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ABSTRACT Asthma may be induced by chemical sensitisers, via mechanisms that are still poorly
understood. This type of asthma is characterised by airway hyperreactivity (AHR) and little airway
inflammation. Since potent chemical sensitisers, such as toluene-2,4-diisocyanate (TDI), are also sensory
irritants, it is suggested that chemical-induced asthma relies on neuro-immune mechanisms.

We investigated the involvement of transient receptor potential channels (TRP) A1 and V1, major
chemosensors in the airways, and mast cells, known for their ability to communicate with sensory nerves,
in chemical-induced AHR.

In vitro intracellular calcium imaging and patch-clamp recordings in TRPA1- and TRPV1-expressing
Chinese hamster ovarian cells showed that TDI activates murine TRPA1, but not TRPV1. Using an in vivo
model, in which an airway challenge with TDI induces AHR in TDI-sensitised C57Bl/6 mice, we
demonstrated that AHR does not develop, despite successful sensitisation, in Trpa1 and Trpv1 knockout
mice, and wild-type mice pretreated with a TRPA1 blocker or a substance P receptor antagonist. TDI-
induced AHR was also abolished in mast cell deficient KitWsh/Wsh mice, and in wild-type mice pretreated
with the mast cell stabiliser ketotifen, without changes in immunological parameters.

These data demonstrate that TRPA1, TRPV1 and mast cells play an indispensable role in the
development of TDI-elicited AHR.
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Introduction
Asthma is a chronic airway disease [1] which can be distinguished into various (overlapping) categories,
depending on aetiology or patterns of airway inflammation [2, 3].

Most experimental asthma research has focused on atopic asthma, such as that caused in adults or children by
IgE-mediated allergy to biological agents, most often using models in which mice or other animals are sensitised
to ovalbumin (OVA) or other proteins [4, 5]. However, up to half of people with asthma are not atopic [6] and
the aetiology and pathophysiology of this type of asthma remain largely unelucidated. In this regard, one
possible avenue of research is that of asthma caused by exposure to reactive chemicals [7], as may occur in the
workplace. Such chemical-induced occupational asthma has similar clinical features to atopic asthma, but the
immune and nonimmune processes leading to this form of asthma have been less well investigated [8].

In addition, asthma can present with varying types and degrees of airway inflammation, as evidenced by
the cellular composition of sputum [2]. Atopic asthma is traditionally characterised by eosinophil
inflammation, but other patterns exist as well. One of these subtypes is paucigranulocytic asthma, which
differs from classic atopic asthma by a low degree of airway inflammation. According to SIMPSON et al. [9],
in 30% of asthma cases airway hyperreactivity (AHR) can exist in the absence of inflammatory cells in the
airways. The mechanisms of this form of asthma are not well understood.

We undertook the present mechanistic study to improve our understanding of the pathophysiology of a
clinically important fraction of asthma, namely asthma that is not dependent on IgE responses and not
characterised by much cellular inflammation in the airways. For this we have used a well-validated mouse
model of chemical-induced immune-mediated asthma based on sensitisation to toluene-2,4-diisocyanate
(TDI), a well-described occupational asthmogen [8, 10–12].

Diisocyanates, including TDI, have a long history of use for a large number of industrial applications, and
they represent a leading cause of chemical-induced occupational asthma [13, 14]. A recent longitudinal
study of workers exposed to low airborne levels of TDI at a modern polyurethane foam factory in Eastern
Europe has shown that over the first year of follow-up 14% of workers developed respiratory symptoms,
TDI-specific IgGs and/or changes in spirometry, all indicative of early TDI-related health effects.
Moreover, workers that were lost to follow-up (25%) were more likely to have had asthma symptoms [15].
Another recent study, evaluating the long-term outcome of diisocyanate-induced asthma, has shown that
50% of diisocyanate asthmatics remain symptomatic, with worsening of lung function and need of
continuous anti-asthmatic therapy after an exposure-free period of 12 years, thus indicating the long-term
morbidity of occupational asthma caused by diisocyanates [16].

