








supplementary fig. E4) nor in the severe asthmatics treated or not treated with oral corticosteroids (online
supplementary fig. E5).

Activin-A in the asthmatic bronchial mucosa correlates with angiogenesis
Evaluation of the vascularity of the bronchial mucosa demonstrated that MMA and severely asthmatic
patients had significantly elevated median numbers of blood vessels per unit area in the lamina propria
compared to healthy controls (fig. 3a). Interestingly, our data revealed a strong correlation between the
degree of angiogenesis and activin-A expression in epithelial (fig. 3b) and subepithelial cells (fig. 3c). In
contrast, bronchial mucosal expression of both activin-A receptors, ALK-4 and Act-RIIA, inversely
correlated with angiogenesis (fig. 3d–g), suggesting that activin-A signalling is decreased in patients with
prominent angiogenesis. Airways angiogenesis inversely correlated with forced expiratory volume in 1 s,
and although no correlation was observed with activin-A, increased airways expression of ALK-4 and
Act-RIIA was associated with improved lung function (online supplementary fig. E6).
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FIGURE 1 Activin-A is increased in asthma. Activin-A concentrations in a) serum and b) bronchoalveolar lavage fluid (BALF) at steady state, and c)
serum during exacerbation. d) Representative microphotographs demonstrating activin-A expression: i) isotype control; ii) healthy control; iii)
severe asthmatic; iv) severe asthmatic. Scale bars=20 μm. Blue arrow: epithelial staining; red arrows: subepithelial staining. e) and f) Quantification
of activin-A+ cells in the bronchial mucosa. g–j) Confocal microscopic images from bronchial tissue of severe asthmatics demonstrating
colocalisation (yellow) of activin-A (red) expression by subepithelial cell markers (green); specifically g) mast cells, h) neutrophils, i) macrophages
and j) smooth muscle cells. Scale bars=5 μm. Data are presented as median (interquartile range). HC: healthy controls; MMA: mild/moderate
asthmatics; SA: severe asthmatics, DAPI: 4′,6-diamidino-2-phenylindole; SMA: smooth muscle actin. *: p<0.05; **: p<0.01; ***: p<0.001.
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Activin-A suppresses spontaneous and VEGF-induced proliferation of human pulmonary
endothelial cells
Immunofluorescence analysis of biopsies from severe asthmatics revealed that the majority of mucosal
peribronchial endothelial cells expressed immunoreactivity for activin-A (fig. 4a). ALK-4 and Act-RIIA
were also expressed, albeit by fewer of the pulmonary epithelial cells (fig. 4b and data not shown).
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FIGURE 2 Expression of activin-A receptors activin-A receptor type IIA (Act-RIIA) and activin-like kinase (ALK)-4 is markedly reduced in severe
asthmatics. Representative microphotographs and quantitative analysis of a) Act-RIIA and b) ALK-4 in bronchial biopsy sections. i) Healthy
controls; ii) mild/moderate asthmatics; iii) severe asthmatics; iv) expression in epithelial cells; v) subepithelial cells. Data are presented as
median (interquartile range). HC: healthy controls; MMA: mild/moderate asthmatics; SA: severe asthmatics. Scale bars=20 μm. *: p<0.05;
**: p<0.01; ***: p<0.001.
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FIGURE 3 Airway angiogenesis correlates with activin-A expression and is associated with reduced tissue expression of activin-like kinase (ALK)-4
and activin-A receptor type IIA (Act-RIIA). a) Quantification of airway angiogenesis; correlation of angiogenesis with b) epithelial and c) subepithelial
activin-A expression; inverse correlations of angiogenesis with d) epithelial and e) subepithelial expression of ALK-4; and f) epithelial and
g) subepithelial expression of Act-RIIA. Data are presented as median (interquartile range). HC: healthy controls; MMA: mild/moderate asthmatics;
SA: severe asthmatics. **: p<0.01; ***: p<0.001.
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FIGURE 4 Activin-A (Act-A) inhibits the proliferation of human pulmonary microvascular endothelial cells (HPMEC) in vitro. Representative
photomicrographs demonstrating a) Act-A (red) and b) activin-like kinase (ALK)-4 (red) in CD34+ epithelial cells (green) in severe asthmatics.
Colocalisation is shown in yellow (arrows). Scale bars=10 μm. c) Representative photomicrographs for i) isotype control; ii) von Willebrand factor
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of rh-IL-13. e) Act-A concentrations in HPMEC supernatants in the presence or absence of IL-13. f ) Proliferation of HPMEC. Data are presented
as mean±SEM from three independent experiments in tetraplicate wells. DAPI: 4′,6-diamidino-2-phenylindole; rAct-A: recombinant activin-A;
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Corresponding in vitro experiments using HUVEC and, more pertinently, HPMEC [42] confirmed that, as
in vivo, immunoreactivity for activin-A and its receptors was expressed in the resting state by
subpopulations of HPMEC (fig. 4c and d) and HUVEC (not shown). To mimic the pro-allergic in vivo
setting, we exposed HPMEC to IL-13, a critical inflammatory mediator in asthma with an active signalling
pathway in endothelial cells [43, 44]. IL-13 exposure significantly increased the mean percentages of
HPMEC expressing activin-A, but decreased the mean percentages of ALK-4+ and Act-RIIA+ cells
(fig. 4d). Moreover, activin-A was detectable in culture supernatants of HPMEC at rest and its secretion
significantly enhanced by IL-13 (fig. 4e). Exposure of endothelial cells to exogenous activin-A significantly
reduced both spontaneous and VEGF-enhanced HPMEC proliferation, even in the presence of the
inflammatory cytokine, IL-13 (fig. 4f ). Similar findings were obtained using HUVEC (data not shown). In
an opposite approach, we evaluated the effects of activin-A neutralisation on HPMEC proliferative
responses. Blockade of activin-A resulted in enhanced HPMEC responses to VEGF and IL-13 (fig. 4f ).

