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ABSTRACT Owing to the need to balance the requirement for efficient respiration in the face of
tremendous levels of exposure to endogenous and environmental challenges, it is crucial for the lungs to
maintain a sustainable defence that minimises damage caused by this exposure and the detrimental effects
of inflammation to delicate gas exchange surfaces. Accordingly, epithelial and macrophage defences
constitute essential first and second lines of protection that prevent the accumulation of potentially harmful
agents in the lungs, and under homeostatic conditions do so effectively without inducing inflammation.
Though epithelial and macrophage-mediated defences are seemingly distinct, recent data show that they are
linked through their shared reliance on airway mucins, in particular the polymeric mucin MUC5B. This
review highlights our understanding of novel mechanisms that link mucus and macrophage defences. We
discuss the roles of phagocytosis and the effects of factors contained within mucus on phagocytosis, as well
as newly identified roles for mucin glycoproteins in the direct regulation of leukocyte functions. The
emergence of this nascent field of glycoimmunobiology sets forth a new paradigm for considering how
homeostasis is maintained under healthy conditions and how it is restored in disease.
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Introduction
The principal function of the lungs is gas exchange. To this end, under normal tidal breathing, 8000–12000 L
of air pass through the lungs each day. Gas flows through multiple generations of conducting airways, which
ultimately terminate in the alveoli. Alveoli are bounded by type I epithelial cells that cover over 95% of the lung
surface. To allow for efficient exchange of O2 and CO2, type I epithelia are extremely thin and together with
alveolar capillaries create a diffusion distance of <1 µm. Consequently, these thin surfaces are protected by
elaborate defence mechanisms that must trap and eliminate particulates and pathogens before they reach the
alveolar walls, while simultaneously preventing and/or suppressing potentially inflammatory responses that
could injure delicate gas exchange structures. This review concentrates on the mucociliary escalator and
alveolar macrophages (AMs) as crucial first and second lines of host defence in the lungs.

Airway tissues are exposed to ∼100 billion inhaled particles daily [1]. Airborne particles can arise from
natural and manmade sources, can vary in size and chemical composition, can differ in concentrations based
on geography and local environments, and can thus result in heterogeneous pathological responses [2–8].
Most inspired materials are large enough to impact upon nasopharyngeal and tracheal mucosae where they
are transported proximally by mucociliary clearance (MCC) and are ultimately eliminated by expectoration
or swallowing. The remainder deposit in the lung periphery where they are ingested by AMs. Under healthy
conditions, particulate deposition in the periphery is primarily limited to small particles (<1 µm diameter).
However, under conditions where particulate concentrations are high or in pathological settings where MCC
is impaired, larger particles can also accumulate in the lung periphery. Together, the coordinated functions
of MCC and AMs eliminate inhaled particulates from the alveoli and airways, and hence comprise robust
mechanisms for exogenous clearance. At the same time, clearance also removes endogenous materials that
are generated during normal cell turnover or as a consequence of disease. Critically, although AM and MCC
functions are ordinarily considered distinct, emerging data show that their functions are tightly linked
through physiological and biochemical mechanisms. Below we describe mucus and macrophages separately,
and this is followed by a discussion of emerging knowledge of interactions between them.

The mucus barrier and mucociliary clearance
MCC involves the coordinated activities of secretory cells that release polymeric mucin glycoproteins, and
multiciliated cells whose apically localised motile cilia provide a means for transport and elimination. Cilia
are molecular machines whose structural and motile components are highly regulated; their complex
assembly, function and dysfunction in diseases are reviewed elsewhere [9, 10]. For the purposes of this
review, we consider physiological roles of motile cilia, and we highlight key aspects of mucociliary
interactions that are essential in the airways. MCC requires the coordinated regulation of airway surface
liquid to control the osmolarity, viscoelasticity and resultant transportability of secreted mucus [11, 12].
This control is driven by electrolyte transport machinery intracellularly as well as the presence of
osmolytes in the extracellular space. Although ciliated and mucous layers have been considered as separate
entities (“sol” and “gel” phases), this distinction is challenged by recent studies demonstrating these
“layers” as a more continuous glycoprotein hydrogel. Membrane mucins (MUC1, MUC4 and MUC16)
that are present along cilia surfaces form a hydrated brush that allows for the free movement of cilia. The
overlying, viscoelastic mucus layer is positioned atop this grafted brush of cilia. As a result, airway surface
hydration regulates the balance between cilia and mucus structures maintained in a “gel-on-brush”
conformation that promotes effective motility and MCC [13].