Several researchers have sought to discover individual risk factors and mechanisms leading to TDI-induced
asthma in humans. An important observation has been that the risk of TDI-induced asthma was
associated with a polymorphism of the neurokinin 2 receptor (NK2R), the receptor for neuropeptides that
are released from activated airway sensory neurons, thus suggesting a neurogenic mechanism in
TDI-induced asthma. This NK2R 7853G>A polymorphism was associated with higher serum vascular
endothelial growth factor levels, and thus airway inflammation in TDI-exposed workers [17]. In healthy
human subjects, activation of transient receptor potential channels (TRP)A1 or TRPV1, via inhalation of
irritant agonists (cinnamaldehyde or capsaicin), has been shown to evoke cough, a reflexive airway
response, which may also contribute to asthmatic symptoms [18]. Capsaicin treatment has been shown to
reduce nasal hyperreactivity in patients with idiopathic rhinitis, via ablation of the TRPV1-substance P
nociceptive signalling pathway in the nasal mucosa, providing further evidence for an involvement of TRP
and neurogenic inflammation in human respiratory diseases [19].

Besides being a potent sensitiser, TDI is an extremely potent sensory irritant. Exposure to TDI leads to
stimulation of trigeminal nerve endings present in respiratory and nasal mucosa [20, 21], thereby inducing
the local release of tachykinin neuropeptides, including substance P, neurokinin A and calcitonin-gene-related
peptide [22, 23]. This probably results from stimulation of TRP channels [24].

Since TDI is both a potent immune sensitiser and sensory irritant, this chemical agent provides a unique
opportunity to investigate the interaction between immunological and neurological processes. It has indeed
been proposed that asthma is an immune-neuronal disorder [25], like other inflammatory conditions [26].
However, the link between activation of neuronal receptors and immune responses is not well established
in asthma.

Combining our mouse model of chemical-induced asthma with in vivo and in vitro studies of TRPA1 and
TRPV1 activation [27–29], we tested the hypothesis that stimulation of sensory TRP channels critically
modulates chemical-induced airway responses. We also investigated the role of mast cells, because mast
cells are located in the vicinity of sensory nerve fibres in the airways [25] and they can thus immediately
respond to released neuropeptides.
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Here, we first demonstrate that TDI activates TRPA1, but not TRV1 in vitro, and then that in our in vivo
model, activation of TRPA1 (direct) and TRPV1 (indirect), together with activation of mast cells,
contributes to the development of AHR. We conclude that neuro-immune interactions, involving TRPA1,
TRPV1 and mast cells, are crucial in developing nonatopic irritant-induced AHR, even in the absence of
cellular manifestations of inflammation.

Materials and methods
A complete description of the materials and methods is available in the online supplementary material.

In vitro experiments
TDI-induced activation of TRPA1 or TRPV1 was investigated by intracellular calcium (Ca2+) imaging and
patch-clamp experiments on Chinese hamster ovarian (CHO) cells selectively expressing murine (m)
TRPA1 or mTRPV1. A tetracycline-regulated system was used for inducible expression of TRPA1 or
TRPV1 in CHO cells. TRPA1 currents were recorded in the cell-attached patch-clamp configuration.

Experimental protocols of mouse experiments
All experimental procedures performed in mice were approved by the KU Leuven local ethics committee
for animal experiments (P166-2012).

Our model of chemical-induced asthma, as described previously in Balb/c mice [11], was applied to
C57Bl/6 wild-type mice. Briefly, mice were sensitised to TDI by applying 20 µL TDI (1% in acetone/olive
oil (AOO)) to the dorsum of both ears on days 1 and 8; nonsensitised controls received similar
applications of the vehicle only. On day 15, mice were challenged by means of an intranasal instillation of
30 µL of 0.1% TDI or vehicle (AOO). 1 day later, the main physiological outcome, i.e. nonspecific airway
reactivity to methacholine, was measured using the flexiVent (Scireq, Montreal, QC, Canada) [30], and the
following immunological readouts were obtained: cell counts and distribution in bronchoalveolar lavage
(BAL) fluid, total serum IgE, lymphocyte subpopulations in retro-auricular lymph nodes and their ex vivo
cytokine release.

We compared the responses obtained in wild-type mice to those obtained in knockout mice devoid of
TRPA1 (Trpa1-/-), TRPV1 (Trpv1-/-), mast cells (KitWsh/Wsh) or lymphocytes (Rag2-/-). We also tested
responses in wild-type mice having received pharmacological agents before the challenge with TDI:
HC030031 (TRPA1 antagonist), RP67580 (substance P receptor antagonist) or ketotifen (mast cell
stabiliser); or during the challenge: allyl isothiocyanate (TRPA1 agonist) or capsaicin (TRPV1 agonist).

