Microbiota present in cystic fibrosis lungs as revealed by whole genome sequencing

PLoS One. 2014 Mar 5;9(3):e90934. doi: 10.1371/journal.pone.0090934. eCollection 2014.

Abstract

Determination of the precise composition and variation of microbiota in cystic fibrosis lungs is crucial since chronic inflammation due to microorganisms leads to lung damage and ultimately, death. However, this constitutes a major technical challenge. Culturing of microorganisms does not provide a complete representation of a microbiota, even when using culturomics (high-throughput culture). So far, only PCR-based metagenomics have been investigated. However, these methods are biased towards certain microbial groups, and suffer from uncertain quantification of the different microbial domains. We have explored whole genome sequencing (WGS) using the Illumina high-throughput technology applied directly to DNA extracted from sputa obtained from two cystic fibrosis patients. To detect all microorganism groups, we used four procedures for DNA extraction, each with a different lysis protocol. We avoided biases due to whole DNA amplification thanks to the high efficiency of current Illumina technology. Phylogenomic classification of the reads by three different methods produced similar results. Our results suggest that WGS provides, in a single analysis, a better qualitative and quantitative assessment of microbiota compositions than cultures and PCRs. WGS identified a high quantity of Haemophilus spp. (patient 1) or Staphylococcus spp. plus Streptococcus spp. (patient 2) together with low amounts of anaerobic (Veillonella, Prevotella, Fusobacterium) and aerobic bacteria (Gemella, Moraxella, Granulicatella). WGS suggested that fungal members represented very low proportions of the microbiota, which were detected by cultures and PCRs because of their selectivity. The future increase of reads' sizes and decrease in cost should ensure the usefulness of WGS for the characterisation of microbiota.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Bacteria / genetics
  • Cystic Fibrosis / microbiology*
  • Female
  • Fungi / genetics
  • Genome, Human / genetics*
  • Humans
  • Lung / microbiology*
  • Microbiota* / genetics
  • Phylogeny
  • Sequence Analysis, DNA / methods*
  • Species Specificity
  • Sputum / microbiology

Grants and funding

This work was supported by the Swiss Society for Cystic Fibrosis (http://www.cfch.ch/). The computations were performed at the Vital-IT Center for high-performance computing (http://www.vital-it.ch) of the Swiss Institute of Bioinformatics (SIB). SIB receives financial support from the Swiss Federal Government through the State Secretariat for Education and Research (SER). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.