Loss of MCC is a significant cause of respiratory infections. For instance, impaired MCC is a primary
pathophysiological feature of infection-related diseases such as primary ciliary dyskinesia (PCD), where
cilia motility is impaired or absent, and cystic fibrosis (CF), where airway surface dehydration causes
mucus adhesion to airway surfaces and hyperosmotic collapse of underlying cilia. Less appreciated perhaps
are findings in chronic obstructive pulmonary disease (COPD) and asthma, which also show significant
MCC impairment [14–21]. Unlike the primary roles of altered mucus and ciliary structures in CF and
PCD, COPD- and asthma-related changes are secondary to inflammatory or injurious stimuli that cause
impairments in ciliary motility and the dysregulated production of the two major secreted mucins
MUC5AC and MUC5B [22–25].

Expression of the airway mucins MUC5AC and MUC5B
Under healthy conditions, MUC5AC and MUC5B are both produced in the lungs. MUC5AC is found
predominantly in surface epithelia throughout the central conducting airways, whereas MUC5B is found
mainly in submucosal glands of central airways (trachea and bronchi) and in non-ciliated surface epithelial
cells of peripheral airways. MUC5AC levels increase in both airway surface and glandular epithelia in
asthma [22, 23] and COPD [24, 26, 27]. By contrast, MUC5B levels are more variable. For example, in
patients with established CF and COPD, MUC5B levels are increased in sputum [28, 29], which is
predominated by central airway secretions supplied by tracheobronchial submucosal glands. However, in
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patients with early or preclinical COPD or with strong allergic asthma, MUC5B levels actually decrease,
especially within epithelial cells that line central and peripheral airway surfaces where MUC5B transcript
levels are reduced by 90% or more [22–24, 27]. It is thus plausible that differential repression of MUC5B
could affect MCC and contribute to lung pathologies. Indeed, recent studies in mice provide mechanistic
support for this.

In mice, deletion of the Muc5b gene caused severe upper and lower airway MCC impairments and led to the
development of lethal spontaneous infections [30]. Interestingly, although chronic infection and inflammation
were prominent outcomes in Muc5b knockout mice, their pathobiological impacts were stronger than those
observed in models of PCD. In cilia-defective Dnaic, Pcdip1, Spef2 and Cby knockout mice, although MCC is
severely impaired, upper airway pathologies were not reported to be lethal, and they did not carry over to the
lower respiratory tract [31–33]. Thus, among MCC components in the lungs, Muc5b is a dominant regulator of
homeostatic microbial elimination. In addition, during chronic spontaneous and acute experimental infections,
Muc5ac production increased in Muc5b knockout mice. Although not entirely protective itself, Muc5ac could
have played a role in delaying the effects of infections [30]. Possible explanations for differences between
Muc5ac and Muc5b functions could reflect differences in their polymeric structures, glycosylation, and
interactions with microbes or antimicrobial molecules. Determination of the specific and overlapping roles of
Muc5ac and Muc5b remains an area of urgent investigation.

