
)

−2

× (−0.44997))

+ ((
𝑛𝑜𝑑𝑢𝑙𝑒 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 + 1

10
)

−2

× 𝑙𝑛 (
𝑛𝑜𝑑𝑢𝑙𝑒 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 + 1

10
) × (−0.22010))

+ (ln(𝑛𝑜𝑑𝑢𝑙𝑒 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 + 1) × 1.20812) + (𝑛𝑜𝑑𝑢𝑙𝑒 𝑖𝑛 𝑢𝑝𝑝𝑒𝑟 𝑙𝑜𝑏𝑒 × 0.22769)
+ (𝑠𝑝𝑖𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑛𝑜𝑑𝑢𝑙𝑒 × 0.64707) 

 

 

𝑁𝐿𝑆𝑇 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ℎ𝑎𝑧𝑎𝑟𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝐻0(𝑡)𝑙𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒

= 0.0018772 + 0.021448 ×
t + 1

1000
+ (−0.0059062) ×

(t + 1)(ln(t + 1))

1000
 

(where t is the follow-up time in days; for 5 years follow-up, this equals 1826) 

 

 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑆(𝑡)

= exp(−𝑒𝑥𝑝(𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 −  𝑁𝐿𝑆𝑇 𝑚𝑒𝑎𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 ) × 𝐻0(𝑡)𝑙𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒) 

(where NLST mean linear predictor = 0.10129) 

 

 

𝐹𝑖𝑣𝑒 − 𝑦𝑒𝑎𝑟 𝑙𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑟𝑖𝑠𝑘 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑢𝑛𝑔 𝑆𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔 𝑇𝑟𝑖𝑎𝑙

= 𝑆(𝑡) × 0.60343 + 0.39822 

 

 

𝐹𝑖𝑣𝑒 − 𝑦𝑒𝑎𝑟 𝑙𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑟𝑖𝑠𝑘 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑀𝑢𝑙𝑡𝑖𝑐𝑒𝑛𝑡𝑟𝑖𝑐 𝐼𝑡𝑎𝑙𝑖𝑎𝑛 𝐿𝑢𝑛𝑔 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑟𝑖𝑎𝑙

= 𝑆(𝑡) × 0.85413 + 0.14396 

  



 

Table S1: Self-reported demographics-based competing mortality risk model (CDsurvey) 
Variable Beta coefficient Odds ratio 95% CI P value 

Model intercept -7.25928 0.00 0.00 to 0.00 <0.001 

Age, per year 0.05829 1.06 1.04 to1.08 <0.001 

Sex, female -0.58787 0.56 0.47 to 0.65 <0.001 

White race, reference N/A N/A N/A N/A 

 Black race, yes 0.22484 1.25 0.917 to 1.68 0.143 

 Asian race, yes -1.41522 0.24 0.10 to 0.50 0.001 

 Hispanic race, yes -0.50493 0.60 0.26 to 1.19 0.191 

 Mixed or other race, yes 0.25358 1.29 0.81 to 1.96 0.261 

Body mass index, per kg/m2* 2.30426 10.02 2.12 to 46.00 0.003 

Current smoker, yes 0.36904 1.45 1.22 to 1.71 <0.001 

Smoking duration, per year* -0.06592 0.94 0.90 to 0.97 <0.001 

Hypertension diagnosis, yes 0.24762 1.28 1.10 to 1.49 0.001 

Diabetes diagnosis, yes 0.59631 1.82 1.48 to 2.21 <0.001 

Heart disease diagnosis, yes 0.48109 1.62 1.48 to 2.21 <0.001 

Stroke diagnosis, yes 0.65990 1.93 1.43 to 2.58 <0.001 

Asthma diagnosis, yes 0.32387 1.38 1.10 to 1.72 0.005 

COPD diagnosis, yes 0.37986 1.46 1.23 to 1.73 <0.001 

* Transformed as follows: (body mass index/10)-2; (smoking duration/100)-2 

To calculate the five-year risk probability of lung cancer incidence, first find the sum of the products of each 

(transformed) variable and their respective beta coefficient to obtain the linear predictor, then insert the value into 

the following equation: 
1

1+𝑒−(𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟) 

CI, confidence intervals.  



