Skip to main content
Log in

Corticosteroid Insensitivity in Smokers with Asthma

Clinical Evidence, Mechanisms, and Management

  • Review Article
  • Published:
Treatments in Respiratory Medicine

Abstract

Corticosteroids are the most effective treatment for asthma, but the therapeutic response varies considerably between individuals. Several clinical studies have found that smokers with asthma are insensitive to the beneficial effects of short- to medium-term inhaled corticosteroid treatment compared with non-smokers with asthma. It is estimated that 25% of adults in most industrialized countries smoke cigarettes, and similar surveys amongst asthmatic individuals suggest that the prevalence of smoking in this grouping mirrors that found in the general population. Therefore, cigarette smoking is probably the most common cause of corticosteroid insensitivity in asthma. Cigarette smoking and asthma are also associated with poor symptom control and an accelerated rate of decline in lung function. The mechanism of corticosteroid insensitivity in smokers with asthma is currently unexplained but could be due to alterations in airway inflammatory cell phenotypes, changes in glucocorticoid receptor α/β ratio, and/or reduced histone deacetylase activity. Smoking cessation should be encouraged in all smokers with asthma. Short-term benefits include improvements in lung function and asthma control. However, the numbers of sustained quitters is disappointingly small. Additional or alternative drugs need to be identified to treat those individuals who are unable to stop smoking or who have persistent symptoms following smoking cessation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Table I

Similar content being viewed by others

Notes

  1. 1 The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Global initiative for asthma: global strategy for asthma management and prevention. NHLBI/WHO Workshop report NIH 02-3659: updated 2003 [online]. Bethesda, 2002. Available from URL: www.ginasthma.com/workshop_revised.pdf [Accessed 2006 Jun 22]

  2. Spears M, Thomson NC. Factors influencing individual variability to the therapeutic response to corticosteroids. Cur Resp Med Reviews 2006; 2: 197–209

    CAS  Google Scholar 

  3. Malmstrom K, Rodriguez-Gomez G, Guerra J, et al. Oral montelukast, inhaled beclomethasone, and placebo for chronic asthma: a randomized, controlled trial. Ann Intern Med 1999; 130: 487–95

    PubMed  CAS  Google Scholar 

  4. Szefler S, Martin R, King T, et al. Significant variability in response to inhaled corticosteroids for persistent asthma. J Allergy Clin Immunol 2002; 109: 410–8

    PubMed  CAS  Google Scholar 

  5. Szefler SJ, Phillips BR, Martinez FD, et al. Characterization of within-subject responses to fluticasone and montelukast in childhood asthma. J Allergy Clin Immunol 2005; 115: 233–42

    PubMed  CAS  Google Scholar 

  6. Colice GL, Stampone P, Leung DYM, et al. Oral corticosteroids in poorly controlled asthma. J Allergy Clin Immunol 2005; 115: 200–1

    PubMed  Google Scholar 

  7. Hakonarson H, Bjornsdottir US, Halapi E, et al. Profiling of genes expressed in peripheral blood mononuclear cells predicts glucocorticoid sensitivity in asthma patients. Proc Natl Acad Sci USA 2005; 102: 14789–94

    PubMed  CAS  Google Scholar 

  8. Federico MJ, Covar RA, Brown EE, et al. Racial differences in T-lymphocyte response to glucocorticoids. Chest 2005; 127: 571–8

    PubMed  CAS  Google Scholar 

  9. Williams L, Pladevall M, Xi H, et al. Relationship between adherence to inhaled corticosteroids and poor outcomes among adults with asthma. J Allergy Clin Immunol 2004; 114: 1288–93

    PubMed  CAS  Google Scholar 

  10. Robinson DS, Campbell DA, Durham SR, et al. Systematic assessment of difficult-to-treat asthma. Eur Respir J 2003; 22: 478–83

    PubMed  CAS  Google Scholar 

  11. Leung D, Bloom J. Update on glucocorticoid action and resistance. J Allergy Clin Immunol 2003; 111: 3–22

    PubMed  CAS  Google Scholar 

  12. Nimmagadda S, Szefler S, Spahn J, et al. Allergen exposure decreases glucocorticoid receptor binding affinity and steroid responsiveness in atopic asthmatics. Am J Respir Crit Care Med 1997; 155: 87–93

    PubMed  CAS  Google Scholar 

  13. Li L-b, Goleva E, Hall CF, et al. Superantigen-induced corticosteroid resistance of human T cells occurs through activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK-ERK) pathway. J Allergy Clin Immunol 2004; 114: 1059–69

