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Abstract 

 

The onset, progression and exacerbations of asthma are frequently associated with virus 

infections of the lower respiratory tract. An emerging paradigm suggests that this relationship 

may be underpinned by a defect in the host’s antiviral response, typified by the impaired 

production of type I and type III IFNs. The failure to control viral burden likely causes 

damage to the lung architecture and contributes to an aberrant immune response, which 

together, compromise lung function. Although a relatively rare cell type, the plasmacytoid 

dendritic cell dedicates much of its transcriptome to the synthesis of IFNs and is pre-armed 

with virus-sensing pattern recognition receptors. Thus, pDCs are specialised to ensure early 

viral detection and the rapid induction of the antiviral state to block viral replication and 

spread. In addition, pDC can also limit immunopathology, and promote peripheral tolerance 

to prevent allergic sensitisation to harmless antigens, possibly through the induction of 

regulatory T cells. Thus, this enigmatic cell may lie at an important intersection; orchestrating 

the immediate phase of antiviral immunity to effect viral clearance while regulating 

tolerance. Here we review the evidence to support the hypothesis that a primary defect in 

pDC function may underlie the development of asthma. 
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Introduction 

 Asthma is characterised by airway hyperreactivity (AHR) to non-specific 

spasmogens, structural alterations to the airway wall, and chronic inflammation. The 

inflammatory response is typically associated with the expression of the TH2-type cytokines 

interleukin (IL)-4, IL-5, IL-9 and IL-13 [1], which can induce all of the cardinal pathologic 

features of disease [2, 3]. Indeed, the molecular and cellular aspects of the asthmatic reaction, 

particularly in response to classical allergen provocation, are now fairly well defined, 

although the emergence of the type-2 innate lymphoid cell (or ‘nuocytes’) has reinforced the 

concept that innate cells also provide a rich source of Th2 type cytokines [4], in addition to 

classical Th2 lymphocytes. Despite such progress, our understanding of the processes that 

promote a Th2-inducing microenvironment and break tolerance to innocuous antigens 

remains rudimentary, and as a consequence a scarcity of new immunomodulatory therapies 

has emerged [5].  

 It is now appreciated that the great majority of exacerbations of asthma are associated 

with both respiratory virus infections and evidence of Th2 immunity [6-10]. Moreover, 

epidemiological studies have implicated frequent/severe wheezy lower respiratory tract 

(LRT) infections as a major risk factor for the onset and progression of asthma in early life 

[11-15]. Largely determined by a lack of type I interferons (IFN- IFN-Iproduction in 

responses to virus infection, a new paradigm has emerged in the field linking defective innate 

antiviral responses in both haematopoietic cells and non-haematopoietic cells to increased 

fragility and damage of the airway epithelium. This defect may also contribute to the 

development of Th2 immunity, although this concept requires further support. Here we focus 

on the plasmacytoid dendritic cell (pDC) and present evidence supporting the hypothesis that 

a primary defect in the host’s ‘natural type I IFN-producing cell’ may underlie the 
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development of asthma. With the capacity to rapidly secrete large amounts of IFN-I and 

present antigen to naive and memory CD4+ and CD8+ cytotoxic T lympocytes, pDCs are at 

the interface of innate and adaptive antiviral immunity. Curiously, pDC have also been 

implicated in mediating tolerance to prevent the induction of allergic asthma [16, 17]. Thus 

this rare and enigmatic cell may lie at an important intersection; orchestrating the immediate 

phase of antiviral immunity to effect viral clearance while regulating tolerance to self and 

non-self antigens.  

 

pDCs and their known PRR systems  

 pDCs are a relatively rare type of DC that reside predominantly in lymphoid tissues. 

Both human and murine pDC express the surface antigen CD45RA and lack the myeloid 

marker CD11b, although subtle differences exist since human, and not murine, pDC express 

the surface markers blood DC antigen-2 (BDCA-2/CD303), BDCA-4 (CD304), 

immunoglobulin-like transcript 7 (ILT7), and the IL-3 receptor- chain (CD123). In contrast 

murine, but not human, pDC express Siglec H, B220 (CD45R), bone marrow stromal cell 

antigen 2 (BST2/CD317) and CD11c. As with other antigen presenting cells, pDC can 

acquire and present antigen to T lymphocytes, although they must first be licensed to do so 

e.g. via pattern recognition receptor (PRR) activation [18, 19]. pDC also provide help to T 

cells through the provision of co-stimulatory molecules and soluble factors [20]. Indeed, both 

human and murine pDCs produce prolific amounts of IFN-I (including - and -) 

dedicating 60% of their transcriptome to IFN production [21] and can release 100-fold more 