Table S2: CT-based competing mortality risk model (CDCT) 
Variable Beta coefficient Odds ratio 95% CI P value 

Model intercept -3.73187 0.02 0.01 to 0.08 <0.001 

Age, per year 0.03097 1.03 1.02 to 1.05 <0.001 

Sex, female -0.47135 0.62 0.53 to 0.74 <0.001 

Emphysema score, per point 0.06217 1.06 1.05 to 1.08 <0.001 

Bronchial wall thickness (Pi10), per point 0.20689 1.23 1.12 to 1.35 <0.001 

Mean lung density, per HU* -2.02753 0.13 0.07 to 0.26 <0.001 

Aorta calcium volume, per mm3* 0.21075 1.23 1.17 to 1.30 <0.001 

Aorta calcium mean density, per HU* -1.52263 0.22 0.09 to 0.51 0.001 

Coronary calcium volume, per mm3* 0.19567 1.22 1.11 to 1.33 <0.001 

Mitral valve calcium volume, per mm3* 0.25931 1.30 1.06 to 1.56 0.009 

Mitral valve calcium mean density, per HU* 0.04676 1.05 1.02 to 1.07 <0.001 

Solid nodule (largest nodule), present -0.22020 0.80 0.67 to 0.96 0.0183 

* Transformed as follows: ((mean lung density + 1000)/100)-1; ln((aorta calcium volume + 0.1)/1000); (aorta calcium 

mean density/1000); (coronary calcium volume/1000); (mitral valve calcium volume/1000); ln((mitral valve calcium 

mean density+0.1)/100). 

To calculate the five-year risk probability of lung cancer incidence, first find the sum of the products of each 

(transformed) variable and their respective beta coefficient to obtain the linear predictor, then insert the value into 

the following equation: 
1

1+𝑒−(𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟) 

CI, confidence intervals.  



Table S3: Internal validation competing death risk models 
Model Original sample AUC (%) 

(95% confidence interval) 

Bootstrap sample AUC (%) 

(95% confidence interval) 

Optimism 

 
5-year 5-year 5-year 

CDSurvey 0.704 (0.704 to 0.704) 0.710 (0.709 to 0.710) 0.006 

CDCT 0.717 (0.717 to 0.717) 0.720 (0.720 to 0.721) 0.003 

CDfinal 0.740 (0.740 to 0.741) 0.746 (0.746 to 0.747) 0.006 

One thousand bootstrap replications were performed for each model and time point. The optimism is the difference 

between the average bootstrap sample AUC and original sample AUC; a greater value indicates more overfitting. 

AUC, receiver operating characteristic area under the curve; CD, competing death. 

  



Table S4: Contingency table of outcomes per risk quintile (derivation cohort) 

    Lung cancer incidence risk (LCifinal) 

    Q1: ≤0.79% Q2: 0.79%-1.38% Q3: 1.38-2.18% Q4: 2.18-3.85% Q5: >3.85% 

Total 
participant 

count 
(n=23096) 

C
o

m
p

et
in

g 
d

ea
th

 r
is

k 
(C

D
fi

n
al

) 

Q1: ≤1.11% 2578 (12) 1129 (5) 515 (2) 234 (1) 140 (1) 

Q2: 1.11-1.90% 1128 (5) 1467 (7) 1058 (5) 623 (3) 281 (1) 

Q3: 1.90%-2.93% 555 (3) 1071 (5) 1237 (6) 1064 (5) 507 (2) 

Q4: 2.93-4.92% 266 (1) 629 (3) 1124 (5) 1407 (6) 888 (4) 

Q5: >4.92% 92 (0) 322 (1) 686 (3) 1291 (6) 1756 (8) 

5-year lung 
cancer 

diagnoses 
(n=756) 

Q1: ≤1.11% 4 (1) 9 (1) 4 (1) 6 (1) 23 (3) 

Q2: 1.11-1.90% 0 (0) 8 (1) 9 (1) 11 (1) 48 (6) 

Q3: 1.90%-2.93% 3 (0) 9 (1) 18 (2) 33 (4) 80 (11) 

Q4: 2.93-4.92% 4 (1) 5 (1) 21 (3) 46 (6) 121 (16) 

Q5: >4.92% 1 (0) 3 (0) 9 (1) 40 (5) 241 (32) 

5-year 
competing 

deaths 
(n=800) 

Q1: ≤1.11% 20 (3) 3 (0) 7 (1) 1 (0) 1 (0) 