    PubMed  CAS  Google Scholar 

  14. Lemiere C, Boulet L-P. Cigarette smoking and asthma: a dangerous mix. Can Respir J 2005; 12: 79–80

    PubMed  Google Scholar 

  15. Althuis M, Sexton M, Prybylski D. Cigarette smoking and asthma symptom severity among adult asthmatics. J Asthma 1999; 36: 257–64

    PubMed  CAS  Google Scholar 

  16. Siroux V, Pin I, Oryszcyn MP, et al. Relationships of active smoking to asthma and asthma severity in the EGEA study. Eur Respir J 2000; 15: 470–7

    PubMed  CAS  Google Scholar 

  17. James AL, Palmer LJ, Kicic E, et al. Decline in lung function in the Busselton health study: the effects of asthma and cigarette smoking. Am J Respir Crit Care Med 2005; 171: 109–14

    PubMed  Google Scholar 

  18. Silverman RA, Boudreaux ED, Woodruff PG, et al. Cigarette smoking among asthmatic adults presenting to 64 emergency departments. Chest 2003; 123: 1472–9

    PubMed  Google Scholar 

  19. Abramson MJ, Bailey MJ, Couper FJ, et al. Are asthma medications and management related to deaths from asthma? Am J Respir Crit Care Med 2001; 163: 12–8

    PubMed  CAS  Google Scholar 

  20. Sturdy PM, Butland BK, Anderson HR, et al. Deaths certified as asthma and use of medical services: a national case-control study. Thorax 2005; 60: 909–15

    PubMed  CAS  Google Scholar 

  21. Thomson NC, Chaudhuri R, Livingston E. Asthma and cigarette smoking. Eur Respir J 2004; 24: 822–33

    PubMed  CAS  Google Scholar 

  22. Yarnell JWG, Stevenson MR, MacMahon J, et al. Smoking, atopy and certain furry pets are major determinants of respiratory symptoms in children: the International Study of Asthma and Allergies in Childhood Study (Ireland). Clin Exper Allergy 2003; 33: 96–100

    CAS  Google Scholar 

  23. Austin JB, Selvaraj S, Godden D, et al. Deprivation, smoking, and quality of life in asthma. Arch Dis Child 2005; 90: 253–7

    PubMed  CAS  Google Scholar 

  24. Sippel JM, Pedula KL, Vollmer WM, et al. Associations of smoking with hospital-based care and quality of life in patients with obstructive airway disease. Chest 1999; 115: 691–6

    PubMed  CAS  Google Scholar 

  25. Watson L, Kerstjens HA, Rabe KF, et al. Obtaining optimal control in mild asthma: theory and practice. Fam Pract 2005; 22: 305–10

    PubMed  Google Scholar 

  26. Marquette C, Saulnier F, Leroy O, et al. Long-term prognosis of near-fatal asthma. Am Rev Resp Dis 1992; 146: 76–81

    PubMed  CAS  Google Scholar 

  27. Higenbottam T, Feyeraband C, Clark T. Cigarette smoking in asthma. Br J Dis Chest 1980; 74: 279–84

    PubMed  CAS  Google Scholar 

  28. Jensen E, Dahl R, Steffensen F. Bronchial reactivity to cigarette smoke: relation to lung function, respiratory symptoms, serum-immunoglobulin E and blood eosinophil and leukocyte counts. Resp Med 2000; 94: 119–27

    CAS  Google Scholar 

  29. Lange P, Parner J, Vestbo J, et al. A 15 year follow-up study of ventilatory function in adults with asthma. N Engl J Med 1998; 339: 1194–200

    PubMed  CAS  Google Scholar 

  30. Apostol G, Jacobs D, Tsai A, et al. Early life factors contribute to the decrease in lung function between ages 18 and 40. Am J Respir Crit Care Med 2002; 166: 166–72

    PubMed  Google Scholar 

  31. Prescott E, Lange P, Vestbo J. Effect of gender on hospital admissions for asthma and prevalence of self-reported asthma: a prospective study based on a sample of the general population. Thorax 1997; 52: 287–9

    PubMed  CAS  Google Scholar 

  32. Rasmussen F, Taylor D, Flannery E, et al. Risk factors for hospital admissions for asthma from children to young adulthood: a longitudinal population study. J Allergy Clin Immunol 2002; 110: 220–7