Mucin expression
MUC5AC/Muc5ac and MUC5B/Muc5b gene expression levels are regulated by endogenous and
environmental factors. For human MUC5B, single nucleotide polymorphisms have been shown to regulate
expression via control of promoter activity [34–36]. These genetic controls likely impact (or are impacted
upon by) numerous innate and adaptive immune cytokine signalling pathways, as well as growth
factor-regulated mechanisms that are associated with responses to inflammation, injury and tissue repair.
These are reviewed extensively elsewhere [37–42]. Lastly, endogenous factors include developmental [43–46]
and epigenetic [47–49] regulatory mechanisms, which can play roles in the expression of mucins in cancers.

Mucin polymerisation
The abilities of secreted mucins to regulate MCC are largely dependent on their polymer structures formed
through disulfide bonds (figure 1). Like other members of the secreted polymeric mucin family, Muc5ac
and Muc5b are composed of ∼5–6% cysteines (∼250–300 per molecule). They have cysteine-rich N- and
C-terminal von Willebrand factor (vWF) type D-like and C-terminal cysteine knot disulfide bonding
domains that are critical for intermolecular mucin assembly [51–53]. Additional highly conserved
cysteine-rich CysD domains are interspersed in varying numbers in polymeric mucin carbohydrate-rich
repeats [54–56]. Through intramolecular disulfide linkages, CysD domains are proposed to form
hydrophobic loop structures that facilitate mucin alignment and regulate mucus mesh spacing [57].
Furthermore, in each mucin at least 100 cysteines exist that are not found in defined “domains”. The
majority of disulfide bonds are thought to form intracellularly during assembly. In the extracellular
environment, free cysteines that do exist can become oxidised and form additional cross links that increase
the elastic moduli of mucus gels [50]. Disruption of N- and C-terminal bonds or CysDs can be sufficient to
“loosen” obstructive mucus. Accordingly, current mucolytic therapies such as N-acetylcysteine, as well as
investigative therapies, target these by reducing disulfides and decreasing mucus viscoelasticity, thereby
enhancing mucus transport [58–60]. A current challenge is to determine which therapies can be given at
doses that are well-tolerated and still maintain the benefits of efficient defence.

Mucin glycosylation
Whereas disulfide polymerisation is an important but underappreciated aspect of secreted mucins, their
glycosylation is perhaps more eminent. Mucins are defined by their heavy glycosylation, especially within
variable-sized glycan-rich domains (figure 1). In MUC5AC and MUC5B, these regions are called “PTS”
domains due to their enrichment in prolines, threonines and serines. PTS-rich repeats are sites of
O-glycosylation, starting with N-acetylgalactosamine on serine and threonine residues. Galactose and
N-acetylglucosamine are then attached and elaborated linearly or in branches, and the sugars can be
modified by sulfation or by the addition of terminal sialic acid and fucose glycans. Two chief purposes of
mucin glycans are to adsorb water and to participate in host defence. For water adsorption, glycan
variations can greatly affect the osmotic pressures imparted by mucus gels. For example, sialylated and
sulfated termini are strongly charged, and their large polar surface areas promote both hydration and
electronegative repulsion [11, 13]. In contrast, fucose has a lower charge and an approximately 50% lower
polar surface area, which hypothetically promotes mucus aggregation, increases viscoelasticity, and thereby
inhibits MCC. For host defence, mucin glycans are known to interact with sugar-binding molecules on a
variety of bacteria that colonise or infect the lungs [61–67] and gastrointestinal tract [68–74], on fungi such

DOI: 10.1183/13993003.00120-2015 1203

LUNG INFLAMMATION AND DEFENCE | W.J. JANSSEN ET AL.



as Aspergillus fumigatus [75], and on respiratory viruses such as respiratory syncytial virus and influenza
[76, 77]. Whether these interactions are beneficial to the host or the microbe vary widely. Nonetheless, as
the result of host genetics and environmental exposures (such as infectious or allergic states), protection is
limited. Impaired defence can be affected by changes in the properties of mucus (e.g. through variations in
MUC5AC/Muc5ac versus MUC5B/Muc5b expression levels or PTS domain glycosylation) that are often
coupled with ciliary dysfunction (e.g. through loss/absence of ciliated cells or components of motile cilia)
[78–91]. Taken together, the roles of mucins in the formation and maintenance of a mucus gel and their
abilities to bind microorganisms demonstrate the coordinated function and dysfunction of mucus binding
and clearance dynamics in host defence.