Q2: 1.11-1.90% 21 (3) 20 (3) 16 (2) 10 (1) 13 (2) 

Q3: 1.90%-2.93% 10 (1) 23 (3) 29 (4) 25 (3) 10 (1) 

Q4: 2.93-4.92% 6 (1) 17 (2) 42 (5) 58 (7) 43 (5) 

Q5: >4.92% 7 (1) 28 (4) 48 (6) 113 (14) 229 (29) 

Competing 
deaths per 
lung cancer 
diagnosis 

(mean=1.06) 

Q1: ≤1.11% 5.00 0.33 1.75 0.17 0.04 

Q2: 1.11-1.90% 21/0 2.50 1.78 0.91 0.27 

Q3: 1.90%-2.93% 3.33 2.56 1.61 0.76 0.13 

Q4: 2.93-4.92% 1.50 3.40 2.00 1.26 0.36 

Q5: >4.92% 7.00 9.33 5.33 2.83 0.95 

The cells are shaded grey according to the proportion of outcomes which occurred in that cell, where a darker shade indicates a 

greater proportion. Brackets indicate the percentage of the total count where applicable. The double lines indicate the 

suggested separation of screening participants into a group which should continue to be screened (right of the double line) and 

a group with a relatively low lung cancer risk and high risk of competing death which is unlikely to benefit from screening (left of 

the double line). 

CDfinal, final competing death model; LCifinal, final lung cancer incidence model (9); n, total count; Q, quintile (e.g., Q1 = 0th to 20th 

percentile). 

 

  



Table S5: Contingency table of outcomes per risk quintile (validation cohort) 

    Lung cancer incidence risk (LCifinal) 

    Q1: ≤0.79% Q2: 0.79-1.38% Q3: 1.38-2.18% Q4: 2.18-3.85% Q5: >3.85% 

Total 
participant 

count 
(n=23096) 

C
o

m
p

et
in

g 
d

ea
th

 r
is

k 
(C

D
fi

n
al

) 

Q1: ≤1.11% 441 (19) 231 (10) 110 (5) 48 (2) 34 (1) 

Q2: 1.11-1.90% 163 (7) 171 (7) 126 (6) 108 (5) 68 (3) 

Q3: 1.90-2.93% 59 (3) 63 (3) 88 (4) 83 (4) 69 (3) 

Q4: 2.93-4.92% 38 (2) 33 (1) 46 (2) 78 (3) 80 (3) 

Q5: >4.92% 4 (0) 17 (1) 19 (1) 42 (2) 68 (3) 

5-year lung 
cancer 

diagnoses 
(n=756) 

Q1: ≤1.11% 1 (2) 0 (0) 0 (0) 0 (0) 1 (2) 

Q2: 1.11-1.90% 1 (2) 3 (5) 3 (5) 3 (5) 8 (14) 

Q3: 1.90-2.93% 0 (0) 2 (3) 1 (2) 1 (2) 2 (3) 

Q4: 2.93-4.92% 0 (0) 2 (3) 0 (0) 3 (5) 11 (19) 

Q5: >4.92% 0 (0) 0 (0) 2 (3) 4 (7) 11 (19) 

5-year 
competing 

deaths 
(n=800) 

Q1: ≤1.11% 2 (6) 1 (3) 1 (3) 0 (0) 0 (0) 

Q2: 1.11-1.90% 1 (3) 1 (3) 0 (0) 1 (3) 2 (6) 

Q3: 1.90-2.93% 0 (0) 2 (6) 1 (3) 2 (6) 0 (0) 

Q4: 2.93-4.92% 2 (6) 0 (0) 0 (0) 6 (18) 2 (6) 

Q5: >4.92% 1 (3) 1 (3) 3 (9) 1 (3) 3 (9) 

Competing 
deaths per 
lung cancer 
diagnosis 

(mean=1.06) 

Q1: ≤1.11% 2.00 1/0 1/0 0/0 0.00 

Q2: 1.11-1.90% 1.00 0.33 0.00 0.33 0.25 

Q3: 1.90-2.93% 0/0 1.00 1.00 2.00 0.00 

Q4: 2.93-4.92% 2/0 0.00 0/0 2.00 0.18 

Q5: >4.92% 1/0 1/0 1.50 0.25 0.27 

The cells are shaded grey according to the proportion of outcomes which occurred in that cell, where a darker shade indicates a 

greater proportion. Brackets indicate the percentage of the total count where applicable. The double lines indicate the 

suggested separation of screening participants into a group which should continue to be screened (right of the double line) and 

a group with a relatively low lung cancer risk and high risk of competing death which is unlikely to benefit from screening (left of 

the double line). 

