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ABSTRACT Club cell secretory protein (CCSP) knockout mice exhibit increased airway neutrophilia, as
found in chronic obstructive pulmonary disease (COPD). We therefore investigated whether treating COPD
airway epithelia with recombinant human CCSP (rhCCSP) could dampen exaggerated airway neutrophilia.

Control, smoker and COPD air–liquid interface (ALI) cultures exposed to cigarette smoke extract (CSE)
were treated with and without rhCCSP. The chemotactic properties of the supernatants were assessed
using Dunn chambers. Neutrophil chemotaxis along recombinant human interleukin 8 (rhIL8) gradients
(with and without rhCCSP) was also determined. rhCCSP–rhIL8 interactions were tested through co-
immunoprecipitation, Biacore surface plasmon resonance (SPR) and in silico modelling. The relationship
between CCSP/IL8 concentration ratios in the supernatant of induced sputum from COPD patients versus
neutrophilic airway infiltration assessed in lung biopsies was assessed.

Increased neutrophilic chemotactic activity of CSE-treated ALI cultures followed IL8 concentrations and
returned to normal when supplemented with rhCCSP. rhIL8-induced chemotaxis of neutrophils was
reduced by rhCCSP. rhCCSP and rhIL8 co-immunoprecipitated. SPR confirmed this in vitro interaction
(equilibrium dissociation constant=8 µM). In silico modelling indicated that this interaction was highly
likely. CCSP/IL8 ratios in induced sputum correlated well with the level of small airway neutrophilic
infiltration (r2=0.746, p<0.001).

CCSP is a biologically relevant counter-balancer of neutrophil chemotactic activity. These different
approaches used in this study suggest that, among the possible mechanisms involved, CCSP may directly
neutralise IL8.

This article has supplementary material available from erj.ersjournals.com
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Introduction
Imbalance between injury and repair universally trends with inflammatory processes. Exaggerated neutrophilic
influx is a hallmark of most chronic airway diseases, including neutrophilic asthma, cystic fibrosis, idiopathic
pulmonary fibrosis and chronic obstructive pulmonary disease (COPD) [1]. COPD is a growing cause of
morbidity and mortality worldwide. In addition, increased neutrophilic inflammation is characteristic in patients
with severe disease [2] or with acute exacerbations [3]. Airway neutrophilia is associated with an accelerated
decline in lung function [4, 5] and with the severity of peripheral airway dysfunction in COPD [6, 7].

Chemotaxis, a process whereby cells migrate according to a chemical concentration gradient, critically
mediates neutrophil recruitment in tissue [8]. Neutrophils express multiple chemoattractant receptors and
can be sensitive to individual gradients or combinations thereof. Levels of several chemoattractants for
neutrophils are increased in the bronchial secretions of COPD patients. The most abundant and studied
are interleukin 8 (IL8) and leukotriene B4 (LTB4) [9, 10]. These chemokines bind to neutrophil CXC
chemokine receptor types 1 and 2 (CXCR1/CXCR2) and LTB4 receptor (BLT1) G protein-coupled
receptor (GPCR), respectively, to amplify cell recruitment [11]. Past in vitro studies often employed
N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) because of its highly potent chemoattractant ability;
fMLP ligates with neutrophil formyl peptide receptors (FPRs) [12]. A previous study has shown that COPD
neutrophils, relative to those from healthy patients, are disoriented, migrating faster but with less accuracy [13].

The club cell secretory protein (CCSP, CC10 or SCGB1A1) produced by non-ciliated club cells is known
to have immunoregulatory and anti-inflammatory functions [14–17]. However, the mechanisms of action
remain largely unknown in the absence of an identified specific receptor. CCSP is defective in COPD
airways [17–19]. Appropriately, LAUCHO-CONTRERAS et al. [18] demonstrated that increased lung
neutrophilia was observed in CCSP−/− mice exposed to cigarette smoke, as seen in COPD airways.
Moreover, this could be rescued by exogenous CCSP supplementation.

The exact mechanisms by which CCSP mediates its anti-inflammatory activities, including whether or not
it binds to a receptor, have not yet been determined. To date, its paracrine signalisation is unknown and
remains hypothetical. Of note, CCSP levels are known to be reduced in sera, sputum and bronchoalveolar
lavage fluid from COPD patients. Furthermore, two studies demonstrated that serum CCSP levels predict
accelerated lung function decline [20, 21].

