Consequences of vascular flow on lung injury induced by mechanical ventilation

Am J Respir Crit Care Med. 1998 Jun;157(6 Pt 1):1935-42. doi: 10.1164/ajrccm.157.6.9612006.

Abstract

To investigate whether the magnitude of blood flow contributes to ventilator-induced lung injury, 14 sets of isolated rabbit lungs were randomized for perfusion at either 300 (Group A: n = 7) or 900 ml/ min (Group B: n = 7) while ventilated with 30 cm H2O peak static pressure. Control lungs (Group C: n = 7) were ventilated with lower peak static pressure (15 cm H2O) and perfused at 500 ml/min. Weight gain, changes in the ultrafiltration coefficient (DeltaKf) and lung static compliance (CL), and extent of hemorrhage (scored by histology) were compared. Group B had a larger decrease in CL (-13 +/- 11%) than Groups A (2 +/- 6%) and C (5 +/- 5%) (p < 0.05). Group B had more hemorrhage and gained more weight (16.2 +/- 9.5 g) than Groups A (8.7 +/- 3.4 g) and C (1.6 +/- 1.0 g) (p < 0.05 for each pairwise comparison between groups). Finally, Kf (g . min-1 . cm H2O-1 . 100 g-1) increased the most in Group B (DeltaKf = 0.26 +/- 0. 20 versus 0.17 +/- 0.10 in Group A and 0.05 +/- 0.04 in Group C; p < 0.05 for B versus C). We conclude that the intensity of lung perfusion contributes to ventilator- induced lung injury in this model.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood Pressure
  • Hemodynamics
  • Hemorrhage / etiology
  • Hemorrhage / pathology
  • Lung / pathology
  • Organ Size
  • Positive-Pressure Respiration, Intrinsic
  • Pulmonary Circulation*
  • Rabbits
  • Respiration, Artificial / adverse effects*
  • Respiratory Distress Syndrome / etiology
  • Respiratory Distress Syndrome / pathology
  • Respiratory Distress Syndrome / physiopathology*