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SUMMARY  

We conducted a genome wide association study to identify variants outside of 

TSC2/TSC1 associated with Lymphangioleiomyomatosis (LAM) pathogenesis. 

Two SNPs were identified near NR2F2. Pathology studies indicate this 

transcription factor is expressed highly in a LAM-related tumor. 

 
 
ABSTRACT  

Rationale: Lymphangioleiomyomatosis occurs either associated with Tuberous 

Sclerosis Complex or as sporadic disease (S-LAM). Risk factors for development 

of S-LAM are unknown.  

Objectives: We hypothesized that DNA sequence variants outside of TSC2/TSC1 

might be associated with susceptibility for S-LAM, and performed a Genome Wide 

Association Study (GWAS). 

Methods: Genotyped and imputed data on 5,426,936 SNPs in 426 S-LAM 

subjects were compared, using conditional logistic regression, to similar data from 

852 females from COPDGene in a matched case-control design. For replication 

studies, genotypes for 196 non-Hispanic white (NHW) female S-LAM subjects 

were compared with three different sets of controls. RNA-seq and 

immunohistochemistry analyses were also performed. 

Results: Two non-coding genotyped SNPs met genome-wide significance; 

rs4544201 and rs2006950 (P-value=4.2×10 -8, 6.1×10 -9, respectively) which are in 

the same 35kb linkage disequilibrium block on chr15q26.2. This association was 

replicated in an independent cohort. NR2F2, a nuclear receptor and transcription 



 

factor, was the only nearby protein-coding gene. NR2F2 expression was higher by 

RNA-seq in one abdominal LAM tumor and four kidney angiomyolipomas, a LAM-

related tumor, compared to all TCGA cancers. Immunohistochemistry showed 

strong nuclear expression in both LAM and angiomyolipoma tumors. 

Conclusions: SNPs on chr15q26.2 are associated with S-LAM, and chromatin 

and expression data suggest that this association may occur through effects on 

NR2F2 expression, which potentially plays an important role in S-LAM 

development. 
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INTRODUCTION 

Lymphangioleiomyomatosis (LAM) is a rare aggressive low-grade neoplasm 

which affects almost exclusively women at reproductive age or older and causes 

progressive cystic lung destruction leading to fatal respiratory failure in subjects with 

severe disease [1-6]. LAM is characterized by an abnormal proliferation of smooth 

muscle-like and epithelioid cells in innumerable tiny clusters in the lungs, in 

association with thin-walled cysts and lung parenchymal destruction [7, 8]. 

Progressive cyst enlargement and inflammation contribute to decline in lung function 

measured as both decreased FEV1 and DLCO. The diagnosis of LAM is based on 

clinical features, chest computed tomography findings of thin-walled cysts, and either 

pathology seen on lung biopsy or elevated serum vascular endothelial growth factor 

D (VEGF-D) levels. 

LAM occurs at high frequency (> 10%) in women with Tuberous Sclerosis 

Complex (TSC); and at much lower frequency in women (about 1 in 100,000) without 

that disorder, in which it is called sporadic (S-LAM). TSC is due to germline and/or 

mosaic mutations in either TSC1 (25%) or TSC2 (75%) [9]. Tumor development in 

TSC follows the classic Knudson model of a germline mutation complemented by a 

somatic second hit mutation in the other corresponding allele in tumors [9, 10]. 

Limited data are available for S-LAM, but it appears that TSC2 mutations are seen in 

the vast majority of S-LAM lesions. About 50% S-LAM subjects have kidney 

angiomyolipoma, a tumor which is seen in 70-80% of adults with TSC. 

Angiomyolipoma share histologic, expression, and genetic features with LAM, though 

are not identical pathologic lesions. 

Genome-wide association studies (GWAS) are utilized to identify genetic 

variants and susceptibility loci associated with complex traits and common diseases. 



 

Although there is no precedent for genetic influence on the development of S-LAM, 

we hypothesized that DNA sequence variants outside of TSC2/TSC1 might be 

associated with disease risk, and go unrecognized due to the low prevalence of this 

disorder. 

 

METHODS 

Discovery cohort 

Over 600 female S-LAM patients were initially identified and collected through 

international solicitation from 2010 to 2014 from 14 countries (Supplemental Table 1).  

S-LAM patients were diagnosed using standard diagnostic criteria [1-5, 7] by their 

treating physicians. Genomic DNA was extracted from saliva using the QIAamp DNA 

mini kit (Qiagen, Germany), and 479 S-LAM DNA samples were genotyped with the 

Infinium OmniExpress-24 v1.2 BeadChip, which assesses 716,503 SNPs across the 

entire genome. 34 non-white S-LAM subjects were excluded from further analyses. 

There were no self-declared Hispanics in this set of subjects. 

Genotype data from the same genotyping chip were available for 1261 healthy 

female volunteers from the COPDGene Consortium, and were obtained from dbGaP 

(phs000951.v2.p2.c1). These COPDGene participants had smoked at least 10 pack 

years and were 45 to 80 years old, and were without known COPD [11, 12]. 

 

Quality control analyses of SNP genotype data 

We evaluated the quality of SNPs and subjects in the discovery data set using 

PLINK [13] and ONETOOL [14]. We excluded all SNPs for which: the Hardy-

Weinberg equilibrium (HWE) test [15] gave P < 1×10-5; minor allele frequency (MAF) 

was < 0.05; or genotype call rates were less than 95%. We also discarded any 



 

subjects whose missing genotype rates were > 5%, or showed identity-by-state > 

80% with any other subject (Figure 1). These filtering procedures were first applied 

separately to cases and controls, and were repeated on the pooled dataset. In 

addition, any SNP showing a difference in missing data rate between cases and 

controls by Fisher’s exact test [16], with P < 1×10-5 was removed (Figure 1). 