    PubMed  Google Scholar 

  33. Griswold SK, Nordstrom CR, Clark S, et al. Asthma exacerbations in north american adults: who are the “frequent fliers” in the emergency department? Chest 2005; 127: 1579–86

    PubMed  Google Scholar 

  34. Abdulwadud O, Abramson M, Forbes A, et al. Attendance at an asthma educational intervention: characteristics of participants and non-participants. Resp Med 1997; 91: 524–9

    CAS  Google Scholar 

  35. Yoon R, McKenzie D, Miles D, et al. Characteristics of attenders and non-attenders at an asthma education programme. Thorax 1991; 46: 886–90

    PubMed  CAS  Google Scholar 

  36. Gallefoss F, Bakke P, Wang I, et al. Smoking status, disease duration, and educational level in females, are related to asthma school participation. Eur Respir J 2000; 15: 1022–5

    PubMed  CAS  Google Scholar 

  37. Marks G, Burney P, Premaratne U, et al. Asthma in Greenwich, UK: impact of the disease and current management practices. Eur Respir J 1997; 10: 1224–9

    PubMed  CAS  Google Scholar 

  38. Radeos M, Leak L, Hanrahan J, et al. Risk factors for lack of asthma self-management knowledge among ED patients not on inhaled steroids. Am J Emerg Med 2001; 19: 253–9

    PubMed  CAS  Google Scholar 

  39. Janson C, de Marco R, Accordini S, et al. Changes in the use of anti-asthmatic medication in an international cohort. Eur Respir J 2005; 26: 1047–55

    PubMed  CAS  Google Scholar 

  40. Kerstjens H, Overbeek S, Schouten J, et al. Airways hyperresponsiveness, bronchodilator response, allergy and smoking predict improvement in FEV1 during long-term inhaled corticosteroid treatment. Eur Respir J 1993; 6: 868–76

    PubMed  CAS  Google Scholar 

  41. Chalmers GW, Macleod KJ, Little SA, et al. Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax 2002; 57: 226–30

    PubMed  CAS  Google Scholar 

  42. Chaudhuri R, Livingston E, McMahon AD, et al. Cigarette smoking impairs the therapeutic response to oral corticosteroids in chronic asthma. Am J Respir Crit Care Med 2003; 168: 1308–11

    PubMed  Google Scholar 

  43. Tomlinson JEM, McMahon AD, Chaudhuri R, et al. Efficacy of low and high dose inhaled corticosteroid in smokers versus non-smokers with mild asthma. Thorax 2005; 60: 282–7

    PubMed  CAS  Google Scholar 

  44. Pedersen B, Dahl R, Karlstrom R, et al. Eosinophil and neutrophil activity in asthma in one-year trial with inhaled budesonide. Am J Respir Crit Care Med 1996; 153: 1519–29

    PubMed  CAS  Google Scholar 

  45. Lazarus SC, Chinchilli VM, Rollings NJ, et al. The effects of cigarette response to treatment with inhaled steroids or leukotriene receptor antagonists in asthma: a randomized trial [online]. Available from URL: http://www.acrn.org/recruit_smog.html, 2005. [Accessed 2006 Feb 22]

  46. Boushey HA, Pedersen S, Bateman E, et al. Improved exacerbation rates and asthma control in current and former smokers treated with salmeterol/fluticasone propionate: results of the GOAL study. J Allergy Clin Immunol 2005; 115: S59

    Google Scholar 

  47. Meijer RJ, Postma DS, Kauffman HF, et al. Accuracy of eosinophils and eosinophil cationic protein to predict steroid improvement in asthma. Clin Exper Allergy 2002; 32: 1096–103

    CAS  Google Scholar 

  48. Jang A-S, Lee J-H, Park SW, et al. Factors influencing the responsiveness to inhaled glucocorticoids of patients with moderate-to-severe asthma. Chest 2005; 128: 1140–5

    PubMed  CAS  Google Scholar 

  49. Convery R, Leitch D, Bromly C, et al. Effect of inhaled fluticasone propionate on airway responsiveness in treatment-naive individuals — a lesser benefit in females. Eur Respir J 2000; 15: 19–24

    PubMed  CAS  Google Scholar 

  50. Livingston ECR, McMahon AD, Fraser I, et al. Cutaneous vasoconstrictor response to corticosteroids is impaired in smokers with asthma. Proc Am Thorac Soc 2005; 2: A624

    Google Scholar 

  51. Halterman JS, Szilagyi PG, Yoos HL, et al. Benefits of a school-based asthma treatment program in the absence of secondhand smoke exposure: results of a randomized clinical trial. Arch Pediatr Adolesc Med 2004; 158: 460–7