CDfinal, final competing death model; LCifinal, final lung cancer incidence model (9); n, total count; Q, quintile (e.g., Q1 = 0th to 20th 

percentile).  



Table S6: Clinical outcomes of risk stratification 
Risk models used  Risk group Participants 

(%) 
5-year LC 
diagnoses 
(%) 

5-year CDs 
(%) 

Number needed 
to screen to 
detect 1 LC 

CDs per LC 
diagnosis 

Derivation cohort (NLST) 

LCifinal & CDfinal 

High-LC-low-CD 16838 (73) 727 (96) 643 (80) 23 0.88 

Low-LC-high-CD 6258 (27) 29 (4) 157 (20) 216 5.41 

LCifinal & CDCD 
High-LC-low-CD 16537 (72) 723 (96) 639 (80) 23 0.88 

Low-LC-high-CD 6559 (28) 33 (4) 161 (20) 199 4.90 

LCifinal & CDsurvey 
High-LC-low-CD 16530 (72) 725 (96) 643 (80) 23 0.89 

Low-LC-high-CD 6566 (28) 31 (4) 157 (20) 212 5.06 

LCifinal & CDRAT 
High-LC-low-CD 16638 (72) 720 (95) 671 (84) 23 0.93 

Low-LC-high-CD 6458 (28) 36 (5) 129 (16) 179 3.58 

 
Full derivation 
cohort 

23096 (100) 756 (100) 800 (100) 31 1.06 

Validation cohort (MILD) 

LCifinal & CDfinal 
High-LC-low-CD 1513 (66) 53 (90) 23 (70) 29 0.43 

Low-LC-high-CD 774 (34) 6 (10) 10 (30) 129 1.67 

LCifinal & CDCD 
High-LC-low-CD 1538 (67) 54 (92) 23 (70) 28 0.43 

Low-LC-high-CD 749 (33) 5 (8) 10 (30) 150 2.00 

LCifinal & CDsurvey 
High-LC-low-CD 1414 (62) 52 (88) 21 (64) 27 0.40 

Low-LC-high-CD 873 (38) 7 (12) 12 (36) 125 1.71 

LCifinal & CDRAT 
High-LC-low-CD 1440 (63) 51 (86) 22 (67) 28 0.43 

Low-LC-high-CD 847 (37) 8 (14) 11 (33) 106 1.38 

 Full validation 
cohort 

2287 (100) 59 (100) 33 (100) 39 0.56 

NLST-eligible validation cohort (MILD) 

LCifinal & CDfinal 
High-LC-low-CD 980 (80) 44 (94) 18 (72) 22 0.41 

Low-LC-high-CD 245 (20) 3 (6) 7 (28) 82 2.33 

LCifinal & CDCD 
High-LC-low-CD 1000 (82) 43 (91) 19 (76) 23 0.44 

Low-LC-high-CD 225 (18) 4 (9) 6 (24) 56 1.50 

LCifinal & CDsurvey 
High-LC-low-CD 902 (74) 43 (91) 17 (68) 21 0.40 

Low-LC-high-CD 323 (26) 4 (9) 8 (32) 81 2.00 

LCifinal & CDRAT 
High-LC-low-CD 914 (75) 42 (89) 18 (72) 22 0.43 

Low-LC-high-CD 311 (25) 5 (11) 7 (28) 62 1.40 

 NLST-eligible 
validation cohort 

1225 (100) 47 (100) 25 (100) 26 0.53 

CD, competing death; CDCT, competing death CT model; CDfinal, final competing death model; CDsurvey, competing death survey 

model; CDRAT, Competing Death Risk Assessment Tool (10); High-LC-low-CD, risk group considered to have a relatively high LC 

risk and low risk of competing death (criteria described in the Figure 1 caption); LC, lung cancer; LCifinal, final lung cancer 

incidence model; Low-LC-high-CD, risk group considered to have a relatively low LC risk and high risk of competing death; MILD, 

Multicentric Italian Lung Detection; NLST, National Lung Screening Trial. 