 

Genome-wide imputation  

We performed genome-wide imputation for all autosomes to enable discovery 

of associations for both genotyped and imputed SNPs. Imputation was conducted 

using the Sanger Imputation Service (https://imputation.sanger.ac.uk). We used 

Haplotype Reference Consortium release v1.1 for the reference panel and 

considered predominantly European ancestry [17]. Pre-phasing was performed first 

with EAGLE2 v2.0.5 [25], and then the Positional Burrows–Wheeler Transform 

(PBWT) package [26] was used for imputation according to the imputation pipeline 

recommended by Sanger Imputation Service. Imputation accuracy was evaluated 

with the INFO metric [18]. Imputed SNPs were filtered out if INFOs, MAFs or P-

values for the HWE test were < 0.3, 0.05, or 1×10-5, respectively.  

 

Statistical analyses with genetic data 

EIGENSTRAT [19] was also applied to the pooled data and principal 

component (PC) scores were calculated. PC scores were used to detect subjects 

with an outlying genetic background, and such outliers (3 subjects) were then 

removed (Figure 1). 

To ensure matching of cases and controls for primary analysis, we used 

conditional logistic regression (CLR).  Each case was matched with two controls 

https://imputation.sanger.ac.uk/


 

using the Matching R package [20]. Matching quality is affected by the number of PC 

scores used, and we assessed how many PC scores were required for effective 

matching.  Two PC scores gave the genomic inflation factor closest to 1 

(Supplementary Figure 1). Thus CLR was conducted by conditioning on the matched 

cases and controls with the first 2 PC scores. Our CLR can be expressed as follows: 

for  th strata,  
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where     and     indicate the phenotype and covariates including SNP of jth subject 

in the ith matched strata, respectively. For covariates, 10 PC scores were included to 

adjust the additional population substructure. CLR analyses were performed with the 

R package survival [21] and genome-wide significance was assessed by P-value < 

5×10-8. 

We applied the PICS software to all imputed and genotyped SNPs showing 

association with LAM to calculate the probability of each individual SNP being the 

causal SNP [22]. 

We also conducted gene-based analyses for association with LAM for those 

genes near the genome-wide significant SNPs using the SKAT-O statistic [23]. We 

included all genotyped SNPs in this analysis with no MAF cut-off for inclusion. Age, 

squared age, and 10 PC scores were included as covariates. 

 

  



 

Replication data 

Replication analysis was done on an independent set of 196 non-Hispanic 

white (NHW) female S-LAM subjects, seen at the NIH Clinical Center by one co-

author (JM, Supplementary Table 1).  Careful scrutiny was performed by a third 

independent party (‘honest broker’) to compare the names of subjects used in the 

primary analysis and patient candidates for the replication population to select those 

that were not analyzed in the primary analysis. Genotyping was performed by 

TaqMan SNP genotyping assays C_832391_10 and C_27296040_10 for SNPs 

rs2006950 and rs4544201, respectively (ThermoFisher Scientific). Nine randomly 

selected S-LAM subjects from the discovery study were also genotyped by this 

method to confirm genotyping accuracy in the replication analysis. Their discovery 

study genotypes matched the TaqMan analysis genotypes perfectly, and these 9 

subjects were not included in the replication analyses. We used three independent 

datasets as controls for comparison in the replication study: 1) 409 NHW healthy 

females from COPDGene Consortium who were not used for discovery analyses; 2) 

1,121 Hispanic white females in the Multi-Ethnic Study of Atherosclerosis (MESA) 

dataset obtained from dbGaP (phs000209.v13.p3) [24]; and 3) 225,731 white British 

females from UK Biobank dataset [25]. For each control dataset, we used genotyped 

or imputed data for the genome-wide significant SNPs.  

 

Topologically associated domains (TADs) and chromatin interactions  

To identify chromatin interactions in the region of interest on chromosome 

15q26.2, we used two 3D genome browsers (www.3dgenome.org and 

https://yunliweb.its.unc.edu/hugin/) to predict TADs [26, 27]. We checked for TADs 

around the genome-wide significant SNPs and protein coding genes belonging to 

http://www.3dgenome.org/


 

each TAD were investigated. We analyzed TADs from four cell lines/tissues judged 

closest to LAM: (i) human fetal lung fibroblast (IMR90), (ii) lung-related tissues 

(LUNG), (iii) H1 derived mesenchymal stem cells (H1-MSC), and (iv) Human 

Umbilical Vein Endothelial Cells (HUVEC). 

 

Statistical analyses with RNA sequencing data 

Whole transcriptome RNA-Seq analysis was performed on one abdominal 

LAM tumor and four kidney angiomyoliopomas at the Broad Institute of Harvard and 

MIT.  Briefly, mRNA-Seq was performed using polyA cDNA capture followed by 

cDNA library synthesis (Illumina Truseq RNA Library Prep Kit), and sequencing on 

Illumina machines, following the same methods and in the same facility in which the 

Gene and Tissue Expression (GTEx) RNA-seq project occurred [24]. Read data was 

processed into FASTQ files with standard QC methods, and aligned to the genome 

(hg19, NCBI37) using Tophat v2.0.10 [28]. Fastq files were also converted into 

RSEM format [29]. RSEM values were compared to RNA-seq data from 2,463 

tumors of 27 different histologic types from the TCGA [30]. RPKM values for NR2F2 

were compared to the GTEx data set of normal human tissues with Limma statistic 

(11,688 RNA-Seq samples from 53 normal tissue types, v7 release) [31]. 

We also searched for any cis-expression quantitative trait loci (eQTL) for all 

SNPs in the LD block with association to LAM using GTEx release v7 database [33]. 

