Time for a change: anticipating the diagnosis and treatment of COPD

Alvar Agusti1,2, Bernardino Alcazar 2,3, Borja Cosio 2,4, Jose Maria Echave5, Rosa Faner2, Jose Luis Izquierdo6,7, Jose Maria Marin 2,8, Juan Jose Soler-Cataluña9 and Bartolome Celli 10, on behalf of the Scientific Committee of the ANTES programme

Affiliations: 1Respiratory Institute, Hospital Clinic, Univ. Barcelona, IDIBAPS, Barcelona, Spain. 2Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain. 3AIG de Medicina, Department of Respiratory Medicine, Hospital de Alta Resolución de Loja, Loja, Spain. 4Hospital Universitario Son Espases, Universitat de les Illes Balears, Palma de Mallorca, Spain. 5Hospital Universitario Quirónsalud Madrid, Madrid, Spain. 6Department of Medicina y Especialidades, Universidad de Alcalá, Madrid, Spain. 7Servicio de Neumología, Hospital Universitario de Guadalajara, Guadalajara, Spain. 8Hospital Miguel Servet, University of Zaragoza and IISAragón, Zaragoza, Spain. 9Department of Respiratory Medicine, Hospital Arnau de Vilanova-Llíria, Valencia, Spain. 10Harvard Medical School, Boston, MA, USA.

Correspondence: Alvar Agusti, Respiratory Institute, Hospital Clinic, Villarroel 170, 08036 Barcelona, Spain. E-mail: aagusti@clinic.cat

COPD is often not diagnosed, or is diagnosed too late. It is time for a change that anticipates both diagnosis and treatment. [https://bit.ly/2BrDSv1]

Introduction

COPD is a major public health problem because of its high prevalence (about 10% of the adult population), rising incidence (likely related to the ageing of the population), associated morbi-mortality (it is currently the third leading cause of death globally), and personal, social and economic costs [1]. The traditional way to address this problem has been to reduce smoking exposure, the main environmental risk factor for COPD [1]. Although this was, is and will be, a key public-health strategy, we argue here that it is not enough. If we want to eradicate COPD [2], it is time for a change that anticipates the diagnosis and treatment of the disease.

Rationale

COPD has been traditionally considered a disease of old people, self-inflicted by tobacco smoking [3]. Yet, research over the past few years is changing this paradigm (figure 1). Well-conducted epidemiological studies have shown that close to 30% of subjects with airflow limitation consistent with COPD have never smoked [4]. Yet, by and large, the evidence available today on the natural history and therapeutic management of COPD focuses almost exclusively on smoking-related COPD, essentially ignoring COPD in never smokers [4]. We also know that there are subjects with similar risk factors and clinical manifestations, but normal spirometry [5]. Likewise, it is clear now that impaired lung development also plays an important role in the pathogenesis of COPD [6, 7], that there are many different factors beyond smoking that influence lung function through life (figure 2) [8], and that low lung function in early adulthood is associated with multi-morbidity and premature death [9]. Because undiagnosed patients have
poor outcomes [10, 11], anticipating the diagnosis and treatment of COPD is likely to reduce disease burden, both individually and collectively [12, 13].

Time for a change: the ANTES programme

To anticipate the diagnosis and treatment of COPD, several centres in Spain have agreed to collaborate on a research initiative named ANTES (“Earlier” in Spanish). Below, we discuss the five initial working areas where to develop specific research projects aimed at achieving the strategic goals of ANTES. Collaborations with other research centres are welcome.

1) **Improve COPD underdiagnosis**

Currently, more than 75% of COPD patients in the community have not been diagnosed, so they may not have been treated adequately [14]. Improving COPD underdiagnosis is therefore a key goal in ANTES. Spirometry is required for the diagnosis of COPD [1]. Although it is noninvasive, inexpensive, reproducible and easy to perform, and despite many years of intensive educational efforts, it is often not used in clinical practice. It is therefore time to implement novel strategies. One involves the use of questionnaires combined with micro-spirometers or peak flow meters [15–17]. Another may take advantage of the built-in microphones that are available in most smartphones to analyse breathing sounds, which may in turn provide lung function estimates [18]. Likewise, there are novel ways that use artificial intelligence to detect COPD on computed tomography scans obtained for different reasons [19]. A final alternative may involve access to lung function centres to refer individuals with respiratory symptoms for spirometry and specialised assessment [20]. All in all, this goes beyond the much debated concept of “COPD screening” [21] and proposes a new approach for “lung health” screening (figure 1) [8, 12], which, as discussed above, is associated with prevention of early comorbidities and premature death [9]. As a result, the current definition and taxonomy of COPD may need to be reconsidered [22].