Activin-A inhibits VEGF-induced angiogenesis
To further explore the effects of activin-A on the regulation of human endothelial cell responses, we
utilised an in vitro model of angiogenesis. In this assay, exogenous VEGF strongly promoted spontaneous
angiogenesis, reflected by a significant elevation of all output parameters investigated, such as the number
of junctions and tubules, as well as the total tubule length (fig. 5a and b). Activin-A did not alter
spontaneous angiogenesis but significantly inhibited VEGF-induced angiogenesis (fig. 5b). Interestingly,
activin-A significantly reduced VEGF-enhanced angiogenesis in the presence of IL-13 (fig. 5b), while
neutralisation of activin-A resulted in enhanced angiogenic responses to VEGF and IL-13 (fig. 5c).

Activin-A regulates the balance of VEGF receptors and induces an anti-angiogenic cytokine milieu
Stimulation of HUVEC with activin-A resulted in a significant (approximately three-fold) increase in
expression of mRNA encoding sVEGFR1 and membrane-bound (m)VEGFR1, and to lesser extent
VEGFR2, compared with controls (fig. 6a and b). VEGF significantly increased expression of mRNA
encoding VEGFR2, while it had no discernible effects on mRNA encoding sVEGFR1 (fig. 6a and c).
When employed together, the effects of activin-A prevailed over those of VEGF (fig. 6a–c); where VEGF
induced a high VEGFR2/sVEGFR1 mRNA ratio, this was reversed in the presence of activin-A (fig. 6d).
Similar findings were observed with the VEGFR2/mVGEFR1 ratio (fig. 6e). Consistent with the mRNA
data, stimulation of endothelial cells with activin-A significantly increased the release of sVEFGR1 protein
into the culture supernatants in the presence or absence of VEGF (fig. 6f). No significant differences were
observed in VEGFR2 protein levels between the groups studied (data not shown).