This resource provides results of eQTL analysis for each SNP-gene pair for all SNPs 

within 1 Mb upstream and downstream of the transcription start site. FastQTL is used 

by this resource (https://www.gtexportal.org/home) for cis-eQTL mapping [32] with 

covariate adjustment of top three PC scores, genotyping platform, sex and a set of 

relevant variables identified using PEER method [33].  

https://www.gtexportal.org/home


 

 

Immunohistochemistry analyses 

 Immunochistochemistry was performed as described elsewhere [34] using a 

primary mouse monoclonal antibody against NR2F2 [Abcam Cat.Num # ab41859 

Concentration 1:100 (10ug/ml)].  Briefly, formalin-fixed, paraffin-embedded tumor 

sections were deparaffinized in xylene, rehydrated, and antigen retrieval was 

performed in EDTA (pH 8.0, Diagnostic BioSystems). Endogenous peroxidase 

activity was blocked with 3% H2O2, blocking was done with 5% goat serum, followed 

by incubation overnight with antibody at 4°C, washing in TBST, and incubation with 

anti-goat secondary antibody (Vector Labs, Burlingame, CA, dilution 1:300). The 

peroxidase reaction was developed using DAB substrate (DakoCytomation). Both 

LAM lung samples and kidney angiomyolipomas were stained by similar methods. 

 

RESULTS 

GWAS analysis of S-LAM identifies two intergenic SNPs on chromosome 15 

After multiple filtration steps and elimination of SNPs and samples as 

described in the Methods and shown in Figure 1, GWAS was performed on 426 S-

LAM subjects and 852 control subjects from the COPDGene project, for 5,426,936  

SNPs (549,591 genotyped and 4,877,345 imputed) using CLR. Twenty non-coding 

SNPs on chromosome 15 met genome-wide significance, of which 2 had been 

directly genotyped (Table 1, rs4544201: P-value=4.19×10
-8

; rs2006950: P-

value=6.12×10
-9

). 

Quantile-quantile plots for CLRs and Manhattan plots demonstrated that the 

distribution of observed P-values met the expected distribution, with the exception of 

the 20 SNPs (Figure 2), indicating that the analyses were free of systematic P-value 



 

inflation (genomic inflation factor = 1.025). Scatter plots of PC scores indicated 

similarity between cases and controls in the discovery analyses (Supplementary 

Figure 2). All subjects from the COPDGene cohort were smokers, and this might 

have caused an association between SNPs associated with nicotine addiction. We 

checked p-values for SNPs associated with nicotine addiction from the GWAS 

catalog [35] and other SNPs correlated with those (r2 >0.8) (Supplementary Table 2). 

None of those SNPs showed a significant difference in allele frequency in the LAM 

and COPDGene cohorts, indicating that our findings are not affected by nicotine 

addiction SNPs.  

Linkage disequilibrium (LD) blocks near genome-wide significant SNPs were 

identified using Haploview with default options [36]. All 20 SNPs, including the two 

directly genotyped, rs4544201 and rs2006950, belong to the same LD block on 

15q26.2; the latter two SNPs were 11,563nt apart, and were strongly correlated 

(D’=0.977, r2=0.854; Supplementary Figure 3). Based on the proximity of the two 

SNPs to each other and their LD relationship, it is likely that there is a single disease 

susceptibility locus in the region. They are located in an intergenic gene desert 

between MCTP2 (1.1Mb away) and NR2F2 (700kb away), that contains many long 

non-coding RNAs (lncRNAs) (Figure 3). Both SNPs have minor and major alleles of 

A and G, and showed a lower minor allele frequency (MAF) in the S-LAM cohort than 

the control population. The odds ratios (ORs) of a single minor allele in the S-LAM 

cohort were 0.49 and 0.47 respectively, in comparison to the control population 

(Table 2). To adjust for the possible effect of the ‘Winner’s curse’, we used br2 [37], 

and found that the bias-adjusted OR for rs4544201 and rs2006950 were 0.57 and 

0.53, respectively. 



 

We calculated the proportion of phenotypic variance explained by the 

genotyped SNPs,     
 . Estimates of     

  vary according to disease prevalence 

(Supplementary Figure 4). With prevalence set at 1 in 100,000 women,     
  was 15% 

(0.3% on the observed 0-1 scale). 

Given that TSC2 mutations occur consistently in LAM cells, genetic variants in 

each of TSC1 and TSC2 were considered a priori candidates for association with S-

LAM.  Hence, we checked SNPs within or < 1 Mb away from either gene. There were 

566 and 416 SNPs for TSC1 and TSC2, respectively, and only rs11552431 (located 

at 16:1823024, 274kb away from TSC2) was significant in CLR after Bonferroni 

correction at q <0.1 (nominal P-value = 5.97 x 10-5).  We included that SNP and 9 

others with the lowest P-values from these genes as covariates in the CLR. The 

significance of rs4544201 and rs2006950 changed minimally following this 

adjustment (Supplementary Table 3). 

Replication analysis was performed for the two genome-wide significant and 

genotyped SNPs, which were genotyped in 196 additional non-Hispanic white (NHW) 

S-LAM patients and compared with SNP allele frequencies in each of  three control 

datasets: 1) 409 NHW healthy COPDGene females who were not used for discovery 

analyses; 2) 1,121 Hispanic white females from the MESA dataset [38]; and 3) 

225,731 British white females in the UK Biobank dataset [25]. Similar ORs for 

association of the minor allele of these SNPs with S-LAM were observed in all three 

comparisons (Table 2). Furthermore, we compared the MAFs of the 2 SNPs in LAM 

patients with those available from 7 other studies (composed of NHW European or 

USA populations), including all UK Biobank individuals. The MAFs of the 2 SNPs in 

LAM patients were significantly smaller than those reported in every other cohort 

(Supplemental Table 4). 