In summary, this conventional view of the mucociliary barrier as a defence system regulated by mucus and
ciliary functions has been refined by the identification of key factors such as Muc5b and by the dissection
of complex biophysical regulation of mucociliary interactions. An immediate challenge is to relate these to
specific and required molecular components that regulate their intrinsic biophysical functions.
Furthermore, new findings have introduced a novel set of interactions through which mucins regulate
defence and inflammation in the lungs via resident and recruited pulmonary leukocyte populations. In
particular, dendritic cell, eosinophil and macrophage functions in various tissues have been demonstrated
to be regulated specifically by mucin terminal glycans. Below we focus on macrophage and eosinophil
functions that are regulated by extracellular oligosaccharides, including the airway mucin Muc5b.

Macrophage ontogeny and clearance mechanisms
Particulates and microbes that evade the first line of defence, that is, epithelial mucus, reach the distal
lung. From there, they must be cleared rapidly and efficiently by the second line of defence: phagocytes.

Pro

MUC5AC

MUC5B

100 nm

N

N

N

N

N

N

1 µm

ΦΦΦΦ ΦΦ

Φ
ΦΦΦΦ

“linear”

“branched”

Interpulmonary 

disulfides: polymers

Intramolecular disulfides:

hydrophobic structures

C

vWF-like

s    s    s    s
s    s    s    s

vWF-like

C

C

C

C

C

C

C

N N

N

N

GalNAc

Core 1 Core 2 Core 3 Core 4

Galactose

GlcNAc

Fucose Non-polar

Sulfate
Sulfate

Sialic

acid

Polar

HSO3

HSO3

Ala AlaThr Thr Pro Thr Thr Ser Lys AlaSer

s s

FIGURE 1 Polymeric and macromolecular structures of the major secreted mucins in the airways: MUC5AC
and MUC5B. MUC5AC and MUC5B (and their orthologs) have amino (N) and carboxyl (C) termini that are
evolutionarily conserved in polymeric mucins and von Willebrand factor (vWF, grey and black regions). The
vWF-like domains are involved in covalent intermolecular disulfide assembly of C-terminal linked dimers and
N-terminal linked multimers. Multimers can exist as linear or branched structures with sizes in the 1 to
>10 MDa range. Between vWF-like domains are additional cysteine-rich regions (CysD domains, green
hexagons) that are rich in hydrophobic amino acids (aa) and intramolecular disulfide bonds. CysDs are
suggested to mediate the distribution of mucin strands and gel-pore size after secretion in healthy mucus, but
can become oxidised and increase in polymer size and stiffness in disease [50]. The majority of the remaining
mucin apoprotein backbone is rich in proline, serine and threonine. This “PTS” domain (white) is an imperfect
repeat region and is the primary site of O-linked glycosylation. O-linkages on serine and threonine residues
form Core 1–4 structures, which are defined the presence of N-acetylgalactosamine (GalNAc, yellow squares)
linkages on the hydroxyl groups of serine and threonine followed by single or paired attachments of galactose
(yellow circles) and/or N-acetylglucosamine (GlcNAc, blue squares). Lastly, galactose and GlcNAc glycans can
be further substituted with fucose, sialic acid and sulfates that impart diverse charges that could affect mucus
gel hydration and also form three-dimensional structural confirmations that are critical for interactions with
both pathogens and host-cell lectins. Glycan structures shown are examples of possible linkages and do not
necessarily represent those found on specific mucins. Polar and non-polar glycans can be found on sugars
from each core type, and can be found along the same or different branches.
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AMs are the dominant phagocytic cell in the lungs and during health account for up to 90% of the
leukocytes in airspaces [92–95]. They reside in the alveolar lumen and perhaps also in the airways. In
addition to clearing inhaled particulates, they are critical for removing dying cells and maintaining alveolar
homeostasis. Recent evidence suggests that AMs arise from progenitors that occupy the fetal liver and yolk
sac during embryogenesis [96–98]. At birth, these cells populate the airspaces where they quickly mature
into resident AMs. Importantly, AMs self-renew throughout life, and in the absence of disease they are not
replaced by monocytes from the circulation [99–101]. During inflammation, resident AMs proliferate
locally [102]. At the same time, monocytes from the circulation migrate to inflamed regions where they
mature into macrophages, termed monocyte-derived AMs (MDAMs) [103]. Hence, the inflammatory AM
pool contains cells of both embryonic and postnatal origin. Although both macrophage subsets
demonstrate phagocytic capacity, their respective contributions to the clearance of exogenous particulates
and pathogens and to the removal of endogenous debris and cells remain unknown. Intriguingly, as
inflammation resolves, MDAMs undergo programmed cell death and are removed from the lungs, leaving
behind the embryonically derived resident AMs to maintain alveolar homeostasis [103].