IFN than any other known cell type (3-10 pg of IFN-/cell) [22-25]. pDC also produce type 

III IFNs [26] to induce a similar transcriptome in the target cell as IFN-I. Strikingly, pDC 

possess the necessary PRRs and signalling intermediaries (e.g. interferon regulatory factor 7; 

IRF7) to recognize viral-derived motifs, and are thus uniquely placed to rapidly sense and 
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respond to viral infections [27-29], even in the absence of cellular infection or viral 

replication [29, 30]. This first wave of IFN stimulatory genes establishes the antiviral state, 

blocks viral replication, and facilitates the targeted lysis of infected cells. Amongst the PRR 

families, pDC are most widely acknowledged to express toll-like receptor (TLR)7 and TLR9, 

which recognise single stranded (ss)RNA and unmethylated CpG-DNA respectively. Both of 

these receptors signal via the adaptor protein MyD88, which through a signalling cascade, 

activates transcription of IFN-I, pro-inflammatory cytokines and co-stimulatory molecules. 

Murine pDC also express TLR8 which can recognise DNA as well as RNA [31], although it 

is less clear whether human pDC express and respond to TLR8 ligands [32, 33]. Activation of 

the cytosolic RNA-sensor RIG-I (retinoic acid-like receptor-I), MDA-5 (melanoma 

differentiation-associated protein 5) or NOD-2 (nucleotide-binding oligomerization domain-

containing protein 2), all of which recognise ssRNA (as well as other microbial motifs), can 

induce IFN-I production by pDCs [32, 34, 35]. RIG-I has been shown to be functional in 

pDC but only in the absence of TLR responsiveness [35], however, RIG-I deficiency does not 

affect IFN-I or IL-6 production in response to infection with ssRNA viruses, suggesting a 

compensatory mechanism [36]. Of note, pDC also express the receptor for advanced 

glycation end products (RAGE), which has been associated in two genome wide association 

studies as a risk factor for poor lung function [37, 38]. In an elegant study, the RAGE ligand 

– high mobility group box 1 protein (HMGB1) – was shown to facilitate viral nucleic acid 

recognition and optimal IFN-I production following activation of TLRs and RIG-I-like 

receptors (RIG-I, MDA-5) alike [39, 40]. TLR9-induced responses are diminished in RAGE- 

or HMGB-null pDC, which may relate to altered trafficking and a lack of retention of the 

PRR ligand in the endosome [40]. Whether the RAGE/HMGB1 axis contributes to the 

activation of TLR7 remains unresolved. Exogenous HMGB1 can inhibit TLR9-mediated 

IFN-I secretion by pDC [41], although others have reported that HMGB1 blockade decreases 
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CpG-induced IFN-I production [42]. These conflicting reports may relate to post-translational 

modifications of HMGB1 which can change its functional activity [43]. In addition to TLR9, 

pDC can also detect microbial DNA via the cytosolic helicase DHX36 (aspartate-glutamate-

any amino acid-aspartate/ histidine (DExD/H)-box helicase 36) which like TLR9 employs the 

MyD88-IRF7 signal transduction cascade to induce IFN-I production [44]. Less is known 

with respect to the expression of other PRR such as the NOD-like receptors (NLR) family, 

although the ability to secrete mature IL-1 and IL-18 suggests pDC are capable of forming 

an active inflammasome [45-47]; further studies are warranted to investigate the nature of the 

inflammasome(s) in pDC.  

 

Alterations in peripheral pDC in allergic disorders and effect of allergen challenge.  

The earliest studies that sought to determine whether pDC numbers are altered in 

atopic or asthmatic individuals were performed after observations in the late 1990s suggested 

that the DC1 subtype of DCs promoted Th1 responses and the DC2 subtype (with phenotypic 

characteristics of pDC i.e. HLA-DR+CD11c-CD123+) promoted Th2 responses, especially 

when cultured with IL-3 [48, 49]. Congruent with this, Uchida and colleagues reported that 

the number of HLA-DR+CD11c-CD123+ ‘DC2’ cells was approximately twice as high in 

peripheral blood of atopic as compared to healthy subjects [50]. These findings were later 

confirmed in both atopic and nonatopic asthmatics as compared to healthy controls [51, 52]. 