 



 

Figure S1: Cohort formation flowchart 
For the derivation cohort, permission to use NLST was limited to up to 15000 participants. For this reason, all eligible participants who died or were diagnosed with lung 

cancer in the trial were included (n=2106) along with a random sample of eligible non-deceased participants without lung cancer (n=12894). To simulate the original CT 

cohort, the latter group was resampled without replacement to a total of 20990 non-deceased participants without lung cancer. In total, the derivation cohort consisted of 

23096 participants. For the validation cohort (MILD), all eligible participants were included. MILD, Multicentric Italian Lung Detection; NLST, National Lung Screening Trial.



 

 

Figure S2: Receiver operating characteristic curves in the derivation cohort 
CDCT = CT-based competing death model; CDfinal, final competing death model; CDsurvey, self-reported patient 

characteristics-based competing death model; CDRAT, Competing Death Risk Assessment Tool; CI, confidence 

interval. 

 

  



 

Figure S3: Receiver operating characteristic curves in the validation cohort 
CDCT = CT-based competing death model; CDfinal, final competing death model; CDsurvey, self-reported patient 

characteristics-based competing death model; CDRAT, Competing Death Risk Assessment Tool; CI, confidence 

interval.



 

Figure S4: Calibration plot of CDfinal in the derivation cohort 
 

  



 

Figure S5: Calibration plot of CDfinal in the validation cohort 
  



 

Figure S6: Decision curve analysis of competing death models in the derivation cohort 
The thin lines accompanying each thicker line of the same color represent 95% confidence intervals (500 bootstrap 

samples). The colored lines represent the 5-year competing death models. The gray line (“All”) represents the 

scenario where all participants are predicted to encounter a competing death. The horizontal black line at y-

intercept zero represents the scenario where none are predicted to encounter the event. The x-axis represents the 

subjective preference threshold, where a higher risk threshold indicates a greater weight of false positive test 

findings per true positive test. The standardized net benefit is calculated as the difference between the true 

positive rate and the false positive rate (adjusted by the preference threshold and the event prevalence [5-year 

competing death]). A standardized net benefit greater than zero and greater than that of the gray “All” curve 

indicates that it would be beneficial to implement a model in practice. For a more detailed guide to the correct use 

and interpretation of decision curve analysis, please refer to Kerr et al. (11) or Vickers et al. (12). 

CDct = CT-based competing death model; CDfinal, final competing death model; CDsurvey, self-reported patient 

characteristics-based competing death model. 

  



 

Figure S7: Decision curve analysis of competing death models in the validation cohort 
The thin lines accompanying each thicker line of the same color represent 95% confidence intervals (500 bootstrap 

samples). The colored lines represent the 5-year competing death models. The gray line (“All”) represents the 

scenario where all participants are predicted to encounter a competing death. The horizontal black line at y-

intercept zero represents the scenario where none are predicted to encounter the event. The x-axis represents the 

subjective preference threshold, where a higher risk threshold indicates a greater weight of false positive test 

findings per true positive test. The standardized net benefit is calculated as the difference between the true 

positive rate and the false positive rate (adjusted by the preference threshold and the event prevalence [5-year 

competing death]). A standardized net benefit greater than zero and greater than that of the gray “All” curve 

indicates that it would be beneficial to implement a model in practice. For a more detailed guide to the correct use 

and interpretation of decision curve analysis, please refer to Kerr et al. (11) or Vickers et al. (12). 

CDct = CT-based competing death model; CDfinal, final competing death model; CDsurvey, self-reported patient 

characteristics-based competing death model. 



   

   

Figure S8: Outcomes per lung cancer and competing death risk quintile (validation cohort) 
Three-dimensional column charts of (a) lung cancer diagnoses, (b) competing deaths, (c) screening participants, and (d) competing deaths per 

lung cancer diagnosis (y-axis truncated at 4). The lung cancer risk quintiles are shaded, where a darker shade corresponds to a higher risk. The 

columns are divided into grey and orange columns indicating the suggested separation of screening participants into a group which should 

continue to be screened (grey) and a group with a relatively low lung cancer risk and high risk of competing death (orange). 

Q#, risk quintile where Q1 represents the lowest quintile and Q5 the highest.
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