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Though the notion of a “lung microbiome”, i.e. a complex community of microbes inhabiting and
influencing the lower respiratory tract, is barely a decade old [1], there is nothing new about the idea that
the lungs represent a crucial interface between us and the microbial universe we inhabit. Louis Pasteur
demonstrated the presence of viable microbes in air [2], and one of his contemporaries calculated that
healthy adults inhale between 1500 and 14000 organisms each hour [3]. Numerous radiographic studies
have repeatedly demonstrated the ubiquity of subclinical microaspiration [4–6], even in healthy,
asymptomatic subjects. The surface area of the lungs is twice that of the gastrointestinal tract [7] and 30
times that of the skin [8], representing the body’s largest interface with the outside environment.
Thoughtful investigators of lung biology have long suspected that the mechanisms our lungs evolved to
cope with this continuous microbial exposure (innate and adaptive immune defences, the establishment
and resolution of fibrosis) play central roles in the pathogenesis of lung disease. As pulmonary biologist
Galen Toews commonly said, long before the lung microbiome era: “All lung disease is infectious disease”
(figure 1).

In the past decade, this intuition has been vindicated, especially relating to idiopathic pulmonary fibrosis
(IPF). Since 2014, a cascade of studies (figure 2) have used culture-independent techniques to characterise
and interrogate bacterial communities in the lungs of patients with IPF and animal models of the disease.
The cumulative argument emerging from this field has upended old, simplistic notions regarding the
supposed sterility of the lungs. The presence and significance of bacterial communities in the lungs of
patients with IPF is now established and validated by numerous studies, robust across patient cohorts,
laboratories, sequencing platforms and animal models. This evolution in our thinking of the role of
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respiratory microbiology in IPF is already reflected in our clinical trials: whereas a decade ago we were
studying immunosuppression in IPF [9], we are now instead trialling antibiotics [10].

Beyond the mere presence of a lung microbiome in IPF, the field has firmly established its correlative
significance (figure 2): among patients with IPF, variation in lung microbiota correlates with variation in
important aspects of the disease: disease status [11, 12], alveolar inflammation [13, 14], host genotype [11],
and the systemic host response [15, 16]. Further, several studies have independently established the prognostic
significance of the lung microbiome in IPF: three separate analyses have demonstrated that variation in lung
microbiota predict disease progression and mortality among patients with IPF [11, 13, 17].

However provocative, these findings have not established the causal significance of the lung microbiome in
IPF. A sceptic could fairly ask if lung microbiota in IPF are merely an indirect index of severity, reflecting
some intrinsic, unmeasured feature of the disease (e.g. impaired mucociliary clearance in airways distorted
by traction bronchiectasis). This is the central question facing the field [18]: is the lung microbiome merely
an epiphenomenon in IPF, an innocent bystander to disease pathogenesis, or do altered lung microbiota
directly participate in pathogenesis?

This core question was the rationale behind an important new study by INVERNIZZI et al. [19] in this issue
of the European Respiratory Journal. The authors studied a large cohort of patients with IPF who
underwent both research bronchoscopy and quantitative interpretations of chest computed tomography
(CT) scans. To characterise lung bacteria, the authors quantified total lung bacterial DNA burden, which
has been the most consistent microbial predictor of clinical outcomes across respiratory conditions [11, 13,
20, 21]. In their analysis of CT imaging, they quantified the severity and extent of fibrosis, including key
features such as traction bronchiectasis and honeycombing. They chose these radiographic findings given
their known prognostic importance [22, 23] and because they provide objective insight into the anatomic
distortion of IPF that may cause increased lung bacterial burden. The authors reasoned that if the
prognostic significance of lung bacterial burden in IPF is merely an artefact of architectural destruction,
then these two prognostic factors (microbiologic and radiographic) should be correlated with each other.

Instead, they found no relationship at all. Lung bacterial burden, while highly variable across patients, was
unrelated to the radiographic severity of disease, whether considered collectively (e.g. fibrosis extent, or
likelihood of usual interstitial pneumonia pattern) or in its specific features (e.g. traction bronchiectasis or
honeycombing). Lung bacterial burden was similarly uncorrelated with physiological severity of disease
(measured via forced vital capacity). These absences of association argue directly against the “innocent
bystander” interpretation of the IPF lung microbiome literature. If lung bacterial burden is merely an
indirect index of severity, why doesn’t it correlate with our best available measurements of anatomic and
physiologic severity?

FIGURE 1 Galen Toews (1945–2011). Long before
the era of the lung microbiome, Dr Toews argued
that “All lung disease is infectious disease.”
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Yet in the same cohort, the authors again demonstrated the prognostic significance of lung bacterial burden
in IPF. As in prior studies [11, 13], lung bacterial burden convincingly predicted clinical outcomes,
defined here as all-cause mortality or spirometric progression at 12 months. This association remained
robust to multivariable adjustment for key potential confounders that represent radiographic and
physiologic severity of disease. While these findings do not definitively establish a causal role for lung
microbiota in IPF pathogenesis, they do provide strong evidence that the lung microbiome’s prognostic
significance is not merely an artefact of disease severity.