 

To attempt to identify the causal SNP(s) among the SNPs with low P-values, 

we performed PICS analysis for all SNPs in Table 1. rs41374846 had both significant 

association with LAM, and the largest PICS probability (PPICS=0.65, Supplementary 

Table 5), making it the candidate causal SNP in this association [22].  

We also queried the GTEx database for SNPs in this LD block that might have 

an eQTL relationship with expression levels of any gene. None were identified.  

 

Association of GWAS-significant SNPs with NR2F2 

The majority of SNPs associated with human disease or other phenotypes are 

thought to cause the association through effects on enhancer regions or other 

regulatory elements of a coding gene within the topologically associated domain 

(TAD) containing the SNP [39]. To identify the TAD containing these SNPs, we used 

TAD information available for four tissues: IMR90 cells, a fetal lung myofibroblast cell 

line [40]; lung tissue [41]; H1-MSC, a mesenchymal stem cell line [42]; and HUVEC, 

human umbilical vein endothelial cells [40]. Supplementary Figures 5-8 display Hi-C 

heatmaps for the 3 Mb region containing the GWAS SNPs and NR2F2 for these 

cells/tissues. HUGIN showed that P-values between rs4544201 and NR2F2 were 

<10-18 for IMR90, <10-16 for H1-MSC, and ≈ 0.1 for lung tissue (not available for 

HUVEC) [27]. Thus the region containing our significant SNPs interacts with the 

NR2F2 genomic region in IMR90 and H1-MSC cells. 

NR2F2 is the only protein-coding gene within the TAD containing the 

associated SNPs. This suggests that this SNP region may influence expression of 

NR2F2 as its mechanism of association with S-LAM. 

To examine this possibility in further detail, we conducted gene-based 

analyses of association of SNPs within each of the three protein-coding genes in the 



 

2 MB region of chromosome 15 surrounding the GWAS-SNPs using SKAT-O. 

NR2F2 was the only one of the three genes located in this chromosomal region that 

showed a significant association (P-value=0.03, Table 3). 

NR2F2, also known as COUP-transcription factor II, encodes a member of the 

steroid/thyroid hormone superfamily of nuclear receptors [43], and plays important 

roles in many developmental processes, including the neural crest [44], which is 

considered a potential candidate cell of origin of LAM [45], as well as in 

lymphangiogenesis and in angiogenesis [46]. Hence, we considered it a potential 

target of regulation by one of the SNPs showing a strong association with LAM 

(Table 2), and performed further studies. 

 

Analysis of NR2F2 in kidney angiomyolipoma and LAM 

Using RNA-seq data, we compared the gene expression of four kidney 

angiomyolipomas and one abdominal LAM tumor with an extensive set of human 

cancers (from TCGA [30]), and normal tissues (from GTEX [31]) (Figure 4). NR2F2 

expression was higher in the LAM-related tumors than any TCGA cancer (Figure 4a), 

and was also relatively highly expressed in LAM-related tumors in comparison to 

normal tissues (Figure 4b, P = 6.38×10-6, Limma statistic)[47]. In contrast, two other 

genes, SPATA8 and MCTP2, that were next closest to the SNP region showing 

association with LAM (1.1 and 1.2Mb distant, Figure 3b) had no expression in the 

LAM-related tumors (data not shown). 

Immunohistochemistry (IHC) analysis also demonstrated strong nuclear 

expression of NR2F2 in both LAM lung (n=8) and kidney angiomyolipoma sections 

(n=4) (Figure 5). 

 



 

DISCUSSION 

LAM occurs almost exclusively in women of childbearing age. Most LAM 

patients who come to medical attention are sporadic cases without TSC, and the 

origins of LAM in S-LAM patients are completely unknown. In the present study, we 

conducted a GWAS in a large cohort of S-LAM subjects. Twenty intergenic SNPs 

were identified in a 34kb LD block on chromosome 15, that met genome-wide 

significance for association with LAM, including rs4544201 and rs2006950 that were 

directly genotyped (Table 1). The association was replicated in a validation 

population.  

The SNPs with association to S-LAM lie in a gene desert on distal 

chromosome 15q26.2. The nearest protein-coding gene is NR2F2, 700kb away, and 

consideration of chromatin TADs in this region indicates that only NR2F2 is in/on the 

border of the TAD region containing the SNPs showing association with S-LAM in 

four relevant cells/tissues, suggesting that these SNP alleles may influence NR2F2 

expression as the potential mechanism of their association with S-LAM development.  

NR2F2 is an orphan nuclear receptor with known critical functions in 

development and tumorigenesis [48], making it a promising candidate driver gene in 

LAM pathogenesis. LAM occurs nearly exclusively in women, and estrogen levels 

influence LAM development and progression [49, 50]. siRNA knockdown of ERα 

(Estrogen Receptor) in MCF-7 breast cancer cells decreased NR2F2 expression, 

while treatment with estradiol increased its expression [51]. This interaction between 

ERα and NR2F2 may also play a role in LAM development. 

NR2F2 is highly expressed in LAM and angiomyolipoma by RNA-Seq analysis 

in comparison to large cancer and normal tissue data sets, and NR2F2 shows high 

expression with nuclear localization in both LAM and angiomyolipoma by IHC. 



 

Although we did not identify an eQTL relationship for any of the 20 SNPs associated 

with S-LAM for any gene in any normal tissue or cancer type [31], it is possible that 

such an eQTL relationship exists for LAM cells.  We also note that the region of these 

SNPs contains several non-coding long RNAs, some antisense transcripts, and 

miR1469 (Figure 3a).  It is possible that expression of one or more of these 

noncoding genes are affected by these SNP alleles, and have a role in LAM 

development, a possibility which requires further investigation. 

Lymphatic involvement in LAM is a hallmark pathologic feature with LAM cell 

clusters in the lung showing marked enrichment for lymphatic vessels [52, 53]. 