With the advent of reagents to detect BDCA antigens, the use of CD123high/CD11c- to 

identify pDC declined, and DC subsets were increasingly redefined as DC1 (BDCA-

1/CD1c+), DC2 (BDCA-3/CD141+), and pDC (BDCA-2/CD303). Nevertheless, this new 

phenotyping strategy once again confirmed that circulating pDC are significantly greater in 

asthmatics as compared to healthy controls [52].  

In response to allergen challenge, pDC numbers increase moderately in the lung and 
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decrease in the periphery. When the bronchial mucosa is sampled 6 hour post allergen 

challenge, mDC (CD1c+HLA-DR+) are increased, but pDC numbers are unchanged [53];  

however, analysis of bronchiolar lavage fluid (BALF) and sputum at 24 h post-segmental 

allergen challenge found an increase in pDC [54, 55]. Even after accounting for the different 

methodologies employed across these studies, the overall picture from asthmatic adults 

suggests that pDC are elevated in the periphery and are recruited into the airways in response 

to allergen challenge. At present, the mechanistic basis of this observation is unclear, 

however, one possibility is that the inability of asthmatics to produce sufficient IFN-I in the 

airways in response to infection may fail to activate the negative regulatory feedback loop 

that exists to homeostatically regulate pDC numbers [56].  

In contrast to adults, children with allergic asthma tend to have lower numbers of 

pDC in the periphery [57]. Analysis of frozen peripheral blood mononuclear cells collected 

from children age 6 or 7 who had had a wheezing episode associated with a severe RSV 

infection necessitating hospitalisation in the first year of life found that BDCA-2+ pDCs were 

approximately 50% lower in the children who were subsequently diagnosed with asthma 

[58]. In light of the association between wheezy LRT infections in early life and later 

diagnosis of asthma, Upham and colleagues prospectively examined pDC numbers in 

peripheral blood in infancy [59]. Intriguingly, pDC numbers were inversely associated with 

LRT infections and physician-diagnosed asthma at age 5 years [59]. Thus, higher pDC 

numbers in infancy appear to be protective against asthma inception. Whether this 

observation relates to a defect in the development and maturation of pDC, or is reflective of a 

greater infiltration into the airways in response to respiratory allergen challenge or virus 

infection to lower circulating pDC [54, 60-62] remains to be determined. However, it is 

important to note that blood sampling was deferred for two weeks in those children who were 

unwell, suggesting this did not account for the lower pDC count.  
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Confirmation of these findings together with a greater understanding of the molecular 

basis of this defect is now of paramount importance. pDC numbers and RV-stimulated IFN-I 

responses of peripheral blood mononuclear cells (PBMCs) are greater at 1 month of age and 

again by 6 months of age as compared to data obtained ‘at birth’ [63, 64], raising the 

possibility that an ontogenic defect may exist in ‘at risk of asthma’ infants. Do low pDC 

numbers arise from a maturation defect? Or alternatively, perhaps there is greater 

differentiation of pDC to cDC [65, 66]? It will also be important to determine the influence of 

environmental factors, such as maternal smoking, gut bacterial colonisation, and diet, on the 

ontogeny of pDC in early life. Although not in a neonatal setting, it was recently shown that 

antibiotic treatment of mice (which typically increases the magnitude of allergic 

inflammation in mouse models of asthma) increases the susceptibility to influenza virus 

infection-associated damage in the airways [67], an effect linked to lower IRF7 expression in 

lung macrophages. Should alterations to the microbiota affect IRF7 expression in pDC, then 

this would profoundly affect the induction of anti-viral immunity given the importance of 

pDC in the initiation of the immediate IFN-I response (see below).  