Incubation of endothelial cells with activin-A in vitro resulted in significantly elevated mean release of
IL-18 into culture supernatants, compared with control medium, whereas VEGF significantly reduced
mean IL-18 release (fig. 6g). In the additional presence of activin-A this effect of VEGF was reversed
(fig. 6g). In contrast, activin-A significantly reduced mean release of the pro-angiogenic cytokine IL-17 in
control medium and VEGF-treated cells (fig. 6h). IL-32 release by human epithelial cells was not altered
in the presence of activin-A or VEGF (online supplementary fig. E7).

IL-18 and sVEGFR1 are decreased in the BALF and inversely correlate with bronchial tissue
angiogenesis in severe asthma
In an effort to translate our findings into the clinical setting, we investigated the concentrations of the
above-mentioned mediators in the BALF of patients with asthma of varying severity. The median
concentration of IL-18 and sVEGFR1 were significantly lower in the BALF of severely asthmatic patients
compared to healthy controls (fig. 7a and b). Conversely, VEGF was significantly increased in severe
asthma (fig. 7c). No significant differences were observed in BALF median concentrations of IL-17 and
IL-32 between the groups examined (online supplementary fig. E8). In contrast to VEGF, BALF
concentrations of IL-18 and sVEGFR1 inversely correlated with the degree of airway angiogenesis (fig. 7d–f).
Moreover, IL-18 and sVEGFR1 levels in the BALF tended to inversely correlate with those of activin-A
(online supplementary fig. E9). No significant correlations were found between VEGF, IL-18 and sVEGFR1
and activin-A levels in the serum (data not shown).

Discussion
Our study clearly demonstrates that activin-A is increased in the serum, BALF and bronchial tissue in
patients with asthma and further increases during exacerbations. Our preliminary data further suggest that
its mass production is not susceptible to systemic glucocorticoid inhibition. The expression of activin-A is
more prominent in the subepithelium of the bronchial mucosa of severe asthmatics, where it is produced
by a variety of structural and inflammatory cells, including bronchial endothelial cells in a “T-helper type
II-high” environment. The hypothesis that endothelial cells are a major source of activin-A production in
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FIGURE 5 Activin-A (Act-A) inhibits vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro. a) Representative photomicrographs
showing the formation of endothelial tubular structures (black) at day 14, as indicated. Scale bars=500 μm Computer-assisted quantification of the
number of junctions, tubules and tubule length demonstrating the effects of stimulation with b) anti-(a)Act-A neutralising antibody or Ig control and
c) recombinant (r)Act-A on VEGF- and interleukin (IL)-13-induced angiogenic processes. Data are presented as mean±SEM from six different
photomicrographs per parameter and are representative of three independent experiments in tetraplicate wells. *: p<0.05; **: p<0.01; ***: p<0.001.
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asthma in vivo is supported by our observed correlation between airways vascularity (the degree of which
was, in turn, associated with more severe disease) and activin-A expression. Bronchial epithelial cells also
appear to be a potent source. Our hypothesis that activin-A may exert regulatory effects on angiogenesis in
asthma in vivo is supported by the fact that endothelial cells express activin-A receptors, albeit in a
potentially attenuated form in the more severe patients.