VEGF-D is a probable driver of lymphatic vessel growth in LAM, as serum VEGF-D 

levels are increased in the majority of LAM patients, and serves as a diagnostic 

biomarker of LAM [54]. In mice, NR2F2 has been shown to be required, with SOX18, 

for the polarized expression of PROX1 in a subset of endothelial cells within the 

cardinal vein at embryonic day 9.5, an event that leads to development of the 

lymphatic endothelium [55]. Hence there is also a potential connection between 

NR2F2, VEGF-D, lymphatic development, and LAM pathogenesis. 

There are potential limitations to our study.  Although our cohort of samples 

was large for a rare disease like S-LAM, it was of only moderate size for GWAS. In 

order to obtain sufficient patient samples, we employed a worldwide recruitment 

strategy for S-LAM patients of European origin. Although our controls were all from 

the USA, they were selected for European ancestry to minimize population 

stratification issues. In addition, we employed EIGENSTRAT to remove genetic 

outliers from both S-LAM patients and controls. Finally we used a CLR design, 

matching each case with two controls to further minimize confounding due to genetic 

heterogeneity. Previous studies have shown that CLR is superior to unconditional 



 

logistic regression (LR) if variables used for matching are true confounding variables, 

and only a moderate number of controls are excluded through matching [56-62]. We 

also found that CLR generated more significant results than LR (Supplemental Table 

6). Functional analyses to confirm our hypothesis that NR2F2 is the gene affected by 

this SNP are limited due to the absense of a reliable LAM tumor cell line, the very low 

abundance of LAM cells in LAM lung specimens (often <5%), and lack of a LAM 

animal model. 

In conclusion, our GWAS has identified non-coding SNPs on chr15q26.2 

whose alleles are associated with S-LAM, that are located in a TAD containing the 

orphan nuclear receptor NR2F2, suggesting a model in which these SNP alleles 

influence NR2F2 expression and thereby LAM pathogenesis. NR2F2 is relatively 

highly expressed in LAM and LAM-related tumors. NR2F2 has not previously been 

implicated in LAM, and these novel and unexpected findings will hopefully lead to 

better understanding of the pathogenesis of this often progressive and lethal lung 

disorder. 
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Table 1. Statistical analyses of imputed SNPs with CLR. Imputation was 

conducted using EAGEL2 and PBWT for pre-phasing. Imputation was conducted by 

using the Haplotype Reference Consortium as reference panel. 

CHR SNP POS Alleles* MAF 
Imputed vs 

genotyped 
INFO† 

P-value for 

CLR‡ 

15 rs41374846 96143559 A/G 0.2605 imputed 0.9097 1.322×10-7 

15 rs59125351 96144157 G/T 0.2510 imputed 0.9771 2.741×10-9 

15 rs17581137 96146414 C/A 0.2336 imputed 0.9893 1.250×10-10 

15 rs6496126 96148439 C/G 0.2330 imputed 0.9890 6.982×10-9 

15 rs2397810 96148765 C/T 0.2330 imputed 0.9890 6.691×10-9 

15 rs10520790 96151040 T/G 0.2478 imputed 0.9958 6.691×10-9 

15 rs55804812 96151256 A/T 0.2475 imputed 0.9952 4.008×10-8 

15 rs16975389 96153782 C/T 0.2463 imputed 0.9967 1.173×10-8 

15 rs16975396 96158705 G/T 0.2466 imputed 0.9983 3.547×10-8 

15 rs4544201 96167827 A/G 0.2469 genotyped 1.0000 4.186×10-8 

15 rs4628911 96167905 T/C 0.2472 imputed 1.0000 3.547×10-8 

15 rs6496128 96168303 G/A 0.2472 imputed 1.0000 3.547×10-8 

15 rs8029996 96168770 A/G 0.2472 imputed 0.9998 3.547×10-8 

15 rs4551988 96169589 C/G 0.2472 imputed 0.9998 3.547×10-8 

15 rs58878263 96171069 A/C 0.2493 imputed 0.9979 3.632×10-8 

15 rs8040665 96175692 G/T 0.2487 imputed 0.9976 2.375×10-8 

15 15:96175733 96175733 A/G 0.2466 imputed 0.9975 2.227×10-8 

15 rs8040168 96176096 G/C 0.2466 imputed 0.9981 2.227×10-8 

15 rs17504029 96177670 T/A 0.2478 imputed 0.9876 2.289×10-8 

15 rs2006950 96179390 A/G 0.2262 genotyped 1.0000 6.117×10-9 

 

Definition of abbreviations: CHR = Chromosome; POS = SNP Position according to 

NCBI genome build 37 (hg19); MAF = Minor allele frequency; CLR = Conditional 

Logistic Regression. 

* Minor/Major alleles are listed. 

† INFO is a metric for imputation quality determined by IMPUTE2. 

‡ CLR was applied to imputed SNP genotype data to identify SNPs with significant 

association (P < 5×10-8) with S-LAM. 



 

Table 2. Genome-wide significant genotyped SNPs.  

 
rs4544201 rs2006950 

Chromosome 15q26.2 15q26.2 

SNP position (hg19) 96167827 96179390 

Minor / Major alleles A / G A / G 

Minor allele frequency 

  S-LAM 0.1655 0.1420 

  Control 0.2750 0.2529 

Discovery data 

Genotype counts  
(AA / AG / GG / Missing) 

  

  S-LAM 16 / 108 / 299 / 3 11 / 99 / 316 / 0 

  Control 62 / 343 / 444 / 3 58 / 315 / 479 / 0 

Odds ratio 
  

  Original 0.4973 0.4673 

  Bias adjusted 0.5925 0.5272 

P-value 4.19×10
-8

 6.12×10
-9

 

Replication data   

Genotype counts  
(AA / AG / GG / Missing) 

  