 

pDC from allergic or asthmatics subjects generate aberrant IFN-I responses  

To evaluate whether the innate antiviral response is impaired in allergic or asthmatic 

subjects, multiple laboratories have measured the release of IFN-I and III, or biomarkers 

thereof, from peripheral blood leukocytes in response to various TLR stimuli or virus 

infection. Newcastle disease virus-induced IFN-I release is impaired from PBMCs (which 

include pDC) of allergic asthmatic as compared to nonallergic asthmatic children [68] and 

adults [69]. Intriguingly TLR7-, but not TLR3-induced transcription of antiviral molecules 

and release of the chemokine IP-10 from PBMCs is reduced in atopic adolescents with mild 

to moderate asthma as compared to healthy controls [70]. Although it was not directly 
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established that the defect was intrinsic to pDC, others have shown that the capacity of 

allergic or asthmatic donor pDC to produce IFN-I (and where examined, IFN-III) is impaired 

in response to TLR9/CpG or virus (influenza or rhinovirus) stimulation [71-75]. Defects in 

pDC responsiveness may also arise from genetic abnormalities such as single nucleotide 

polymorphisms. Recent studies have demonstrated that TLR7 and TLR8 SNPs have a strong 

association with asthma across diverse populations [76, 77], although how these impact upon 

expression and protein function is unknown at present. Collectively, these findings suggest 

that the defect in asthma may relate to the TLR7 and TLR9 pathway (which both signal via 

MyD88-IRF7) and not the TLR3 pathway (which preferentially signals via IRF3-TIR-

domain-containing adapter-inducing interferon-β).  

 

The high-affinity Fc receptor for IgE is a negative regulator of pDC-derived IFN-I 

production 

An impressive body of work now suggests that (i) expression of the high-affinity IgE 

receptor, FcRI, on pDC is greater in allergic and/or asthmatic subjects [75], (ii) FcRI 

expression on pDC is inversely proportional to IFN-I/III production [72, 73, 75] and, (iii) 

cross-linking of FcRI impedes the capacity of pDCs to release IFN-I and IFN-III [74, 75]. 

Segmental allergen challenge in human subjects reduces the production of IFN- in BDCA-

4+ pDC purified from PBMCs, supporting the notion that IgE-mediated signalling pathways 

operate in vivo to modulate pDC function [78]. Mechanistically, anti-IgE has been shown to 

down-regulate TLR9 expression by inducing TNF production from pDC [79]. Moreover, 

cross-linking of FcRI on pDC can activate ILT7, an inhibitory receptor bearing an 

immunoreceptor tyrosine based activation motif, to negatively regulate IFN-I production by 

pDC [80](see Figure 1). The IFN-stimulated antigen BST2 has since been identified as a 

ligand of ILT7, suggesting a negative feedback loop to prevent excessive IFN-I production 
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[81]. Indeed, BST2 ligation of ILT7 suppresses influenza virus (TLR7) or CpG (TLR9) 

triggered release of IFN-I by pDC [81]. Similarly activation of either human BDCA-2 or 

murine Siglec H induces an inhibitory signal through Syk kinase to attenuate IFN-I 

production [81]. A recent report found that Hepatitis C viral glycoprotein e2 ligates BDCA-2 

to inhibit pDC production of IFN-I and III [82], while elevated phosphorylation of Syk is 

associated with attenuated IFN-I production by HIV-stimulated pDC [83]. It will be 

important to determine whether respiratory viruses, and in particular those associated with the 

onset of asthma, are able to engage BDCA-2 or ILT7 to evoke inhibitory signals that suppress 

IFN-I release. The pharmaceutical industry has long sought to develop Syk kinase inhibitors 

to prevent IgE-mediated mast cell degranulation, and in a stroke of serendipity, it now seems 

evident that this strategy may also remove the negative tonic on pDC, thus promoting the 

release of IFNs to induce antiviral immunity, and feasibly dampening aberrant Th2 responses.  

In light of these experimental data, therapies aimed at decreasing FcRI expression 

might also enhance antiviral immunity. Encouragingly, immunoneutralisation of circulating 

IgE with anti-IgE therapy (omalizumab) has been shown to decrease the expression of FcRI 

on human pDC in severe asthma [84], although an important and unresolved question is 

whether this would increase IFN-I production in response to virus stimulation. It is also worth 

noting that subcutaneous allergen immunotherapy has been found to heighten IFN-I 

production by CpG-stimulated pDCs [85], although this was not associated with a fall in pDC 

FcRI expression or serum IgE. Blockade of Th2 responses may also be beneficial since both 

IL-4 and IL-13 promote B cell class switching to IgE. Moreover,  IL-4 promotes apoptosis of 

human pDC, down-regulates MHC class I expression [86], and both IL-4 and IL-13 can 

diminish CpG-induced IFN-I production. The molecular mechanism(s) by which activation 

of the IL-4 receptor- attenuates TLR signalling remains to be determined. Collectively, 

these data suggest that Th2 immune responses dampen the effectiveness of pDC to produce 
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anti-viral cytokines, and may help to explain the sizeable increase in asthma risk in those 

subjects who are both sensitised in early life and experience severe or frequent LRT 

infections [87].  