2) **Act earlier**

Over the past few years there has been an increasing interest in the concept of “early” COPD [6, 9, 23–25]. It has been defined, somewhat arbitrarily, as chronic airflow limitation in subjects younger than 50 years exposed to tobacco smoke or other pollutants [26, 27]. Yet, there is evidence that there are detectable structural and functional abnormalities in much younger individuals [6, 8, 9, 12, 25]. Therefore, efforts should be made to look for younger patients or subjects at risk. Initiatives to test lung function in schools, universities, and during examination for a driving licence [12] are under way in ANTES.

3) **Early therapeutic optimisation**

Anticipating the diagnosis and treatment of COPD does not only mean to diagnose and treat “younger” patients with COPD, but also to explore if early therapeutic optimisation results in better outcomes [28].
This is a different strategy from current guideline recommendations that propose a step-up approach for the pharmacological management of COPD [1]. For instance, there is evidence that the initial use of dual bronchodilator therapy in patients with mild airflow limitation decreases the rate of lung function deterioration [29]. This is currently being explored further in the ongoing RETHINC trial (https://clinicaltrials.gov/ct2/show/NCT02867761), that compares dual bronchodilation versus placebo in symptomatic smokers without airflow limitation (forced expiratory volume in 1 s to forced vital capacity ratio >0.70). Although this trial will not be able to compare dual versus single bronchodilator, it will offer important new knowledge in this setting. Yet, other pragmatic, real-life studies will still be needed in this setting.

![Table and Diagram](https://doi.org/10.1183/13993003.02104-2020)

This is a different strategy from current guideline recommendations that propose a step-up approach for the pharmacological management of COPD [1]. For instance, there is evidence that the initial use of dual bronchodilator therapy in patients with mild airflow limitation decreases the rate of lung function deterioration [29]. This is currently being explored further in the ongoing RETHINC trial (https://clinicaltrials.gov/ct2/show/NCT02867761), that compares dual bronchodilation versus placebo in symptomatic smokers without airflow limitation (forced expiratory volume in 1 s to forced vital capacity ratio >0.70). Although this trial will not be able to compare dual versus single bronchodilator, it will offer important new knowledge in this setting. Yet, other pragmatic, real-life studies will still be needed in this setting.
Likewise, very recently, the ETHOS study has confirmed that triple therapy reduces mortality significantly in COPD, albeit mortality was a pre-specified secondary (not primary) outcome of the study [44]. That triple combination of ICS/long-acting β-agonists/long-acting muscarinic antagonists (ICS), phosphodiesterase-4 inhibitors or macrolides to one or two bronchodilators reduces the number and severity of future exacerbations [1]. This raises the question on why we must wait until the patient has suffered two or more exacerbations to initiate effective preventive treatment. This approach is not applied in patients with other chronic conditions, such as cardiovascular diseases. In these patients, preventive measures are not delayed until the patient has suffered two acute coronary events or strokes, and we postulate that this should not be the case either in patients with COPD. In ANTES, we argue that we need to be more ambitious and aim for an “exacerbation zero” goal. The ideal way to achieve this ambitious goal would be primary prevention of the disease [12]. Once the disease has developed, though, it may probably need to be reshaped into a “severe exacerbation zero” goal. To this end, several potential strategies may be conceived. First, smoking cessation, regular physical activity, appropriate diet and adequate vaccination [1]. Second, although pharmacology can certainly contribute to it, perhaps we should reconsider the currently recommended strategy [1]. For instance, adding ICS to chronic bronchodilator therapy at the onset of an upper respiratory tract infection decreases the severity of exacerbation that may follow [34]. Unfortunately, the use of personalised risk scores to predict and prevent the likelihood of future exacerbations is not yet ready for prime time [35]. In part, this is related to the lack of objective diagnostic markers of a COPD exacerbation [36]. ANTES envisage to define and validate a definition of COPD exacerbation based on objective, measurable and validated biomarkers as a necessary intermediate step to achieve the “exacerbation zero” goal.

5) Improve survival

Improving survival is one of the key therapeutic goals of many human chronic diseases [37]. The traditional, nihilistic approach that prognosis cannot be improved in COPD must be abandoned, since several interventions have proven it wrong. Smoking cessation, vaccinations, regular exercise and appropriate dietary programmes must be enforced in all people, including COPD patients, as they all have well-known health consequences. Besides, several specific COPD interventions have also shown conclusively to improve survival in these patients, including oxygen supplementation to hypoxaemic COPD patients and lung volume reduction in patients with severe functional limitation and upper lung lobe inhomogeneous emphysema [1]. Likewise, the fact that comorbid diseases, such as cardiovascular diseases and lung cancer [38], are highly prevalent in patients with COPD, and that they are often their cause of death, particularly in patients with mild to moderate airflow limitation [39], pinpoints towards another important area where effective treatment can reduce mortality, so every COPD patient should be evaluated for their presence, because these diseases are treatable. For instance, as indicated by one of the anonymous reviewers of this paper, in patients with COPD and cardiovascular disease, the effectiveness of an early treatment that combines dual bronchodilation and β-blockade should be assessed.