No significant differences regarding activin-A levels were observed in the serum or BALF of MMA and
severely asthmatic patients. That the expression of certain mediators involved in severe asthma and
associated airway remodelling processes does not differ between severe and mild/moderate asthmatics is
not uncommon, as in the case of matrix metalloproteinases, eotaxin, IL-5 and IL-13 [45–47], or even in
the case of established biomarkers, such as sputum eosinophils and exhaled nitric oxide fraction [46, 48].
Nevertheless, as in the case of IL-13 [47], our findings did reveal a significant increase in the numbers of
resident and infiltrating cells expressing activin-A in the lamina propria of severe asthmatics. The
observation that activin-A exerts effects on endothelial cells in the airways, even though it is
predominantly expressed by bronchial epithelial cells, corroborates the pleiotropic nature of activin-A in
the context of asthma. Predominance of expression of a certain cytokine by the bronchial epithelium does
not preclude a pathogenic role for the corresponding factor in other cell types and processes. In fact,
several mediators involved in asthma pathophysiology, such as TGF-β [49, 50], osteopontin [38, 51],
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FIGURE 6 The anti-angiogenic effects of activin-A are associated with enhanced soluble (s) vascular
endothelial growth factor receptor (VEGFR)1 and decreased VEGFR2. Quantitative real-time PCR analysis of a)
sVEGFR1; b) membrane-bound (m)VEGFR1; and c) VEGFR2 mRNA expression by human umbilical vein
epithelial cells (HUVEC) relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) upon stimulation for
96 h. d) Log ratios, normalised to control, of VEGFR2/sVEGFR1 and e) VEGFR2/mVEGFR1 mRNA expression,
relative to GAPDH. f) sVEGFR1 concentrations in culture supernatants. g) Interleukin (IL)-18 and h) IL-17
concentrations in culture supernatants. Data are presented as mean±SEM from three independent experiments
in duplicate wells. *: p<0.05; **: p<0.01; ***: p<0.001.
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pentraxin-3 [52] and resistin-like molecule-β [53] are prominently expressed in the bronchial epithelium
and exert effects on subepithelial cells. Interestingly, and in agreement with other studies, our findings
demonstrated that activin-A is also localised in the nucleus of subepithelial cells in the bronchial mucosa,
possibly reflecting other, unidentified roles for this cytokine in gene regulation [54, 55].

A prominent finding of our study is that activin-A has the ability to suppress human pulmonary
endothelial cell proliferation and angiogenesis in vitro, even in the presence of a robust endothelial cellular
activator, such as VEGF. VEGF exerts its angiogenic effects in the asthmatic airway through its two main
receptors VEGFR1 and VEGFR2 [14], which have similar structures but divergent functions in vivo [18].
We demonstrate here that the anti-angiogenic effects of activin-A may be propagated partly through its
ability to invert the ratio of VEGFR2/VGEFR1 mRNA expression by endothelial cells, thereby modulating
VEGF signalling. Furthermore, we show that activin-A stimulation has the potential to alter endothelial
cell production of cytokines that affect angiogenesis, in particular by increasing the secretion of the
anti-angiogenic IL-18 [7, 9] while reducing that of the pro-angiogenic IL-17 [10], both at baseline and in
the presence of VEGF. Finally, we also demonstrate an additional novel biological effect of activin-A on
the production of the inhibitory circulating form of the VEGR1 by endothelial cells, through which it may
indirectly further mitigate VEGF signalling [19].

The impact of activin-A on bronchial angiogenesis has not previously been explored, although its effects
on vascularisation have been investigated in other tissues with conflicting results [32–34]. Our data throw
considerable light on the possible reasons for these conflicting data. The fact that angiogenesis appears to
proceed in severe asthmatics in the face of elevated expression of activin-A raises the possibility that its
effects may not be propagated at least partly because of modification of its signalling pathway. This
hypothesis is supported by our finding that in contrast to activin-A, the expression of its receptors, ALK-4
and Act-RIIA was reduced, at least at the level of reduced immunoreactivity, in the bronchial tissue of
severe asthmatics.