Although pDC numbers appear to be greater in asthmatics in later life and lower in 

high risk infants in early life, more studies are required to substantiate these important 

findings. The available data support the notion that IFN-I production by pDC is impaired in 

subjects with atopic dermatitis, allergic rhinitis, and allergic and non-allergic asthma, 

irrespective of age. Despite recent evidence of heightened production of T-cell derived Th2 

cytokines to allergen- or RV-stimulated PBMCs in the absence of pDC (or presence of an 

IFNAR antagonist)[88, 89], it remains an open question in vivo as to whether defective pDCs 

directly contribute to the development of Th2 responses or merely fail to constrain them.  

 

Regulation of TLR7-mediated responses 

Hyper- and hypo-IFN responses may underlie a number of pathologies including 

microbial infections, tumour development, autoimmune diseases, and chronic inflammatory 

diseases, including asthma, and as a consequence rapid advances have occurred with regard 

to our understanding of the molecular processes by which endosomal TLRs are regulated 

(reviewed elsewhere [90]). For example, it is now appreciated that TLR7 and TLR9 

translocate from the endoplasmic reticulum to a specialised lysosome-like organelle prior to 

IFN-I synthesis. This process is in part orchestrated by the ER-associated molecule UNC93b 

[91], and involves a number of lysosome-related organelle trafficking and biogenesis proteins 

including adapter-related protein complex-3 (AP-3), Hermansky-Pudlak syndrome proteins 

BLOC-1 and BLOC-2 and the solute channel protein Slc15a4 [92, 93]. While evidence is 

emerging in systemic lupus erythematosus to suggest that defect(s) in the lysosomal 

machinery contributes to dysregulated IFN-I responses [94, 95], no data are yet available 
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with regard to asthma, which is perhaps surprising in light of the substantial evidence 

showing that both TLR7 and TLR9 responses of pDC are blunted.  

In an elegant study, activation of RIG-I-like receptor-activated IRF3 was found to 

interfere with TLR-induced transcription factor complexes, impairing gene expression of IL-

12b (which encodes the p40 subunit) [96]. The authors suggest that this has important 

consequences with respect to poly-microbial infections, although it may operate during single 

pathogen exposures which can independently activate multiple PRRs. Of note, IRF3 is 

employed by several PRRs including MDA-5, NOD2, RIG-I and TLR3, all expressed by 

pDC and activated by viral RNA. We have recently observed that infection of IRF3-deficient 

mice with pneumonia virus of mice (PVM) led to a hyper IFN response (Phipps, 

unpublished findings), while NOD2 activation by the bacterial ligand muramyl dipeptide can 

suppress CpG stimulated IFN-I secretion by liver pDC [34], suggesting that IRF3 might also 

impair TLR7/TLR9/IRF7-mediated responses by pDC. It remains to be formally determined 

that cross-interference occurs in pDC, but it is tantalising to speculate that microbiota of the 

gut or the lung, or an existing pathogenic infection, may affect the functional responses of 

pDC to a respiratory viral infection. Finally, control of IRF7 gene expression via the 

translational repressors 4E-BP1 and 4E-BP2, can dramatically alter the magnitude of IFN-I 

production and consequently viral clearance [97]. It will be fascinating to learn whether 

modulation of these influential repressors contributes to the IFN-I defect in asthma.  

 

Viral subversion of TLR7 responses. 

TLR7 activation and induction of IFN-I expression can occur in the absence of viral 

replication [98, 99]. In addition to the classical delivery of material via the endocytic and 

micropinocytic pathways to endosomes, it is now recognised that cytosolic viral RNA 

intermediates can be delivered to endosome-sequestered TLRs via the process of autophagy 
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[100], which can be accelerated via HMGB1 ligation of RAGE [43, 101]. Thus, diminished 

cellular function that typically occurs following UV-inactivation of virus may not simply 

reflect the requirement for virus replication per se; rather inactivation may affect the delivery 

of the cargo, and hence the PRRs by which it is first recognised [102]. This may in part 

explain why some investigators have reported UV-inactivation of RSV to diminish IFN-I 

production by pDC [103, 104]. The ability of clinical isolates of RSV (and metapneumovirus) 

to attenuate TLR7/TLR9-induced IFN-I responses in pDC has been consistently shown in 

human and murine models [104-106]. The infection of pDC by RSV was implied when cell 

surface expression of the viral F protein was observed, which was later confirmed using GFP-

labelled RSV; although the fraction of infected pDC was extremely low [103, 107].  