During health, resident AMs function as sentinels, constantly surveying the luminal environment for
pathogens and inhaled particulates. Under most circumstances, such agents are cleared silently and quickly,
without inducing systemic inflammatory responses that could injure alveolar gas exchange structures.
Indeed, experimental depletion of AMs results in exaggerated inflammatory responses [104–112], yet at
the same time AM absence impairs the ability to control infection [107, 110, 113], demonstrating that
restrained responses are more efficacious and beneficial. As discussed below, the alveolar environment
plays an essential role in regulating AM endocytic and inflammatory responses, and it also contains a
diverse array of molecules that recognise pathogens and facilitates clearance by noninflammatory
phagocytic defence.

Phagocytic mechanisms
AMs employ a number of mechanisms to ingest particulates and pathogens, all of which involve
endocytosis, a process in which the plasma membrane surrounds a target, invaginates and then pinches off
to form a membrane-bound vesicle (reviewed in [114, 115]). Phagocytosis is the primary endocytic process
by which AMs clear exogenous materials, and it is driven by cytoskeletal rearrangements that lead to rapid
internalisation of pathogens such as bacteria or fungi in a membrane-bound phagosome. The phagosome
becomes acidified after sequential fusion with endosomes and lysosomes, which contain hydrolytic
enzymes and reactive oxygen species that digest and destroy the target. An initial interface that AMs have
with particles and pathogens occurs through a phagocytic synapse formed by a diverse array of plasma
membrane proteins that recognise targets through specific moieties on them, including microbial and host
cell glycoconjugates. These AM receptors initiate and/or modulate phagocytosis.

Phagocytic receptors
AMs are equipped with a vast repertoire of phagocytic receptors. Importantly, during microbial contact
many different receptor families are often simultaneously activated. Some receptors directly recognise
specific molecules on phagocytic targets (e.g. phosphatidylserine or inflammasome molecules), whereas
others bind to targets coated with opsonins (e.g. immunoglobulins, complement components and
surfactant materials). In addition, whereas some (e.g. Fc receptors) lead directly to pathogen engulfment,
others (e.g. Toll-like receptors (TLRs)) promote phagocytosis indirectly by upregulating the expression of
phagocytic receptors and their downstream signalling molecules [116–118]. Here, we discuss main classes
of receptors on AMs in the context of opsonins and signals present in airway mucus [119–125].