Statistical analysis
Electrophysiological measurement data were analysed using the WinASCD software package (KU Leuven,
Leuven, Belgium). Dose–response curves (AHR) were analysed using two-way parametric ANOVA, followed
by a Bonferroni multiple comparison post hoc test. All other data were analysed using one-way parametric
ANOVA, followed by a Bonferroni multiple comparison post hoc test.

Results
TDI activates TRPA1 in vitro
In vitro Ca2+ imaging experiments showed that 0.001% TDI caused a significant increase in intracellular
Ca2+ concentration in mTRPA1-expressing CHO cells, but not in mTRPV1-expressing cells (online
supplementary fig. S1). 0.001% toluene diamine (TDA), which is the hydrolysis product of TDI,
containing two amine groups instead of reactive isocyanate groups, was ineffective on both mTRPA1- and
mTRPV1-expressing cells (online supplementary fig. S1).

Furthermore, cell-attached patch-clamp recordings in mTRPA1-expressing CHO cells showed that the
application of 0.001% TDI leads to enhanced channel activation (fig. 1a-c) and an increase in the mean
current (fig. 1e). The presence of functional TRPA1 was confirmed by applying 100 μM menthol together
with TDI, which causes a “flickering” of the current (fig. 1a, d) that is characteristic of the blocking effect
of menthol on TRPA1 [27]. Taken together, these data demonstrate that TDI directly activates TRPA1, but
not TRPV1.

TDI causes AHR only after prior sensitisation to TDI
Intranasal instillation of 0.1% TDI induced AHR to methacholine 24 h later, only if mice had been
previously sensitised to TDI (TDI/TDI) (fig. 2a; for individual responses see online supplementary fig. S2).
TDI-sensitised and TDI-challenged mice showed increased levels of total serum IgE (fig. 2b), increased
numbers of CD4+ T-helper (Th)-cells, CD8+ cytotoxic T-cells and B-cells (CD19+) in the auricular lymph
nodes draining the site of sensitisation (fig. 2c), along with increased releases of both Th2 (interleukin
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(IL)-13 and IL-10) and Th1 (interferon (IFN)-γ) cytokines upon incubation of these lymphocytes with
concanavalin A in vitro (fig. 2d). Thus, these mice showed immunological changes, confirming that they
had been immunologically sensitised [31].

Of note, the AHR in TDI-sensitised and TDI-challenged mice was not accompanied by increases in
inflammatory cells (neutrophils, eosinophils or lymphocytes) in BAL fluid (fig. 2e). In other words, TDI
induced sensitisation-dependent AHR without signs of cellular inflammation in the airways in C57Bl/6 mice.

Involvement of TRPA1 and TRPV1 in TDI-induced AHR
To test whether TRPA1 or TRPV1 has a role in generating AHR, we compared the methacholine
responses of Trpa1 and Trpv1 knockout mice with those of similarly and concurrently treated wild-type
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FIGURE 1 Toluene-2,4-diisocyanate (TDI) activates transient receptor potential A1 channels. a) Representative
cell-attached patch-clamp recording showing the effect of extracellular application of 0.001% TDI and 100 μM
menthol; b–d) magnification of corresponding traces and all-point amplitude histograms for each condition;
e) mean±SEM current during 30 s of each condition.
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mice. In contrast to wild-type mice, both TDI-sensitised and TDI-challenged Trpa1 knockout and Trpv1
knockout mice did not develop AHR (fig. 3a and fig. 4a; for individual responses see online
supplementary fig. S2). This lack of an AHR response in both Trpa1 and Trpv1 knockout mice was not
due to absence of sensitisation, because their immune responses did not differ from those of similarly
treated wild-type mice (fig. 3b–d and fig. 4b–d).

To confirm the role of TRPA1, we assessed the effect of pharmacological inhibition of the TRPA1
receptor. As seen in Trpa1 knockout mice, TDI-sensitised wild-type mice pretreated with a selective
TRPA1 blocker (HC030031) 30 min prior to the TDI challenge, did not develop AHR (fig. 5a; for
individual responses see online supplementary fig. S2), although immune-sensitisation was not affected
(online supplementary fig. S3a and b).