Respiratory pharmacotherapy using long-acting bronchodilators alone or combined with ICS can also potentially reduce the risk of death in COPD [40]. It is true that the two pharmacological studies that were powered on mortality (TORCH [41] and SUMMIT [42]) did not achieve statistical significance, albeit TORCH was close (the hazard ratio for death in the combination therapy group versus placebo after adjustment for the fact that an interim analyses was done during the course of the study was 0.825, with 95% CI 0.681–1.002; p = 0.052) [41]. Numerically speaking, though, both studies showed a 17.5% and 12% relative risk reduction in mortality versus placebo, respectively [41, 42], thus providing some encouraging signal. In fact, other studies where mortality was a secondary outcome, such as the 4-year UPLIFT trial that compared tiotropium versus placebo, did indeed show a benefit in mortality [33]. Further, a numerical reduction in mortality was also seen in a post hoc stratified pooled analysis of the effects of the extra-fine triple combination, albeit differences did not achieve statistical significance except, interestingly, for mortality due to non-respiratory events [43]. Finally, the recent IMPACT study confirmed prospectively that triple combination of ICS/long-acting β-agonist/long-acting muscarinic antagonist significantly reduced mortality in COPD, albeit mortality was a pre-specified secondary (not primary) outcome of the study [44]. Likewise, very recently, the ETHOS study has confirmed that triple therapy reduces mortality significantly.
in patients with moderate-to-severe COPD and at least one exacerbation in the past year [45]. Considered together, these studies suggest that pharmacotherapy may indeed reduce mortality in some selected patients with COPD [40]. It is possible, and ANTES will address this issue, that by identifying the subset of patients most likely to respond and/or prove that a pharmacological intervention may reduce the risk of death in patients with COPD will provide the necessary impetus to develop novel treatment strategies aimed at achieving this ultimate goal [40].

Conclusions

ANTES is an ambitious, multicentre, research initiative based on the concept that anticipating the diagnosis and treatment of COPD will reduce its public-health impact by improving its prevention, treatment and prognosis.

Acknowledgements: ANTES is supported by GSK and run by an independent academic scientific committee, which includes the authors of this article and, in addition, Julio Ancochea, Ciro Casanova, Alberto Fernandez Villar, Juan Luis Garcia Rivero, Cruz Gonzalez, Jose Luis Lopez Campos, Francisco Javier Martin-Sanchez, Jesus Molina, German Peces-Barba, Miguel Roman and Felipe Villar.

Conflict of interest: A. Agustí reports grants and personal fees from GSK, during the conduct of the study; grants and personal fees for lectures and advisory board work from GSK, Menarini, Chiesi, personal fees for lectures from Zambon, outside the submitted work. B. Alcazar reports grants and personal fees from GSK, grants, personal fees and non-financial support from Boehringer Ingelheim and Chiesi, personal fees from GSK and Menarini, outside the submitted work; and has a patent P201730724 licensed. B. Cosio reports personal fees and non-financial support from GSK, during the conduct of the study; personal fees for lectures from AstraZeneca and Rovi, grants from Boehringer and Menarini, grants and personal fees for lectures from Novartis and Chiesi, personal fees for advisory board work from Esteve, outside the submitted work. J.M. Echave has nothing to disclose. R. Faner reports grants from GSK and Menarini, outside the submitted work. J.L. Izquierdo reports personal fees from AstraZeneca, Bayer, Boehringer Ingelheim, Chiesi, GSK, Grifols, Menarini, Novartis, Orion, Pfizer, Sandoz and Teva, during the conduct of the study. J.M. Marin has nothing to disclose. J.J. Soler-Cataluña reports personal fees from AstraZeneca, Rial, Rovi and Ferrer, grants, personal fees and non-financial support from Boehringer Ingelheim and Novartis, grants and personal fees from Chiesi and GSK, personal fees and non-financial support from Menarini, outside the submitted work. B. Celli reports grants and provision of research facilities from AstraZeneca, personal fees for consultancy and scientific committee work from GlaxoSmithKline, personal fees for consultancy from Boehringer Ingelheim, Novartis, Sanofi Aventis, Chiesi, Pulmonox and Menarini, outside the submitted work.

References