S-LAM 4 / 48 / 144 / 0 3 / 39 / 154 / 0 

COPDGene 26 / 171 / 212 / 0 26 / 159 / 224 

MESA 69 / 417 / 635 / 0 64 / 385 / 672 / 0 

UK BioBank 
14468 / 85721 / 

125542 / 0 

12765 / 81784 / 

131182 / 0 

S-LAM vs COPDGene   

    Odds ratio 0.3288 0.2731 

    P-value 4.32×10
-5

 1.56×10
-5

 

S-LAM vs MESA   

    Odds ratio 0.5070 0.4448 

    P-value 9.28×10
-6

 1.04×10
-6

 

S-LAM vs UK BioBank   

    Odds ratio 0.4888 0.4159 



 

    P-value 7.30×10
-7

 3.11×10
-8

 

 

Definition of abbreviations: SNP = Single-Nucleotide Polymorphism; S-LAM = 

Sporadic Lymphangioleiomyomatosis. 

  



 

Table 3. Gene-based analyses of SNP association with LAM. Three protein-

coding genes were found on chromosome 15 from 94.2 Mb to 98.2 Mb, the 4 Mb 

region surrounding the GWAS-SNPs, and gene-based analysis for association with 

LAM was performed using SKAT-O. 

Gene CHR Start* End† Number of SNPs P-value 

NR2F2 15 96869157 96883492 5 0.0307 

MCTP2 15 94774767 95027181 4 0.3579 

SPATA8 15 97326619 97328845 3 0.5250 

 

Definition of abbreviations: SNP= Single-Nucleotide Polymorphism; LAM = 

Lymphangioleiomyomatosis; GWAS = Genome-Wide Association Study; CHR = 

Chromosome 

* Start position of the corresponding gene. 

† End position of the corresponding gene. 

  



 

Figure Legends 

Figure 1. Workflow of statistical analysis and quality control for the LAM GWAS 

discovery data set. Multiple standard quality controls were performed for both cases 

(S-LAM subjects) and controls (healthy women without COPD from COPDGene 

consortium) to exclude outlier SNPs and subjects. HWE, Hardy-Weinberg equilibrium 

test; MAF, minor allele frequency; IBS, identity-by-state. 

Figure 2. Quantile-quantile and Manhattan plots for the discovery LAM GWAS.  

a) The observed distributions of P-values for 5,426,936 SNPs including 549,591 

directly genotyped are plotted relative to the expected (null) distribution for the 

Conditional logistic regression (CLR) analysis. b) Manhattan plot. Each dot 

represents the P-value of a single SNP, plotted on the genome scale at bottom. The 

Y-axis value is the negative logarithm of the P-value for association between each 

genotyped SNP and S-LAM. Two SNPs on 15q met genome-wide significance. 

Figure 3. Genomic region on chr15 containing the SNPs associated with LAM. 

a. Ideogram of chromosome 15.  

b. Three Mb region containing the SNPs associated with LAM. Manhattan plot at top 

shows P-values for directly genotyped SNPs in this region, including the two SNPs 

meeting genome-wide significance (red dots). There are 3 protein-coding genes 

NR2F2, MCTP2, and SPATA8 which are highlighted by yellow backbround, and 

many lncRNAs in this region.  

c. Expanded Manhattan plot of the 250kb region showing both genotyped and 

imputed SNPs. SNP rs41374846, the candidate causal SNP, is indicated by purple, 

and other SNPs are colored according to their r2 value in relation to that SNP.  

Figure 4. Comparison of NR2F2 expression in kidney angiomyolipoma/LAM 

with cancer (TCGA) and normal (GTEx) tissues. 



 

Boxplot figures are shown to compare expression of NR2F2 in 4 angiomyolipoma 

tumors and one abdominal LAM lesion with 2463 cancers of 27 types (from TCGA) in 

RSEM units (a); and with ~7,000 samples of 47 normal tissues (from GTEx) in RPKM 

units (b). The median value, interquartile range, and 95% ranges are shown, with 

outliers indicated by circles. Abbreviations used here for TCGA cancer types are 

explained in Supplemental Table 7. 

Figure 5. Immunohistochemistry for NR2F2 in LAM and kidney 

angiomyolipoma. Strong nuclear staining is seen in lung LAM cells (A) and 

angiomyolipoma cells (B) (brown stain). Some other cells also have nuclear staining 

for NR2F2 but most do not. This is a representative field obtained from 8 LAM lung 

samples and 4 angiomyolipoma samples examined by IHC. 
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Supplementary Table 1. Distribution of LAM patients according to their nationality  

 
Discovery 

LAM 
Replication 

LAM 
USA 190 196 
France 54 0 
Spain 40 0 
Italy 35 0 
United Kingdom 32 0 
Germany 21 0 
Australia 20 0 
Poland 15 0 
Israel 7 0 
Canada 4 0 
Panama 1 0 
Puerto Rico 1 0 
Scotland 1 0 
Unknown 5 0 
Total 426 196 

 

  



Supplementary Table 2. P-values for SNPs associated with nicotine addiction. 

P values are shown in comparison of allele frequencies for the S-LAM discovery 

cohort and the COPDGene controls. 

CHR SNP Mapped gene P-value 

1 rs1060061 NR5A2 0.4885 

6 rs9503551 SLC22A23 0.0840 

7 rs4285401 LINC01287 0.3263 

8 rs804292 NEIL2 0.8145 

8 rs6470120 ZHX2 0.1152 

9 rs10491551* GLIS3 0.7217 

15 rs1051730 CHRNA3 0.9759 

21 rs2836823 AF064858.3 0.1560 

 

* rs10491551 is included due to its high correlation with rs12348139 in the GWAS 

catalogue (r2 = 1). 

  



Supplementary Table 3. P-values for rs4544201 and rs2006950 adjusted by 

effect of TSC1/2 genes.  