Somewhat surprisingly, few studies have investigated pDC-Rhinovirus interactions 

irrespective of the context of asthma. Pritchard and colleagues demonstrated that RV16 

induced IFN-I release is dramatically reduced when pDC are depleted from healthy PBMC 

cultures [88], inferring that pDC recognise RV. Similar to studies with RSV, TLR7-induced 

IFN-I production from PBMC or cord blood pDC is reduced by ~50% when cultured with 

RV strain type 1b prior to stimulation [63]. In light of the important role of respiratory 

viruses in the onset, progression and exacerbations of asthma, a priority for the future will be 

to unravel the mechanisms by which pDC responses can be subverted by RSV, RV, MPV 

(and other viruses) and to determine whether this process is enhanced in allergen sensitised or 

other at risk of asthma infants.  

 

Evidence from mouse models that pDC contribute to host defense against respiratory virus 

infection 

Recently generated pDC ‘knock-in’ mice harbouring the diphtheria toxin receptor 

(DTR) have allowed for the inducible depletion of pDC via the administration of diphtheria 
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toxin [108, 109]. Using these novel transgenic mice, it was definitively shown that pDC 

provide the immediate source of IFN-I in the very early phase of infection to slow viral 

propagation and contribute to cytotoxic T lymphocyte responses [108, 109]. At present, these 

strains have not been employed in conjunction with a respiratory viral infection. However 

two studies have investigated the effect of antibody-mediated pDC depletion on the course of 

RSV infection, and both reported an attenuated early IFN-I response and increased viral 

burden in the absence of pDC [110, 111]. Of note, Th2 responses and the magnitude of 

immunopathology to primary human RSV infection are enhanced following infection of 

pDC-depleted or TLR7-deficient mice [110, 112]. These early studies may require 

verification since it is now apparent that the use of less than three antigens (e.g. reliance on 

CD11c and B220 alone) is insufficient to discriminate pDC using flow cytometry. 

Additionally, BST-2 (also known as PDCA-1) is up-regulated on various cell types in 

response to infection [113], potentially confounding some analyses or studies where the 

depleting antibody has been used for protracted periods of time. We have elected to use the 

rodent-specific pneumovirus (PVM), which propagates in mice, allowing low inoculums of 5 

PFU to be used (in contrast to human RSV where typically between 105 and 107 PFU are 

administered). Importantly, the use of a physiologically relevant low dose of inoculum more 

likely ensures that the pertinent PRRs and cell types are activated in a spatio-temporal 

manner akin to a natural infection. This concept is supported by the observation that pDC-

mediated control of viral load only occurs to low dose virus [108]. We have demonstrated 

that the immediate response to low dose PVM is TLR7-dependent, and that TLR7 on pDC 

mediates the early IFN response to control viral spread (Figure 2)[114]. In the absence of an 

early antiviral response, TLR7 deficiency leads to airway epithelial cell sloughing and 

denudation of the basement membrane. Moreover this was associated with increased 

expression of the tissue alarmin and Th2-instructive cytokine IL-33, the infiltration of type 2 
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innate lymphoid cells and elevated IL-13 production. Virus challenge at 7 weeks of age 

induced all of the hallmark features of asthma including AHR and increases in airway smooth 

muscle mass. Furthermore, sensitisation with the cockroach antigen during primary infection 

of TLR7-deficient mice markedly increased the magnitude of allergic airways inflammation 

(Phipps et al, unpublished observations). Our data suggest that TLR7, Pneumovirus infection 

and a clinically relevant allergen interact to establish an aberrant adaptive response that 

underlies virus-induced asthma exacerbations in later life.  