Since activation of TRPA1 and TRPV1 is known to induce the release of the neuropeptide substance P
[32], we sought to determine whether substance P is involved in the observed TDI-induced respiratory
responses. TDI-sensitised wild-type mice, having received an intraperitoneal injection of RP67580, an
antagonist of the neurokinin 1 receptor (NK1R; the receptor for substance P), 30 min prior to the TDI
challenge, did not develop AHR 24 h later (fig. 5b; for individual responses see online supplementary fig.
S2). Again, this could not be attributed to the NK1R antagonist having abolished immune-sensitisation
(online supplementary fig. S3c–e).

Thus, contrary to control wild-type mice, mice deficient in TRPA1 or TRPV1 or wild-type mice in which
the TRPA1 channel or the receptor responding to neuropeptides released by sensory neurons had been
blocked, did not develop AHR in response to a TDI challenge, even though they had been successfully
sensitised to TDI.

These results provide evidence for a crucial role of TRPA1 and TRPV1 activation in TDI-induced AHR.
Nevertheless, to exclude that the mere activation of these TRP channels leads to AHR in TDI-sensitised
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subjects, we substituted the intranasal challenge with TDI with an intranasal instillation of allyl isothiocyanate
(AITC), a potent agonist of TRPA1 and capsaicin, a potent agonist of TRPV1. In TDI-sensitised wild-type
mice, AHR was absent 24 h after instillation of AITC or capsaicin (fig. 6a and b; for individual responses see
online supplementary fig. S2), despite evidence of successful sensitisation (online supplementary fig. S4),
although ex vivo cytokine release was not increased in TDI/AITC and TDI/capsaicin mice (fig. 6d). Thus, it is
not sufficient to activate TRPA1 or TRPV1 to induce AHR in TDI-sensitised mice.

Conversely, to test if the development of AHR necessitates an antigen-specific challenge, we gave
TDI-sensitised mice a first challenge with AITC (nonspecific antigen) followed 1 week later by a second
challenge either with TDI (specific antigen) or again with AITC. AHR was only induced after the challenge
with TDI, i.e. in the TDI/AITC/TDI mice (fig. 6c; for individual responses see online supplementary
fig. S2). All TDI-sensitised mice showed humoral (IgE) and cellular (T- and B- lymphocytes) evidence of
immune sensitisation (online supplementary fig. S4), although the increased ex vivo release of IL-13, IFN-γ
and IL-10 occurred in TDI/AITC/TDI mice and not in TDI/AITC/AITC mice, suggesting that the cytokine
production depends on a challenge with the specific sensitiser (fig. 6d).

Involvement of immune cells in TDI-induced AHR
Taken together, the above results allowed us to conclude, first, that TRPA and TRPV1 are necessary, but
not sufficient, to induce AHR in TDI-sensitised animals and, second, that a specific adaptive immune
response is involved and necessary to induce AHR in such TDI-sensitised animals. Previous research on
our mouse model has shown that lymphocytes are crucially involved in the development of TDI-induced
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asthma in Balb/c mice [33, 34]. To determine whether this is also the case in the current model of
chemical-induced AHR, using C57Bl/6 mice, we used Rag2 knockout mice, lacking mature lymphocytes.
Indeed, AHR was absent 24 h after instillation of TDI in TDI-sensitised Rag2 knockout mice (online
supplementary fig. S5a; for individual responses see online supplementary fig. S2). As expected, IgE levels
were not increased in these mice (online supplementary fig. S5b).
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Since neurons have been proposed to directly communicate with mast cells [25], we also assessed the role
of the latter in our model of chemical-induced AHR, by testing mast cell deficient mice (KitWsh/Wsh mice).
In contrast to wild-type mice, no induction of AHR was observed in TDI-sensitised and TDI-challenged
KitWsh/Wsh mice, even though they were responsive to methacholine (fig. 7a; for individual responses see
online supplementary fig. S2). TDI-sensitised and TDI-challenged mast cell knockout mice showed the
same humoral, cellular and ex vivo changes indicative of sensitisation as similarly treated wild-type mice
(fig. 7b–d). To further validate the involvement of mast cells in TDI-induced AHR, wild-type mice were
treated with the mast cell stabiliser ketotifen 30 min prior to the TDI challenge. In these TDI-sensitised
mice, mast cell stabilisation abolished the induction of AHR 24 h after the TDI challenge (fig. 8; for
individual responses see online supplementary fig. S2), while immune sensitisation was unaffected (online
supplementary fig. S6). These results demonstrate that mast cells are critical for the development of AHR
when TDI-sensitised mice are challenged with TDI.
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Discussion
To explore the interplay between neural and immunological mechanisms in asthma, we investigated the
critical determinants of the respiratory responses to TDI, a chemical irritant and sensitiser that is known
to cause immune-mediated asthma. We used a well-validated experimental model [11, 33].