TSC1/2 rs4544201 rs2006950 

rs11552431 4.56×10-8 3.98×10-9 

Top 10 SNPs 1.08×10-7 1.13×10-8 

 

 

 

  



Supplementary Table 4. Minor allele frequencies for SNPs rs4544201 and 

rs2006950 in multiple populations.   

SNP 
LAM patients Normal 

Data N MAF 

(95% CI) Data N MAF 
(95% CI) 

rs4544201 Discovery 
(USA/NHW/females) 190 0.1684 

(0.131, 0.206) 
COPDGene 

(USA/NHW/females) 1,258 0.2742 
(0.257, 0.292) 

Discovery 
(EUR/NHW/females) 233 0.1631 

(0.130, 0.197) 
COPDGene 

(USA/NHW/males) 1,224 0.2774 
(0.260, 0.295) 

Replication 
(USA/NHW/females) 186 0.1429 

(0.107, 0178) 
MESA-Lung

*

 
(USA/HW/females) 

1,153 0.2563 
(0.238, 0.274) 

  
    1000GP

**

 

(USA/NHW/females) 
50 0.2600 

(0.174, 0.346) 

 
  

1000GP
**

 

(EUR/NHW/females) 
213 0.2300 

(0.190, 0.270) 
  

    ECLIPSE
***

 
(EUR/NHW/females) 

792 0.2563 
(0.235, 0.278) 

  
    UKBiobank

†

 
(EUR/NHW/both) 337,199 0.2605 

(0.259, 0.262) 
  

    GnomAD
‡

 
(EUR/NHW/both) 

7,482 0.2601 
(0.253, 0.267) 

rs2006950 Discovery 
(USA/NHW/females) 190 0.1474 

(0.112, 0.183) 
COPDGene 

(USA/NHW/females) 1,261 0.2546 
(0.238, 0.272) 

Discovery 
(EUR/NHW/females) 230 0.1377 

(0.107, 0.169) 
COPDGene 

(EUR/NHW/males) 1,226 0.2557 
(0.238, 0.273) 

Replication 
(USA/NHW/females) 186 0.1148 

(0.082, 0.147) 
MESA-Lung

*

 
(USA/HW/females) 

1,128 0.2283 
(0.211, 0.246) 

  
    1000GP

**

 

(USA/NHW/females) 
50 0.2300 

(0.148, 0.312) 

 
  

1000GP
**

 

(EUR/NHW/females) 
213 0.2160 

(0.177, 0.255) 
      ECLIPSE

***

 
(EUR/NHW/females) 

792 0.2431 
(0.222, 0.264) 

      UKBiobank
†

 
(EUR/NHW/both) 

337,199 0.2432 
(0.242, 0.244) 

      GnomAD
‡

 
(EUR/NHW/both) 7,496 0.2421 

(0.235, 0.249) 
 

*
 MESA = Multi-Ethnic Study of Atherosclerosis. Hispanic whites females were chosen and 

MAFs were calculated.  



** 1000GP = 1000 Genome Project 

*** ECLIPSE = Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points 

† http://pheweb.sph.umich.edu:5000/ 

‡ http://gnomad.broadinstitute.org 

  



Supplementary Table 5. PICS analysis to identify probable causal SNPs in the chr 

15q region. 

CHR SNP
* POS P-value 𝐷′† 𝑟2‡ PICS 

probability 

15 rs41374846 96143559 1.322×10-7 1.0000 1.0000 0.6485 

15 rs59125351 96144157 2.741×10-9 0.9703 0.7941 0.0352 

15 rs55804812 96151256 4.008×10-8 0.9557 0.7758 0.0290 

15 rs16975389 96153782 3.547×10-8 0.9555 0.7700 0.0272 

15 rs10520790 96151040 6.691×10-9 0.9486 0.7698 0.0271 

15 rs16975396 96158705 3.547×10-8 0.9480 0.7581 0.0239 

15 rs58878263 96171069 4.008×10-8 0.9328 0.7287 0.0172 

15 rs8029996 96168770 3.547×10-8 0.9325 0.7230 0.0161 

15 rs6496128 96168303 6.982×10-9 0.9325 0.7230 0.0161 

15 rs4628911 96167905 3.547×10-8 0.9325 0.7230 0.0161 

15 rs8040665 96175692 2.227×10-8 0.9254 0.7171 0.0151 

15 rs17581137 96146414 1.250×10-10 0.9529 0.7125 0.0143 

15 rs4544201 96167827 3.547×10-10 0.9317 0.7116 0.0142 

15 rs4551988 96169589 3.547×10-8 0.9183 0.7113 0.0141 

15 rs2397810 96148765 6.691×10-9 0.9451 0.7008 0.0125 

15 rs6496126 96148439 6.982×10-9 0.9380 0.7005 0.0124 

15 rs8040168 96176096 2.227×10-8 0.9233 0.6887 0.0108 

 

Definition of abbreviations: CHR = Chromosome; POS = SNP Position according to 

NCBI genome build 37 (hg19); CLR = Conditional Logistic Regression. 

SNP rs41374846 (shown in bold) was identified as the probable causal SNP, with the 

highest PICS probability.  SNPs are sorted by PIC probability.  

† 𝐷′ = 𝐷𝐴𝐵/𝐷max  where 𝐷𝐴𝐵 : the frequency of the haplotype AB and 𝐷max : 

theoretical maximum difference between the observed and expected haplotype 

frequencies. 