Immunoglobulin signalling is an important adaptive immune process that mediates AM phagocytosis.
AMs express high levels of Fcγ-receptors I (CD64), II (CD32) and III (CD16) that recognise the Fc region
of IgG. Biologically relevant concentrations of IgG can be found in the alveolar lining fluid of healthy
humans [126]. To trigger phagocytosis, Fcγ-receptors bind multiple IgG molecules within an immune
complex. FcγRI is a high affinity receptor that in addition to respiratory burst and microbial killing also
leads to phagocytosis. In comparison, FcγRII and FcγRIII could also promote phagocytosis but have low
binding affinity. Respiratory epithelial cells secrete IgA by transcytosis, and IgA can easily be detected in
the lumens of both the proximal airways and alveoli [126, 127]. AMs express low levels of both FcαRI
(CD89) and Fcα/μR that bind IgA and drive phagocytosis [128]. Adaptive immune immunoglobulin
functions are linked to glycan structures through the recognition of carbohydrate antigens, N- and
O-glycosylation of their Fc domains, and physical association with secreted mucins that have specific
immunoglobulin-binding domains [129–132].

The complement system aids in innate host defence by opsonising immune complexes and pathogens,
enhancing their killing and removal. Alveolar lavage fluid of healthy humans contains components of the
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classical (C1q, C2, C3, C4) and alternative (C3, Factor B) pathways [133–135]. The classical pathway is
primarily activated by the interaction of C1q with antigen–antibody complexes, but it can also be activated
by direct binding of C1q to bacterial, fungal and virus membrane components [136, 137]. Opsonisation of
targets by either means can stimulate phagocytosis. AMs express three complement receptors (CRs), CR1,
CR3 and CR4. CR1 is incapable of internalising opsonised particles on its own, but can enhance
Fc-mediated phagocytosis. CR3 and CR4 are heterodimers that share a common β2 integrin chain (CD18)
paired with specific α chains. CR4 contains the αX subunit (CD11c) and binds to particles opsonised with
C3b and iC3b fragments. CR3 contains an αM chain (also known as CD11b) with a carbohydrate-binding
lectin site. Accordingly, in addition to binding particles opsonised with C3b and iC3b fragments, CR3
binds microbial cell wall glycan-containing components including lipopolysaccharide, mannan, β-glucan
and others [138, 139]. While CR3 appears to be capable of internalising opsonised bacteria independently
[140, 141], it also functions cooperatively with other receptors, including CR1, CD14, FcγR and FcαRI
[138, 142–144], to enhance particle clearance. Not surprisingly, mice deficient in CR3 have impaired host
defence to Gram-negative bacteria, Gram-positive bacteria and yeast [145, 146]. Importantly, studies from
rodents demonstrate that cell surface expression of CRs varies markedly on resident AMs versus recruited
MDAMs [103]: resident AMs express high levels of CD11c/CR4 but not CD11b/CR3, whereas recruited
MDAMs have high levels of CD11b/CR3 but low levels of CD11c/CR4. This raises the intriguing
hypothesis that AM subpopulations have complementary functions to control infectious and inflammatory
host defence. Like immunoglobulins, complement components are found in airway mucus, and their levels
are upregulated in inflammation [147, 148]. Furthermore, complement components also increase the
expression of Muc5ac in airway epithelial cells [149].