We hypothesised that injury/repair imbalance may explain exaggerated airway neutrophilia and that CCSP
defects could be involved in this process in COPD patients. Our aim was to test whether recombinant
human CCSP (rhCCSP) interacts with airway neutrophilic influx in a human model of COPD, and
whether this interaction is due to an effect of CCSP on the airway epithelial cells or to an endogenous IL8
binding counter-balancer. For this purpose, air–liquid interface (ALI) cultures of epithelial cells were
treated with rhCCSP (exposed to cigarette smoke extract (CSE) or not). The collected supernatants were
used to assess neutrophilic chemotaxis. Furthermore, neutrophils were directly exposed to chemotactic
agents and treated with rhCCSP. Their chemotactic parameters were also assessed. Finally, we developed
an in vitro three-step demonstration of CCSP–IL8 direct binding, and sought possible converging evidence
of the relationship between CCSP and IL8 in lung airways.

Materials and methods
Epithelial cell cultures and stimulation
Bronchial biopsies from control subjects (n=4), smokers (n=10) and COPD patients (n=13) were collected
during surgery. Subjects were recruited at the Arnaud de Villeneuve Hospital, Montpellier, France. The
local ethics committee, Comité de Protection des Personnes Sud-Mediterranée III, approved the study
design (approval number: 2013 11 05; NCT02354677) and all patients agreed to participate by reading and
signing written informed consent forms.

Human primary bronchial epithelial cells (HBECs) were cultured under ALI conditions, adapted from
GAMEZ et al. [17] and GRAS et al. [22]. Details on this method and on subject baseline characteristics are
available in the supplementary material. Cells from bronchial biopsies of four control subjects, 10 smokers
and 13 COPD patients were maintained in culture for 28 days to obtain a differentiated cell population
with a pseudostratified mucociliary epithelium. Cells were treated for 24 h with or without CSE and with
or without rhCCSP supplementation (3 µg·mL−1), applied at the apical surface. The supernatants were
collected by washing the apical surface and were stored until used for neutrophil experiments and CCSP/
IL8 ELISA test (Biovendor, Brno, Czech Republic; Diaclone, Besançon, France).

Cigarette smoke extract
CSE was prepared as previously described [17]. Briefly, the smoke of three commercial cigarettes
(Marlboro) was drawn into a Pasteur pipette and bubbled into 30 mL of PBS. CSE was adjusted to pH 7.4
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and sterilised through a 0.22 µm filter. We obtained a 100% stock solution of CSE diluted to 50% for the
experiments.

Isolation of peripheral blood neutrophils
Neutrophils were isolated from the whole blood of five healthy control subjects and five COPD patients
(approval number: 0811738) using discontinuous Percoll gradients followed by hypotonic lysis of residual
red blood cells [23]. The neutrophils (purity at 95% and viability assessed by trypan blue exclusion of
dead cells, at 95%) were re-suspended in RPMI 1640 medium containing 0.15% bovine serum albumin.

Neutrophil chemotaxis assays and analyses
The chemotaxis assays were performed using Dunn chambers [24]. Details on this method are available in
the supplementary material. Chemotaxis was quantified using the x-forward migration index (XFMI)
value, which is the ratio of the distance travelled during the acquisition and the final position of the
neutrophils on the x-axis in the direction of the chemoattractant gradient.

ImageJ software (https://imagej.nih.gov/ij/) was used to track cells and analyse chemotaxis. All analyses
were performed by a single analyst, blinded to the subject group.

Three sets of assays were performed. First, supernatants gathered by a brief wash at the apical side of ALI
cultures of airway epithelial cells at baseline were applied in the outer ring and neutrophil chemotaxis
from both controls and COPD patients was assessed. Second, supernatants gathered in the same way but
treated with each of the above-mentioned conditions were similarly applied and assessed. Third, only
pharmacological agents separately or combined were applied in the outer ring in order to delineate
whether the observed results in the first set of assays could be modulated and reproduced without any
epithelial interaction.

Co-immunoprecipitation
To detect whether a potential interaction exists between CCSP and IL8, co-immunoprecipitation and
immunoblotting were performed using anti-Protein A Sepharose 4 Fast Flow magnetic beads (GE
Healthcare, Uppsala, Sweden). Details on this method are available in the supplementary material. All
immunoblots were developed and quantified using the Odyssey Infrared Imaging System (LI-COR
Biosystems, Lincoln, NE, USA) and infrared-labelled secondary antibodies.