 

pDC-derived paracrine support for structural cells 

A central question that remains to be addressed is how the absence of pDC-derived 

paracrine signals (in particular IFN-I and III) impacts on the airway epithelium, the 

underlying mesenchyme and other resident cells within the airway wall. Pathological 

analyses of the airway wall reveal the airway epithelium of asthmatics to be highly 

disorganised, with evidence of sloughing and denudation of the basement membrane, mucus 

cell metaplasia, AEC hyper proliferation and an impaired ability to undergo re-epithelisation 

[5]. This phenotype may in part be mediated by a combination of genetic and environmental 

factors affecting epithelial barrier function [115], immunopatholgy caused by an aberrant host 

response or an inability to clear microbial infections. Although some investigators have 

shown the airway epithelium itself is unable to produce a robust IFN-I response [116, 117], 

this phenotype has not been reproduced by others [118, 119]. We speculate that it is the 

absence of a robust pDC response that primarily underlies the antiviral defect in asthma. The 

unique ability of pDCs to rapidly secrete large amounts of IFN-I suggests they orchestrate the 

early phase response, whereby the antiviral state is primed in non-specialised cells such as 

airway epithelial cells (AEC)(Figure 2). Thus, in the absence of paracrine signals produced 

by pDC, the AEC will be ill-equipped to (i) recognise the invading pathogen, (ii) recruit and 
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signal its deletion by cytotoxic immune cells, and (iii) produce IFN-I to amplify the antiviral 

response in neighbouring cells.   

Additionally, the attenuated IFN-I response may impede the repair process. Using a 

skin model of reepithelisation, pDC-derived IFN-I was recently found to be critical for the 

effective repair of the epidermis [120]. Thus, it is highly conceivable that defects in the pDC 

pool will affect not only susceptibility to infection but also the ability of the epithelial-

mesenchymal trophic unit to repair itself. Additionally, changes to the epithelium might 

promote the development of Th2 immunity by modulating the underlying network of DC 

cells [121, 122]. For example, house dust mite-induced epithelial-derived IL-1 can activate 

an autocrine loop to induce the Th2-instructive cytokines IL-33 and GM-CSF, which license 

local DCs to promote Th2 lung inflammation [123]. Thus, damage to the epithelium caused 

by the proteolytic activity of allergens, excessive immunopathology, and/or respiratory viral 

infection-associated cytopathology induces the release of tissue alarmins - IL-1, HMGB1, 

and IL-33 –which appear to promote the development of Th2 immunity (Figure 2). 

Teleologically, this response may have developed to initiate tissue repair, but following 

repeated environmental insult may lead to tissue remodelling [124-126]. We postulate that a 

defect in the pDC compartment may establish a pro-Th2 microenvironment as a consequence 

of increased tissue damage and release of alarmins by structural cells. In this paradigm, one 

can envisage how a viral infection and encounter with an allergen in a susceptible host (e.g. 

with a defect in the pDC compartment) may collude to establish allergic-specific Th2-type 

immunity. 

 

pDCs and ‘non-infectious’ asthma 

Mouse models have decisively demonstrated the requirement for conventional DC to 

elicit both allergic sensitisation and the effector/challenge phase [127]. However, in a seminal 
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study, Lambrecht and colleagues demonstrated that pDC contribute to peripheral tolerance 

[16]. Whereas inhalation of the model allergen ovalbumin in the absence of an adjuvant leads 

to tolerance, prior depletion of pDC leads to the development of allergic sensitisation and 

pathologic features of asthma. Conversely, the adoptive transfer of OVA-pulsed pDC prior to 

a fully immunogenic asthma protocol suppresses the magnitude of the allergic response [16], 

an effect subsequently shown to be independent of IFN-I, and instead mediated via the co-

inhibitory receptor programmed death-1 and its cognate ligand programmed death ligand 1 

[128]. Intriguingly, immunoneutralisation of the cytokine osteopontin during i.p. OVA/alum 

sensitisation also attenuates allergic sensitisation through a mechanism involving pDC, 

apparently though a reduction of the regulatory capacity of pDC [17]. However, the 

molecular pathway that underpins this response requires further elucidation. While pDC are 

able to acquire antigen and traffic to the draining lymph nodes they appear less able to prime 

naive T cells to proliferate [16, 17]. This led De Heer and colleagues to hint that pDC may 

mediate their tolerogenic properties through the induction of Tregs, although this was not  

directly demonstrated [16]. However, a recent report showed specific subsets of pDC 

(CD8++ or CD8+- but not CD8--) are able to induce the differentiation of Tregs to 

abrogate inflammation and block AHR [129]. The tolerogenic pDC subsets expressed 

aldehyde dehydrogenase which in part catalyses retinol to retinoic acid, which together with 