Other classes of carbohydrate lectins, the C-type lectins, are calcium-dependent carbohydrate-binding
proteins that contain a conserved glycan recognition domain and are involved in pathogen recognition and
phagocytosis [150]. In the context of lung host defence, two groups of C-type lectins are well recognised:
the pulmonary collectins (surfactant protein (SP)-A and SP-D) and the pathogen-binding receptors
(namely the mannose receptor (CD206) and Dectin-1). SP-A and SP-D comprise highly oligomerised
monomers that are formed by N-terminal collagen-like domains linked to a C-terminal carbohydrate
recognition domain by a central hinge region. Through their carbohydrate recognition domains, SP-A and
SP-D recognise sugar residues on microbial pathogens. Consequently, they opsonise Gram-negative and
Gram-positive bacteria, mycobacteria, fungi, and viruses such as influenza A and respiratory syncytial virus.
A number of candidate receptors for collectin-opsonised particles exist on AMs, including C1qRp, SP-R210,
CD14 and the calreticulin–CD91 complex (reviewed extensively in [151]). In addition to enhancing
phagocytosis through their opsonising effects, collectins could also promote phagocytosis indirectly. For
example, SP-A enhances expression of scavenger receptor A and could augment Fc-receptor- and
CR-mediated phagocytosis [152–154]. In addition, both SP-A and SP-D appear to increase cell surface
localisation and hence the phagocytic function of the mannose receptor [155–157]. The mannose receptor
(CD206) is highly expressed on AMs, and contains an extracellular domain that recognises mannose,
N-acetylglucosamine and fucose glycans. Accordingly, CD206 promotes phagocytosis of pulmonary
pathogens with diverse extracellular carbohydrate signatures, including Streptococcus pneumoniae, Klebsiella
pneumoniae, Mycobacterium tuberculosis, Pneumocystis jirovecii and fungi such as Candida and Aspergillus
[158]. The precise mechanisms by which CD206 participates in phagocytosis are unclear, and it is likely
that interactions with co-receptors are required [159]. Dectin-1 was originally identified as a dendritic
cell-specific receptor, but it is also expressed on AMs [160]. Dectin-1 recognises β-glucans found in fungal
cell walls [161, 162] and also particles opsonised with pentraxin-3, a protein rapidly synthesised and
secreted by mononuclear phagocytes in response to pro-inflammatory signals [163]. Together, these classes
of receptors highlight a group of surface molecules that interact with exogenous and endogenous
constituents of airway surface liquid and mucus to mediate AM phagocytic defence.

In immunocompetent individuals, defensive components such as IgG increase in the lungs during
infection, promoting pathogen clearance through the recognition of numerous antigen types, including
carbohydrate epitopes. Indeed, bacterial targets such as surface polysaccharides are exploited for use in
developing effective pneumococcal vaccines [164]. Conversely, recurrent sinopulmonary infections and
impaired pathogen clearance are common in patients with immunoglobulin deficiencies [165–171]. In
addition, in common chronic airway diseases, including asthma, COPD and CF, impaired clearance of
microbial pathogens by AMs has been extensively documented [172–175]. AM dysfunction correlates with
disease severity and exacerbation frequency [176–178]. While aetiologies vary among diseases, common
features include altered expression of phagocytic receptors, reduced lysosomal killing and enhanced
production of mediators that can worsen inflammation by inducing collateral damage to surrounding
tissues. These defects in AMs are either absent or reduced in mononuclear phagocytes isolated from other
sites (e.g. blood). Therefore, perturbations in the local environment appear to play a dominant role in
altering AM function in these diseases.
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Emerging links between airway mucins and alveolar macrophage function
Based on the distinct anatomical localisation and the highly dedicated cellular mechanisms involved in the
specification of mucin-producing goblet cells in the airways and phagocytic macrophages in the alveoli,
there is an outward appearance of discrete compartmentalisation of their functions. However, the limiting
of the localisation of resident AMs to the alveolar space is not entirely warranted, because intraluminal
macrophages in conducting airways account for 2–8% of the total resident macrophage population in rat
lungs [179–185]. Even within the alveolar compartment, recent evidence demonstrates that a subpopulation
of AMs, termed sessile AMs, can communicate across great distances via a calcium-dependent signalling
AM–alveolar epithelial circuit that ultimately suppresses immune function [186]. Recent studies show that
there are indeed functional links between airway mucus and macrophage function, and that these links are
crucial for host defence. At one level, secreted factors such as immunoglobulins and complement
components are abundant in secreted mucus, suggesting that mucus is an important carrier of these
defensive molecules. In addition, there are also direct links between secreted mucins and resident innate
immune cells through their coordinated activities when resolving inflammation, and physical interactions
between glycans on mucins and carbohydrate-binding lectin receptors on leukocytes such as the sialic
acid-binding immunoglobulin-like lectins (Siglec’s). We propose that mucin–leukocyte interactions regulate
homeostatic, inflammatory and resolving immune functions through signalling and physical clearance
mechanisms (figure 2).