Observation

Lung microbiota are altered in patients with IPF 

relative to other conditions.

Lung microbiota are altered in animal models 
of IPF.

Lung microbiota correlate with disease severity 

in humans with IPF.

Lung bacterial community composition is 
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Lung bacterial burden is not correlated with 
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FIGURE 2 Building a causal argument for the role of the lung microbiome in idiopathic pulmonary fibrosis (IPF). In recent years, techniques of
culture-independent microbiology have revolutionised our understanding of the significance of respiratory microbiota in IPF. The correlative
significance of the lung microbiome in IPF is now inarguable: lung bacteria correlate with disease status, host genotype, and the alveolar and
systemic host response. The current study by INVERNIZZI et al. [19] definitively confirms the lung microbiome’s prognostic significance: lung
microbiota predict disease progression in IPF, independent of radiographic severity. Yet the causal significance of the lung microbiome in IPF, and
its status as a therapeutic target, remains a crucial area of ongoing study, requiring both interventional human studies and translational animal
modelling.
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So what would it take to make the case for causality? We will need to demonstrate that manipulating the
lung microbiome (therapeutically in humans, experimentally in animal models) alters the biology and
clinical trajectory of IPF progression. This task is far easier to articulate than to accomplish, as it relies on
several embedded claims: 1) the lung microbiome can be altered by interventions (e.g. antibiotics), 2) this
manipulation influences the trajectory of IPF pathogenesis, and 3) the effects of these interventions are
directly attributable to lung microbiome changes, and not off-target effects of therapy (e.g. the
immunomodulating effects of macrolides, or the systemic effects of altered gut microbiota).

As shown in figure 2, the field has made some progress down this thorny path. Regarding the first
embedded claim (the lung microbiome can be altered by interventions), it is now well-established that the
community composition of lung bacteria is altered by antibiotics, both in animal models [24] and in
human lung conditions other than IPF [25–27]. Yet it is unestablished if lung bacterial burden (the most
consistently prognostic feature of the lung microbiome in IPF [11, 13, 19] and other conditions [20, 21])
can be altered by antibiotics. In two studies of chronic macrolide therapy (in COPD patients [27] and lung
transplant recipients [28]), chronic azithromycin had no effect on lung bacterial burden: the communities
changed, but the total bacterial load was unaltered. If, as hoped, lung bacterial burden is to become a
therapeutic target in IPF, we will first need to show that it can be modified, either via antibiotics or other
interventions (e.g. fundoplication).

The second embedded claim, that manipulation of the lung microbiome influences IPF pathogenesis and
progression, is supported by early animal and human observations. Germ-free mice (mice completely
devoid of bacteria) are protected from mortality in the bleomycin model of pulmonary fibrosis [13]. In
other murine models, the pathogenesis of pulmonary fibrosis is accelerated and augmented by pulmonary
exposure to Streptococcus pneumoniae and its toxins [29], mirroring an association between lung
enrichment with Streptococcus spp. and progression of IPF in human subjects [17]. A randomised human
trial of co-trimoxazole in patients with IPF found benefit in all-cause mortality (though not in decline of
lung function) [30]. An ongoing trial of antibiotics in IPF will provide more evidence regarding possible
efficacy [10].

Yet none of these observations have addressed the third embedded claim: that the benefits of microbiome
manipulation in IPF are not attributable to indirect, off-target effects of our interventions. To accomplish
this, methodological advances are required both in our animal modelling and in our analysis of
interventional human studies. In animal modelling, a central challenge is how to selectively alter lung
microbiota without influencing gut microbiota, which inform the systemic immune response. In
prospective human studies, we should be sampling and studying the lung microbiome both before and
after randomised interventions: pre-treatment sampling to assess for heterogeneity of treatment effect (does
variation in patients’ baseline lung microbiota explain variation in their treatment response?), and
post-treatment sampling for mediation analysis (does variation in patient’s microbial response to therapy
explain variation in their treatment response?). Finally, our current instruments for manipulating the
microbiome (antibiotics and probiotics) are broad and nontargeted, analogous to using systemic
corticosteroids to alter host immunity. A key challenge will be learning how to modify the lung
microbiome with the same targeted precision with which we now modulate the host response (e.g. with
monoclonal antibodies).

Despite these challenges, the future is bright. The revolution in our understanding of the microbiology of
IPF has been thrilling, both for those who study IPF pathogenesis and for those who study respiratory
microbiology. An entire kingdom of the tree of life, previously ignored in IPF research, is now a major
focus of clinical and experimental study. We have much work left to do, but the current study by
INVERNIZZI et al. [19] gives us reason to hope that we are on the path towards making a case for causality.
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