Biacore measurements
Real-time surface plasmon resonance (SPR) analyses were performed on a Biacore T200 apparatus (GE
Healthcare) at 25°C, in HBS-EP+ buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.05% polysorbate
20 surfactant). rhCCSP, diluted at 10 µg·mL−1 in 10 mM acetate pH 4, was covalently immobilised at 2400
resonance units on a CM5S sensor chip (GE Healthcare) using an amine coupling protocol according to
the manufacturer’s instructions.

Kinetic titration experiments (single-cycle kinetics) of IL8 were performed at a flow rate of 100 µL·min−1

with two-fold serial dilutions (62–1000 nM). All curves were evaluated (T200 Evaluation Software 3.0; GE
Healthcare) after double-referencing subtraction using a bivalent fitting model. This experiment was
repeated with a new immobilisation of rhCCSP with a similar result.

Three-dimensional protein modelling and protein–protein docking
A homology model of the homo sapiens CCSP (hsCCSP) homodimer has been generated according to the
crystal structure of the rabbit ortholog (Protein Data Bank (PDB): 2UTG), using the software Modeller [25].
The protein–protein docking server ZDOCK [26] was used with blind docking parameters to explore
the putative interaction between the three-dimensional (3D) homology model of hsCCSP and the
experimental human IL8 structure (PDB: 3IL8).

Surgical lung samples and induced sputum collection
A cross-sectional cohort of 10 COPD patients undergoing surgery for peripheral nodules was recruited
after patients signed an informed consent form. This study was approved by the local ethics committee
(Comité de Protection des Personnes de Nimes; AOI 2000, CPP 000901, DGS 2001/0075). Both CCSP and
IL8 concentrations were assessed in the induced sputum of patients 3–5 days before they underwent lung
surgery. Surgical lung samples were optimally processed to allow for quantification of neutrophil
elastase-positive cells in the submucosal area of small airways at a maximum depth of 100 µm beneath the
basement membrane. Methodological details are available in the supplementary material.
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Statistical analysis
Details on statistical analysis are available in the supplementary material.

Results
COPD airway epithelia attracted neutrophils
Dunn chemotaxis chambers were filled with ALI epithelial supernatants. Figure 1a displays representative
examples of healthy and COPD neutrophil migratory tracks induced by supernatants from
ALI-reconstituted airway epithelia derived from healthy controls, smokers and patients with COPD.
Consistent with our previous observations, fMLP was confirmed as a positive control, and PBS as a
negative one (p<0.0001) (figure 1b). Although epithelial supernatants from all groups increased neutrophil
chemotaxis, only neutrophil chemotaxis induced by COPD supernatants was significantly higher than that
induced by control supernatants (p=0.0012) (figure 1b). Neither CCSP nor IL8 concentration was
measured in this set of assays.

Treating the airway epithelium with rhCCSP prevented neutrophil chemotaxis when exposed to
CSE to an extent that fits with CSE-induced IL8 release
We further focused on whether treating CSE-exposed COPD airway epithelia with rhCCSP could reduce
exaggerated neutrophil influx. As expected, smoker and COPD epithelia exposed to CSE had increased
neutrophil chemotaxis (figure 2a, b). When smoker and COPD airway epithelia were exposed to CSE, we
observed for the first time on human cells that rhCCSP prevented neutrophil chemotaxis, which returned
to nearly baseline values (p<0.0001 and p=0.0035, respectively) (figure 2a, b). IL8 and CCSP
concentrations in the supernatants were assessed (figure 2c, d; supplementary figure S1). In this set of
experiments, CSE tended to induce IL8 release, but there were no differences between smokers and
COPD patients. Similar chemotactic measures were obtained with neutrophils from COPD patients
(supplementary figure S2). It should be noted that XFMI was used to represent neutrophil chemotaxis
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FIGURE 1 At steady state, air–liquid interface (ALI)-reconstituted chronic obstructive pulmonary disease
(COPD) airway epithelia maintained in a clean environment promoted exaggerated neutrophilic chemotaxis.
a–c) Representative examples of healthy neutrophil migratory tracks induced by supernatants of
ALI-reconstituted airway epithelium. The large red arrows represent the chemoattractant signal (30 min
of phase time-lapse recordings). a) Healthy control: number of tracks 76; counts left: 32, right: 44; centre of
mass x=4.18, y=0.32. b) Smoker: number of tracks 74; counts left: 11, right: 63; centre of mass x=43.62,
y=−7.03. c) Patient with COPD: number of tracks 95; counts left: 20, right: 75; centre of mass x=33.86, y=0.74.
The COPD neutrophil migratory tracks are induced by COPD ALI supernatant epithelial cell cultures. d) The
x-forward migration index (XFMI) of healthy neutrophils on N-formyl-L-methionyl-L-leucyl-L-phenylalanine
(fMLP) and epithelial supernatant gradients (control subjects n=4, smoker subjects n=3, COPD patients n=5).
Epithelial supernatants from all groups increased neutrophil chemotaxis. COPD supernatants attracted
neutrophils. Approximately 100 tracked neutrophils by condition. Data are expressed as mean±SEM. Paired
comparisons were made using Mann–Whitney tests. #: significant differences between compared groups
(p=0.0012); *: significant differences compared to control (p<0.05).
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in our study, except for COPD neutrophils. Because the latter are disoriented (according to the literature
[13]), the distance travelled by the neutrophils was a more appropriate measure for demonstrating that
rhCCSP had the same effect on COPD neutrophils as on healthy neutrophils.