In the mouse, the intestinal mucin Muc2 interacts with glycan-selective immunoregulatory receptors on
dendritic cells that mediate the development of inflammatory and regulatory lymphocyte subsets. In this
setting, Muc2 glycans bind to two lectins (Dectin-1 and Galectin-3) that function cooperatively with the
inhibitory IgG receptor FcγR3 to suppress inflammatory signals and promote tolerance [187]. In a similar
vein, goblet cells have also been shown to be an important mechanism for the delivery of antigens to
resident monocyte-derived dendritic cells in the small intestine [188]. The result of these activities is the
development of tolerance to foreign antigens introduced by ingested food particles.

In the lungs, inhibitory regulation of leukocyte functions appears to be mediated by acute control of
leukocyte activation states. In mice, Muc5b binds through its α2,3-linked sialoside glycans to Siglec-F, an
inhibitory SH2 domain-containing-phosphatase signalling immunoreceptor on eosinophils and AMs
(figure 3) [189]. On eosinophils, Siglec-F mediates apoptosis [190–193], thereby functioning as a significant
mechanism for resolving allergic inflammation. Indeed, mice lacking Siglec-F or one particular enzyme
needed for this Muc5b sialylation step, ST3Gal-III, fail to make airway ligands for Siglec-F, and display
exaggerated and selective lung eosinophilia in a type 2 allergic inflammation lung model [194–198]. In this
context, Muc5b presumably contributes to the physical removal of cells by MCC while simultaneously
preventing continued activation and mediator release into airspaces during elimination from the mouse
lung. In humans, the Siglec-F paralog Siglec-8 also reduces eosinophil survival via sialylated and sulfated
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FIGURE 2 Mucin–leukocyte interactions during homeostasis and inflammation. In healthy lungs, resident
resting alveolar macrophages (AMs) are defensive and noninflammatory. MUC5B from bronchioles mixes with
alveolar fluids, providing a route for MUC5B to contact alveolar AMs. Homeostatic or low-dose stimuli elicit
defensive functions such as phagocytosis. During inflammation, resident AMs can become activated, and this
is associated with a decrease in their Siglec-F surface expression. In addition, leukocytes, such as
monocyte-derived macrophages (which lack Siglec-F) or eosinophils (which express Siglec-F) are recruited
and persist for brief periods of time. These transient populations are eliminated as inflammation resolves. In
mice, resolution involves Siglec-F-mediated reductions in leukocyte activation and survival. Damaged and
apoptotic cells are subsequently eliminated by MUC5B-mediated mucociliary clearance.
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ligands, but the specificity observed between Muc5b and Siglec-F in mice is not as well conserved between
MUC5B and Siglec-8 in humans [199–201]. Rather, Siglec-9 is an isoform that is bound by MUC5B
sialosides, and it is expressed on neutrophils, natural killer cells, dendritic cells and monocytes/macrophages
[199]. Indeed, resident AMs in healthy mouse lungs also express Siglec-F, but its role beyond that of a cell
surface marker is not yet clear. Given the associations of mucus and macrophage dysfunction in numerous
lung pathologies, determining the nature of their interactions will be of tremendous interest as the field
advances. With the emergence of mucins as important mediators of defence, and the recognition of the
crucial significance of the glycobiology of innate and adaptive immunity, efforts to interrogate these will
involve both challenging and exciting experimental approaches.

Conclusion
Innate defences in the lungs are essential for maintaining efficient gas exchange. As first and second lines
of host defence, mucins and macrophages play critical roles that are integrated by their physical and
physiological interactions. The emergence of these links presents a convergence of new challenges that
connect epithelial and innate immune programmes.
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