The novelty of our work lies in the demonstration that TDI can directly activate mTRPA1, but not
mTRPV1, and that, interestingly, both TRPA1 and TRPV1 are critical (although not sufficient) for the
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induction of AHR in our model. We also established convincingly that mast cells are crucially involved in
the induction of this AHR.

In our model of chemical-induced asthma, TDI-sensitised mice develop AHR 24 h after an intranasal TDI
challenge. This response of the lower airways is indicative of the occurrence of a nasobronchial cross-talk,
which is probably mediated by sensory nerves that are abundantly expressed in the upper airways. The
existence of such cross-talk was demonstrated by HENS et al. [35] in an allergic OVA model in animals in
which asthmatic responses were produced in spite of interruption of the continuity between the nose and
lungs by means of a tracheostomy. The AHR that developed rapidly in these tracheostomised
OVA-sensitised mice after a nasal challenge with OVA was attributed to pulmonary upregulation of
substance P and activation of the NK1 receptor; hence neurogenic lung inflammation originating in the
nose [35]. Thus, both the findings of HENS et al., who used a model of atopic asthma, and our present
observations in a model of chemical-induced asthma, support the concept of the “united airways”, from the
nose to the lungs. Furthermore, our study provides novel mechanistic insight by demonstrating that the
cross-talk operates through activation of TRPA1 and TRPV1 channels and with involvement of mast cells.

Using in vitro intracellular Ca2+ imaging, we showed channel activity in mTRPA1-expressing cells, but not
in mTRPV1-expressing cells, in response to TDI. Direct evidence for the implication of TRPA1 was then
obtained using electrophysiology studies, which were not performed for TRPV1 due to its
unresponsiveness to TDI in the Ca2+ imaging experiments. Importantly, a previous study suggested that
TDI activates TRPA1 [36], but this contention was based on Ca2+ imaging experiments, which provide
only indirect indication of channel activity. Here, we used patch-clamp recordings and demonstrated, for
the first time, that TDI activates TRPA1 channels and that this activation needs the presence of the
isocyanate moieties, since TDA (having amine groups) was inactive.

Complementary to the in vitro studies, in vivo respiratory physiology experiments were performed, using
the flexiVent to assess changes in nonspecific airway reactivity to methacholine, 1 day after the intranasal
instillation [30]. The principal breakthrough that emerges from our studies is that both TRPA1 and
TRPV1 are essential for the development of AHR after a challenge with TDI in TDI-sensitised mice. Our
findings in Trpa1 and Trpv1 knockout mice and the validation using pharmacological agents, a TRPA1
antagonist or a NK1R antagonist, convincingly prove the involvement of TRPA1, TRPV1 and the
neuropeptide substance P in immune-mediated chemical-induced AHR. Importantly, our experiments
with TRP agonists (AITC and capsaicin) given to TDI-sensitised mice demonstrate that induction of AHR
only occurred in a context of specific immune sensitisation, since AHR was only induced if the animals
were challenged with the agent to which they had been sensitised. An involvement of TRPA1 in
allergen-induced leukocyte infiltration and AHR has been reported, albeit without much mechanistic
explanation, in a murine OVA model [37]. Moreover, in contrast with the latter study, we have used a
model without cellular influx in the airways. Therefore, we were able to simulate paucigranulocytic asthma,
a relevant condition that has hitherto hardly been studied. Furthermore, our model allowed us to
disentangle the airway reactivity response from the immune-mediated inflammatory changes.