‡ 𝑟2: squared correlation coefficient 

  



Supplementary Table 6. Unconditional logistic regression results for genome-

wide significant SNPs. We performed unconditional logistic regression using 479 

cases and 1,261 controls for rs4544201 and rs2006950. Two PC scores 

corresponding two greatest eigenvalues and age were included as covariates. 

 
rs4544201 rs2006950 

Chromosome 15q26.2 15q26.2 

SNP position (hg19) 96167827 96179390 

Minor / Major alleles A / G A / G 

Minor allele frequency 

  S-LAM 0.1655 0.1420 

  Control 0.2742 0.2546 

Genotype counts  

(AA / AG / GG / Missing) 

  S-LAM 16 / 108 / 299 / 3 11 / 99 / 316 / 0 

  Control 88 / 514 / 656 / 3 84 / 474 / 703 / 0 

LR results 
  

 Odds ratio 0.5728 0.5152 

 P-value 5.00×10
-7

 1.23×10
-8

 

 

Definition of abbreviations: LR = Unconditional logistic regression 

 

  



Supplementary Table 7. TCGA tumor abbreviations 

Abbreviation Cancer type 

KIRP Kidney renal papillary cell carcinoma 
KIRC Kidney Renal Clear Cell Carcinoma 

SARC Sarcoma 
PAAD Pancreatic Adenocarcinoma 

OV Ovarian Serous Cystadenocarcinoma 

BRCA Breast Invasive Carcinoma 

UCS Uterine Carcinosarcoma 

KICH Kidney Chromophobe 

UCEC Uterine Corpus Endometrial Carcinoma 

LIHC Liver Hepatocellular Carcinoma 

SKCM Skin Cutaneous Melanoma 

ACC Adrenocortical Carcinoma 

BLCA Bladder Urothelial Carcinoma 

MESO Mesothelioma 
COAD Colon Adenocarcinoma 

LUAD Lung Adenocarcinoma 

THCA Thyroid Carcinoma 

READ Rectum Adenocarcinoma 

PCPG Pheochromocytoma and Paraganglioma 

LUSC Lung Squamous Cell Carcinoma 

GBM Glioblastoma Multiforme 

CESC Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 

HNSC Head and Neck Squamous Cell Carcinoma 

LGG Low Grade Glioma 

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 

LAML Acute Myeloid Leukemia 

 

  



Supplementary Figure 1. Genomic inflation factors according to the number of 

PC scores used for the discovery data. Cases and controls were matched with 

different numbers of PC scores (2 – 10 PC scores) and age, and CLR was applied to 

matched cases and controls. Variance inflation factors were calculated for different 

numbers of PC scores, and plotted against the numbers of PC scores. 

 

  



Supplementary Figure 2. Scatter plot of PC scores. Multi-dimensional scaling 

plots were generated using a pool of our Discovery S-LAM cohort, our COPDGene 

controls, and 1000 Genome project data. Red and blue circles indicate S-LAM and 

COPDGene samples used for our discovery analyses, respectively, and grey circles 

represent participants for 1000Genome projects. 

 

   



Supplementary Figure 3. Linkage disequilibrium (LD) block around genome wide 

significant and genotyped SNPs, rs4544201 and rs2006950. Graph represents all 

genotyped SNPs in the 34kb LD block on chromosome 15q26.2. The color of each rectangle 

and number within indicates the level of LD between a pair of SNPs, with complete LD 

(D’=100%, no number shown) indicated by red, and no LD indicated by white.  

 

  



Supplementary Figure 4. The proportion of phenotypic variance explained by 

the genotyed SNPs according to disease prevalences ranging from 10-6 to 10-4. 

The proportion of phenotypic variance explained by genotyped SNPs was calculated 

with GCTA on a) the liability scale and b) the observed 0-1 scale. Shaded area 

indicates the 95% confidence interval for ℎ𝑆𝑁𝑃
2 . 

  



Supplementary Figure 5. Hi-C heatmap and TADs defined in IMR90 cells. The 

heatmap shows the degree of physical interaction defined by Hi-C analysis for 

genomic region pairs from a 3Mb region of chromosome 15q. A deeper red color at 

the intersection point reflects a greater degree of interaction between the two 

genomic regions. The dotted lines indicate probable TAD structures in this region. 

The two blue shaded regions at bottom indicate the genome wide significant SNP 

region (left) and NR2F2 (right). The black circle reflects the interaction point between 

the SNP region and NR2F2. 

 

  



Supplementary Figure 6. Hi-C heatmap and TADs defined in lung tissue.  

The heatmap shows the degree of physical interaction defined by Hi-C analysis for 

genomic region pairs from a 3Mb region of chromosome 15q. A deeper red color at 

the intersection point reflects a greater degree of interaction between the two 

genomic regions. The dotted lines indicate probable TAD structures in this region. 

The two blue shaded regions at bottom indicate the genome wide significant SNP 

region (left) and NR2F2 (right). The black circle reflects the interaction point between 

the SNP region and NR2F2. 

 

  



 

Supplementary Figure 7. Hi-C heatmap and TADs defined in H1 derived 

mesenchymal stem cells (h1-MSC) cells.  

The heatmap shows the degree of physical interaction defined by Hi-C analysis for 

genomic region pairs from a 3Mb region of chromosome 15q. A deeper red color at 

the intersection point reflects a greater degree of interaction between the two 

genomic regions. The dotted lines indicate probable TAD structures in this region. 

The two blue shaded regions at bottom indicate the genome wide significant SNP 

region (left) and NR2F2 (right). The black circle reflects the interaction point between 

the SNP region and NR2F2. 

  



Supplementary Figure 8. Hi-C heatmap and TADs defined in HUVEC cells.  

The heatmap shows the degree of physical interaction defined by Hi-C analysis for 

genomic region pairs from a 3Mb region of chromosome 15q. A deeper red color at 

the intersection point reflects a greater degree of interaction between the two 

genomic regions. The dotted lines indicate probable TAD structures in this region. 

The two blue shaded regions at bottom indicate the genome wide significant SNP 

region (left) and NR2F2 (right). The black circle reflects the interaction point between 

the SNP region and NR2F2. 

 

 