rhCCSP directly inhibited neutrophil chemotaxis induced by rhIL8 and by fMLP
Neutrophil migration along the fMLP gradient was reduced by rhCCSP (p<0.0001 for the XFMI) but not
along the rhIL8 gradient (figure 3a). Likewise, no CXCR1/2 inhibitor effects were observed (figure 3a).
Because XFMI is the ratio of the distance travelled during acquisition and the final neutrophil positions on
the x-axis in the direction of the chemoattractant gradient, we analysed these parameters (i.e. the so-called
X endpoints and the distance travelled). Interestingly, the final position of healthy neutrophils in the
presence of rhCCSP was significantly delayed in the direction of the rhIL8 gradient (p=0.028) to a similar
extent as that for the CXCR1/2 inhibitors (figure 3b), but these neutrophils travelled shorter distances
(p<0.0001) (figure 3c). When performed with neutrophils from COPD patients, rhIL8-induced neutrophil
chemotaxis, as assessed by XFMI (p<0.0001), X endpoints (p<0.0001) and the distance travelled
(p<0.0001), was inhibited by rhCCSP (supplementary figure 3A–C).

rhCCSP and rhIL8 had a direct interaction
The hypothetical direct rhCCSP–rhIL8 interaction was evaluated by co-immunoprecipitation with anti-IL8
antibodies followed by anti-CCSP antibody blotting. We found that rhCCSP co-immunoprecipitated with
rhIL8 (figure 4a, b). The reverse demonstration was performed (figure 4a, c) and confirmed this
interaction. This finding was validated by SPR analyses using single-cycle kinetics without regeneration
(figure 4d). Accordingly, we determined an equilibrium dissociation constant (KD) of 8 µM. 3D protein
modelling and protein–protein docking were performed in order to illustrate the molecules’ in silico
compatibility (figure 4e). The docking results of ZDOCK [26] demonstrated a set of hsCCSP–hsIL8
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FIGURE 2 Treating the airway epithelium with exogenous club cell secretory protein (CCSP) prevented cigarette smoke extract (CSE)-induced
neutrophil chemotaxis. a) The x-forward migration index (XFMI) of healthy neutrophils on a gradient of smoker air–liquid interface (ALI)
supernatants (n=7) stimulated by CSE with or without CCSP supplementation, relative to PBS. CSE increased neutrophil chemotaxis (p<0.0001).
CCSP inhibited neutrophil chemotaxis when epithelia were exposed to CSE (p<0.0001). b) The XFMI of healthy neutrophils on a gradient of chronic
obstructive pulmonary disease (COPD) ALI supernatants (n=8) stimulated by CSE with or without CCSP supplementation, relative to PBS. CSE
increased neutrophil chemotaxis (p=0.0056). CCSP inhibited neutrophil chemotaxis when epithelia were exposed to CSE (p=0.0035). Approximately
100 tracked neutrophils by condition. Data are expressed as mean±SEM. #: paired comparisons were made using Mann–Whitney tests. c, d)
CSE-induced interleukin 8 (IL8) secretion by epithelial cells from smokers (n=7) and COPD patients (n=8), with or without CCSP supplementation.
CSE tended to increase IL8 secretion. CCSP supplementation had no effect on IL8 secretion.
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complex structures, with the five top-ranked predictions (selected based on the internal ZDOCK scoring
function) adopting similar conformations. Given the known binding of IL8 to CXCR1/2 on neutrophils,
we next compared both binding sites. The superimposition of the hsCCSP–hsIL8 complex model with the
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between compared groups (p<0.05); *: significant differences compared to control (p<0.05). NS: nonsignificant.