In addition, TRPV1 has been proposed to play a role in the development of allergic asthma [38, 39],
although this was disputed by some others [37, 40]. In the current study, we show that TRPV1 is not
activated directly by TDI, but is essential for the induction of AHR. However, the importance of TRPV1
activation can be attributed to its immunomodulatory function. Recently, TRPV1 has been demonstrated
to regulate the activation and inflammatory properties of CD4+ T-cells [41]. Furthermore, it has been
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reported that IL-13, a key cytokine in AHR development, increases the level of TRPV1 in the murine lung
and can induce increased TRPV1 expression in the bronchial epithelium of mice, linking TRPV1 to IL-13
induced features of asthma. Indeed, inhibition of TRPV1 has shown to attenuate IL-13 induced AHR,
airway inflammation, goblet cell metaplasia and subepithelial fibrosis [38]. As such, we hypothesise that
IL-13, released by lymphocytes or mast cells, can stimulate TRPV1. Previously we have described the
importance of CD4+ T-cells and the Th2-cytokine IL-13 in our model of chemical-induced asthma, which
could thus explain why AHR is abolished in TRPV1-deficient mice [33].

Furthermore, it has been shown that inflammatory mediators, such as prostaglandins, leukotrienes and
bradykinin released by mast cells can reduce the activation threshold of TRPV1 [42, 43], and that
neuropeptides released from sensory nerves can sensitise TRPV1 and enhance afferent excitability [44]. The
inflammatory conditions can thus contribute to the activation and involvement of TRPV1 in our model.

In our search for the mechanism of enhanced nonspecific airway reactivity shortly after an antigen-specific
challenge we also focused on mast cells, because of their prominent role in asthma [45] and because of the
postulated interplay between mast cells and sensory neurons [46]. Our findings with mast cell deficient
mice (KitWsh/Wsh mice), validated by experiments using a mast cell stabiliser, demonstrate that functional
mast cells are essential for the development of chemical-induced AHR after a TDI challenge in
TDI-sensitised mice. We have previously reported the importance of mast cells in a model of nonallergic
AHR [29], and this has also been shown in mouse models of atopic asthma [47, 48]. In the case of atopic
asthma, activation of mast cells by allergen cross-linking of the IgE-bound high-affinity IgE receptor
(FcɛRI) leads to the release of various pro-inflammatory mediators that increase the sensitivity of airway
smooth muscle to nonspecific stimuli, such as methacholine [45]. How mast cells become activated and
which mediators they release in our model remain to be investigated. Based on previous evidence [49], a
role for allergen cross-linking with IgEs seems unlikely. However, there is no doubt that the adaptive
immune system is also involved, both because the induction of AHR relies on an antigen-specific
challenge and because our model is dependent on properly functioning lymphocytes, as shown here with
Rag2 knockout mice and previously in severe combined immunodeficiency disease mice [11] and in
adoptive lymphocyte transfer experiments [33, 34].

What we do know is that mast cells are located in the vicinity of nerve fibres present in the airways [50],
and this close association with sensory nerves allows mast cells to respond immediately to neuropeptides
released from nearby sensory nerve endings. SCHEERENS et al. [22] suggested that tachykinin neuropeptides,
such as substance P, were involved in TDI-induced tracheal hyperreactivity as measured ex vivo, and they
proposed, without giving evidence, that neurogenic inflammation resulted from the release of bioactive
mediators by mast cells. Human and rodent mast cells do express neuropeptide receptors, including the
substance P receptor NK1, and high concentrations of substance P induce mast cell degranulation [51]. In
contrast, low concentrations of substance P were shown to prime mast cells by lowering the threshold for
subsequent stimulation [52]. Conversely, mast cell activation and subsequent mediator release can sensitise
afferent sensory fibres, by lowering their stimulation threshold [46]. In summary, various lines of evidence
suggest the existence of bidirectional interaction pathways between mast cells and airway sensory nerves.

In conclusion, our results demonstrate that the induction of airway hyperreactivity by a chemical sensitiser
such as TDI relies both on a specific adaptive immune response (that operates via lymphocyte activation)
and on neuro-immune interactions, with crucial involvement of TRPA1, TRPV1 and mast cells. Our
finding that TDI-induced asthma relies on neuro-immune mechanisms, involving both TRPA1, TRPV1
and mast cells, may lead to novel personalised strategies for treating patients with paucigranulocytic
asthma. Patients with this phenotype of asthma may benefit from therapies targeting mast cell–TRP
interactions, via the use of neuropeptide receptor blockers, mast cell stabilisers or TRPA1 blockers.
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