It is possible that these changes are brought about by the highly inflammatory environment of the
bronchial mucosa in asthma. In support of this, we show that stimulation with IL-13 markedly reduces the
expression of Act-RIIA and, to a lesser extent, ALK-4 in human pulmonary endothelial cells. IL-13 is a
critical inflammatory mediator in asthma with an active signalling pathway in endothelial cells [43, 44]
and the ability to induce VEGF production [16, 17] and mediate its effects in vivo [56]. Similarly,
inhibition of activin-A signalling by other inflammatory mediators locally in the airways, such as
lipopolysaccharide and tumour necrosis factor-α has been reported previously [57]. A variety of cytokines
with increased expression in the bronchial mucosa of severe asthmatics, including VEGF as observed
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FIGURE 7 Bronchoalveolar lavage fluid (BALF) interleukin (IL)-18 and soluble (s) vascular endothelial growth factor receptor (VEGFR)1
concentrations inversely correlate with airways vascularity in severe asthmatics (SA). a) sIL-18; b) sVEGFR1; and c) VEGF concentrations in the
BALF. Correlations of d) IL-18; e) sVEGFR1; and f) VEGF with angiogenesis in the airways of all subjects. Data are presented as median
(interquartile range). HC: healthy controls; MMA: mild/moderate asthmatics. *: p<0.05; **: p<0.01.
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herein and by others [11], may counteract the upregulation of angiogenic inhibitors, such as sVEGFR1
and IL-18, through which activin-A partly mediates its effects. Our observation that both sVEGFR1 and
IL-18 concentrations were decreased in the BALF of severe asthmatics, whereas that of VEGF was
increased even in the presence of high concentrations of activin-A, are in agreement with this hypothesis
(fig. 8). Decreased ALK-4 expression has been also reported in the airway epithelium of chronically
challenged mice [58], suggesting that allergen exposure per se could modify the expression pattern of
activin-A’s signalling pathway. Although we observed no differences regarding the expression of activin-A,
ALK4 and Act-RIIA in the lung biopsies from atopic and nonatopic asthmatics, the possibility that
allergen exposure influences their expression cannot be excluded.

The current study presents certain limitations. In an observational cross-sectional study, there is no
longitudinal follow-up and it is difficult to pursue specific postulated mechanisms of disease, for which
longer-term studies and/or “models” may sometimes be more appropriate. Secondly, the activin-A
concentrations used in our study for the stimulation of endothelial cell lines, although optimised by
preliminary in vitro experiments and similar to those used by others, are higher than those observed in the
BALF and serum of our asthma patients ex vivo. Finally, we did not use fresh primary bronchial
endothelial cells for our in vitro experiments and, in the absence of an established cell line based on
human peribronchial endothelial cells, we have used a human pulmonary microvascular endothelial cell
line, as the most appropriate readily available cell line for studying human lung diseases [42, 59, 60].

In summary, our studies expand our knowledge of the scope of activities of activin-A in asthma, adding
potential anti-angiogenic effects to its already versatile functions as a cytokine. We also demonstrate the
principle, probably applicable to any complex chronic inflammatory process, that overexpression of a
cytokine such as activin-A in asthma does not inevitably result in the same end-effects as observed in vitro
because of complex, local environmental interactions in vivo. Our findings provide the groundwork for
future research aiming to better understand these complex interactions in order to evaluate activin-A as a
possible target for affecting the course of angiogenesis in asthma.
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FIGURE 8 Proposed model for activin-A-mediated inhibition of angiogenesis in the airways of asthmatic
individuals. In healthy individuals, upon exposure to environmental antigens, bronchial epithelial cells release
activin-A, which signals through its receptors on airway endothelial cells and inhibits vascular endothelial
growth factor (VEGF)-induced angiogenesis. This is associated with an enhanced release of the
anti-angiogenic mediators IL-18 and VEGF receptor (R)1. However, in asthmatics, in the presence of
inflammatory cytokines in the airways (such as interleukin (IL)-13, IL-5, etc.) the expression of activin-A
receptors is decreased and, thus, its signalling pathways are disrupted. As a result, activin-A, although
overexpressed in the airways of asthmatics, cannot inhibit VEGF-induced angiogenesis or increase IL-18 and
VEGFR1 levels. ALK: activin-like kinase; Act-RIIA: activin-A receptor type IIA; s: soluble.
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