https://doi.org/10.1183/13993003.02408-2018 6

BASIC SCIENCE AND COPD | L. KNABE ET AL.



experimental structure of hsCXCR1(C-terminal part)–hsIL8 complex (1ILP) showed that CXCR1 and
CCSP would be located in the same area.

Small airway wall infiltration by neutrophils negatively correlated with the CCSP/IL8 ratio
measured in the induced sputum of COPD patients undergoing surgery
In order to verify whether these findings are observable in vivo, neutrophilic infiltration of the small
airway wall of COPD patients was quantified in human lung samples obtained during surgery. These
results correlated with the CCSP/IL8 ratio assessed in the induced sputum collected before the surgery.
The level of this negative correlation was as high as 0.746 (figure 5), indicating a greater intensity of
neutrophilic infiltration when the CCSP/IL8 ratio was low and vice versa.

Discussion
In this study, we found that the airway epithelium of COPD patients reconstituted using ALI kept one
important feature of the disease [17], in that it exerted an increased neutrophilic chemotactic activity at
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equilibrium dissociation constant (KD)1 (M)=8.02×10−6; Chi-squared (RU2)=0.675. e) Superimposition of the
homo sapiens (hs)CCSP–hsIL8 complex (red) with the experimental structure of hsCXCR1 (C-terminal part)/
hsIL8 complex (Protein Data Bank: 1ILP; CXCR1 in green and IL8 in blue).
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steady state: CSE-induced IL8 release by these epithelia obtained from either smokers and COPD was
reduced by exogenous rhCCSP supplementation. The latter was true for the neutrophils of both controls and
COPD patients, which is important considering the disorientation shown to affect COPD neutrophils [13].
Because rhCCSP reduced both fMLP- and rhIL8-induced chemotaxis irrespective of the presence of the
airway epithelium at a magnitude similar to a CXCR1/2 antagonist, we strove to find evidence that rhCCSP
could bind to rhIL8. We developed in vitro (through two-way co-immunoprecipitation and the Biacore SPR
method), in silico and in vivo assays indicating convergent support for the observed correlation between
CCSP/IL8 ratios in induced sputum versus levels of neutrophilic airway infiltration.

The development of COPD treatments is probably the greatest challenge for respiratory medicine for the
next 20 years. The role played by airway inflammation is unclear at steady state, but neutrophilic bursts
(associated with exacerbation episodes) are the established culprits of irreversible “stair-shaped” decline [27].
The role played by the only “bronchiolar-specific” epithelial cell type, the club cell, means that it is emerging
as a potential regulator of these pathogenic COPD features [16, 17, 28]. We and others have been able to
establish the role of club cells at the interface between structural alterations and inflammation, with possible
modifications according to smoking status. In particular, serum CCSP levels are decreased in COPD and
restoring their normal values decreases CSE-induced IL8 and LPS-induced mucin 5AC (MUC5AC) [17, 29].
Indeed, though rhCCSP appears ready to be tested in humans, major knowledge gaps concerning its
mechanisms of action should be filled [30].

