Regular Articles
Galectin-3 Expression and Secretion Links Macrophages to the Promotion of Renal Fibrosis

https://doi.org/10.2353/ajpath.2008.070726Get rights and content

Macrophages have been proposed as a key cell type in the pathogenesis of renal fibrosis; however, the mechanism by which macrophages drive fibrosis is still unclear. We show that expression of galectin-3, a β-galactoside-binding lectin, is up-regulated in a mouse model of progressive renal fibrosis (unilateral ureteric obstruction, UUO), and absence of galectin-3 protects against renal myofibroblast accumulation/activation and fibrosis. Furthermore, specific depletion of macrophages using CD11b-DTR mice reduces fibrosis severity after UUO demonstrating that macrophages are key cells in the pathogenesis of renal fibrosis. Disruption of the galectin-3 gene does not affect macrophage recruitment after UUO, or macrophage proinflammatory cytokine profiles in response to interferon-γ/lipopolysaccharide. In addition, absence of galectin-3 does not affect transforming growth factor-β expression or Smad 2/3 phosphorylation in obstructed kidneys. Adoptive transfer of wild-type but not galectin-3−/− macrophages did, however, restore the fibrotic phenotype in galectin-3−/− mice. Cross-over experiments using wild-type and galectin-3−/− macrophage supernatants and renal fibroblasts confirmed that secretion of galectin-3 by macrophages is critical in the activation of renal fibroblasts to a profibrotic phenotype. Therefore, we demonstrate for the first time that galectin-3 expression and secretion by macrophages is a major mechanism linking macrophages to the promotion of renal fibrosis.

Cited by (0)

Supported by the Wellcome Trust, UK (clinical training fellowship to N.C.H. and senior research leave fellowship to T.S.); and the Medical Research Council, UK (Ph.D. studentship to S.L.F.).

View Abstract