TGF-, supports the development of FoxP3+ CD4+ T regs. It is noteworthy that the adoptive 

transfer of the non-tolerogenic pDC subset (pulsed with OVA) is able to initiate allergic 

airways inflammation and AHR. It will be important to determine whether human equivalents 

to these subsets exist and whether they exhibit similar functions. Indeed, other pDC subsets 

have been proposed based on the expression of CCR9 [130], CX3CR1 [131], CD9 [132] or 

the balance of IFN-I:IFN-III production [133]. Further work is now needed to confirm their 

distinct functional repertoires and to relate these to normal and pathogenic process.  
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Conclusions 

In summary, evidence from clinical and murine studies suggests that TLR7 deficiency or 

defects in the number of circulating pDCs is associated with the development of Th2-

associated lung inflammation in response to virus infection. In adults, pDCs are twice as 

prevalent in the circulation of individuals with atopic dermatitis, allergic rhinitis, or asthma as 

compared to healthy controls. Moreover, these pDC are refractory to TLR ligand or virus 

stimulation, a phenotype that may relate to the activation of FcR1and other surface receptors 

which activate Syk kinase. Targeting the pathways that establish a state of pDC hypo-

responsiveness should now be a priority for the treatment of asthma since restoration of pDC 

function may help redress the defective antiviral immune response, reduce immunopathology 

and increase tolerance to harmless antigens.  
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Figure legends 

 

Figure 1. Negative regulation of plasmacytoid dendritic cell antiviral function by 

inhaled allergens and virus-infected cells. Allergen-induced crosslinking of FcεRIα and/or 

engagement of ILT7 by BST2 on pDC activates the B-cell receptor (BCR)- like pathway via 

FcεRIγ which contains a transmembrane ITAM (immunoreceptor tyrosine-based activating 

motif) domain. FcεRIγ-ILT7 and –FcεRIα complexes drive the BCR- like signal transduction 

cascade which involves Lyn kinase, B-lymphoid tyrosine kinase (BLK) and spleen tyrosine 

kinase (Syk), and the adaptor proteins B-cell-specific adaptors BLNK (B-cell linker), and 

BCAP (B-cell adaptor protein). Activation of the BCR-like pathway inhibits type-I IFN (IFN-

I) and cytokine production in response to DNA or RNA virus activation of the TLR7/9-

MyD88 signaling cascade.  
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Figure 2. Impaired type I and type III IFN production consequent to a 

genetic/functional defect(s) in virus-sensing PRRs expressed by pDCs promotes a type-2 

immune response and airway remodelling. In healthy individuals, pDC recognise an 

invading respiratory virus (e.g. RSV/RV) through a RAGE-TLR7-IRF7 axis (step 1), and 

rapidly produce vast amounts of type I and III IFNs (step 2). IFN secretion by pDC acts in a 

paracrine manner to establish the immediate phase of the antiviral state in non-specialised 

antiviral cells (step 3). The airway epithelium fortifies itself against the virus by various 

means, including the production of IFNs, which act locally to support neighbouring cells 

(step 4). An appropriate Th1 response is generated, the virus is cleared, and tissue 

homeostasis is restored (step 5). In contrast, a genetic/functional defect(s) in virus-sensing 

PRRs expressed by pDCs (step 6) fails to induce the antiviral state in airway epithelial cells, 
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increasing viral burden (step 7) and injuring the airway epithelium, which becomes necrotic 

leading to the formation of ‘Creola bodies’ in the lumen (step 8). The damaged epithelium 

releases alarmins and pro-Th2 instructive cytokines to promote the recruitment and expansion 

of type-2 innate lymphoid cells (step 9), which support eosinophil survival through the 

production of IL-5 (step 10). These Th2-type effector cells, together with the injured 

epithelium, promote wound repair through the secretion of various growth factors (step 11). 

In susceptible individuals, this cycle is repeated upon subsequent infections, leading to 

airway remodelling (step 12) and chronic Th2-type inflammation (step 13). GFs, growth 

factors; IFN-I/III, type I and type III interferon, IRF7, interferon regulatory factor 7; ILC2, 

type-2 innate lymphoid cell (or ‘nuocyte’); HMGB1, high-mobility group box 1 protein; 

RAGE, receptor for advanced glycation endproducts; TLR7, toll-like receptor 7.      
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