Different approaches have previously been used to assess CCSP effects on neutrophils in animals. In an
equine model, incubating neutrophils with rhCCSP significantly reduced their respiratory oxidative bursts
and increased their phagocytic activity [31]. Furthermore, neutrophil counts were increased in the
bronchoalveolar lavage fluid of CCSP−/− mice exposed to cigarette smoke for 6 months [18]. With our
human model, we assessed neutrophil chemotaxis in Dunn chambers using rhIL8 and fMLP as controls,
and ALI epithelium supernatants. Using epithelial supernatants made sense because, physiologically,
chemokines are also secreted by bronchial epithelial cells in order to attract neutrophils within the
bronchial airway lumen [32]. These chemotactic chambers have the advantage of not being affected by
gravity (e.g. compared to Boyden chambers), which is important for this model. SAPEY et al. [13] first used
this model to demonstrate that neutrophil chemotactic responses are different in COPD compared to in
healthy subjects. Our initial results suggest that COPD airway epithelia are exerting increased neutrophilic
chemotaxis at steady state. Interestingly, CSE exposure increased this chemotactic activity in both smokers
and COPD and could be prevented by treating the epithelium with rhCCSP. We failed to pinpoint the
intracellular signalling pathway involved. The small quantity of proteins extracted through ALI cultures on
filters did not enable Western blot analysis of changes in NF-κB p65 subunits. NF-κB inhibition was
suggested as a possible CCSP target by LAUCHO-CONTRERAS et al. [18], whereas TOKITA et al. [29]
alternatively propose extracellular signal-regulated kinase 1/2. CCSP is also known to be a specific
phospholipase A2 inhibitor, but this is highly controversial in the literature [18, 33]. Surprisingly, COPD
airway epithelia in the present assays did not produce very high IL8 levels when exposed to CSE. The
heterogeneity of COPD may at least partially explain this finding. In any case, the chemotactic activity
measurements fit with the IL8 concentrations and support our overall interpretation of the findings.

Pharmacologically, neutrophil chemotaxis was increased by fMLP and rhIL8, and rhCCSP was efficient in
reducing this activity. Candidate mediators of neutrophil chemotactic activity, such as LTB4 or
growth-regulated oncogene-α, can be found in the literature [34, 35]. rhCCSP may act through those
different mechanisms. It also suggests that rhCCSP interferes with neutrophilic chemotaxis not only via an
epithelial effect, such as decreased IL8 signalling mimicked by CXCR1/2 antagonism, but also through
FPR2 as suggested by VASANTHAKUMAR et al. [36] and probably, given the unspecific effects of CSE,

FIGURE 5 The small airway wall
infiltration by neutrophils negatively
correlated with the club cell
secretory protein (CCSP) to
interleukin 8 (IL8) ratio measured
in the induced sputum of chronic
obstructive pulmonary disease
(COPD) patients (n=10) collected
before surgery (r2=0.746). The level
of this negative correlation indicated
a greater intensity of neutrophilic
infiltration when the CCSP/IL8 ratio
was low and vice versa.
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through broader interactions. Because this pharmacological modulation could be obtained irrespective of
the presence of the airway epithelium, we strove to determine whether rhCCSP could directly neutralise IL8.

Over 20 years ago, a striking property was identified for CCSP: the presence of a hydrophobic pocket that
binds airway pollutants [37, 38]. Our in silico experiments not only showed that hsCCSP directly binds
hsIL8, but also that hsCCSP interacts with hsIL8 through the same binding site at CXCR1. As a
consequence, CCSP and CXCR1 most likely compete with each other for IL8 binding (suggesting that IL8
can either bind CCSP or CXCR1, but not both at the same time). Treatment with an antagonist of CXCR2
(another IL8 receptor) led to significant improvement in forced expiratory volume in 1 s in patients with
COPD, suggesting clinically important anti-inflammatory effects associated with CXCR2 antagonism [39].
Such results further support CCSP as a credible therapeutic strategy. We hypothesised that rhCCSP could
directly trap rhIL8. Co-immunoprecipitation assays were reproduced twice and bi-directionally. SPR, an
up-to-date real-time and label-free technology [40], was used to measure the direct interaction of rhIL8 on
immobilised rhCCSP from dose–response curves (KD=8 µM). Whether these rhCCSP–rhIL8 complexes
are biologically active or not is difficult to address. The reality of this interaction with non-recombinant
protein remains to be demonstrated.

In vivo, we observed a statistically significant relationship between the intensity of the neutrophilic airway
inflammation in the small airway of COPD patients and the CCSP/IL8 ratio measured in the induced
sputum collected just before the lung surgery. Although inconclusive and not evidencing any kind of
causality, this observation is convergent with the hypothesis. Once again, we acknowledge that this
convergence should not be over-interpreted.

In conclusion, this study confirms that ALI-reconstituted COPD airway epithelia exert increased
neutrophilic chemotactic activity and that rhCCSP is likely able to prevent airway neutrophilia in humans.
We suggest that multiple mechanisms of action exist, including the possibility of direct IL8 neutralisation.
A therapeutic strategy that limits airway neutrophilia must simultaneously address potential infection risks.
Compared to CXCR1/2 blockades that induced systemic neutropenia, rhCCSP has the potential, due to its
bronchial specificity, to have a narrower compartment target and subsequently tighter regulation of
neutrophilia.
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