    PubMed  Google Scholar 

  52. Dijkstra A, Vonk JM, Jongepier H, et al. Lung function decline in asthma: association with inhaled corticosteroids, smoking and sex. Thorax 2006; 61: 105–10

    PubMed  CAS  Google Scholar 

  53. Lange P, Scharling H, Ulrik CS, et al. Inhaled corticosteroids and decline of lung function in community residents with asthma. Thorax 2006; 61: 100–4

    PubMed  CAS  Google Scholar 

  54. Barnes P, Pedersen S, Busse W. Efficacy and safety of inhaled corticosteroids: new developments. Am J Respir Crit Care Med. 1998; 157: S1–53

    PubMed  CAS  Google Scholar 

  55. Galan I, Rodriguez-Artalejo F, Diez-Ganan L, et al. Clustering of behavioural risk factors and compliance with clinical preventive recommendations in Spain. Prev Med 2006; 42: 343–7

    PubMed  Google Scholar 

  56. Barnes PJ, Ito K, Adcock IM. Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase. Lancet 2004; 363: 731–3

    PubMed  CAS  Google Scholar 

  57. Executive summary: global strategy for the diagnosis, management, and prevention of COPD [online]. Available from URL: www.goldcopd.com/Guidelineitem.asp?11=2&12=1&intId=996 [Accessed 2005 Nov 11]

  58. Barnes PJ, Adcock IM. How do corticosteroids work in asthma? Ann Intern Med 2003; 139: 359–70

    PubMed  CAS  Google Scholar 

  59. Little SA, MacLeod KJ, Chalmers GW, et al. Association of forced expiratory volume with disease duration and sputum neutrophils in chronic asthma. Am J Med 2002; 112: 446–52

    PubMed  Google Scholar 

  60. Kamath AV, Pavord ID, Ruparelia PR, et al. Is the neutrophil the key effector cell in severe asthma? Thorax 2005; 60: 529–30

    PubMed  CAS  Google Scholar 

  61. Saetta M. Airway inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999; 160: 17S–20

    Google Scholar 

  62. Chalmers G, MacLeod K, Thomson L, et al. Smoking and airway inflammation in patients with mild asthma. Chest 2001; 120: 1917–22

    PubMed  CAS  Google Scholar 

  63. McKay A, Komai-Koma M, MacLeod K, et al. Interleukin-18 levels in induced sputum are reduced in asthmatic and normal smokers. Clin Exp Allergy 2004; 34: 904–10

    PubMed  CAS  Google Scholar 

  64. Oltmanns U, Chung KF, Walters M, et al. Cigarette smoke induces IL-8, but inhibits eotaxin and RANTES release from airway smooth muscle. Respir Res 2005; 6: 74

    PubMed  Google Scholar 

  65. Mio T, Romberger DJ, Thompson AB, et al. Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells. Am J Respir Crit Care Med 1997; 155: 1770–6

    PubMed  CAS  Google Scholar 

  66. Brightling CE, McKenna S, Hargadon B, et al. Sputum eosinophilia and the short term response to inhaled mometasone in chronic obstructive pulmonary disease. Thorax 2005; 60: 193–8

    PubMed  CAS  Google Scholar 

  67. Moerloose KB, Pauwels RA, Joos GF. Short-term cigarette smoke exposure enhances allergic airway inflammation in mice. Am J Respir Crit Care Med 2005; 172: 168–72

    PubMed  Google Scholar 

  68. Melgert BN, Postma DS, Geerlings M, et al. Short-term smoke exposure attenuates ovalbumin-induced airway inflammation in allergic mice. Am J Respir Cell Mol Biol 2004; 30: 850–5

    Google Scholar 

  69. Seymour BW, Schelegle ES, Pinkerton KE, et al. Second-hand smoke increases bronchial hyperreactivity and eosinophilia in a murine model of allergic aspergillosis. Clin Dev Immunol 2003; 10: 35–42

    PubMed  Google Scholar 

  70. Belda J, Leigh R, Parameswaran K, et al. Induced sputum cell counts in healthy adults. Am J Respir Crit Care Med 2000; 161: 475–8

    PubMed  CAS  Google Scholar 

  71. Woodruff PG, Koth LL, Yang YH, et al. A distinctive alveolar macrophage activation state induced by cigarette smoking. Am J Respir Crit Care Med 2005; 172: 1383–92

    PubMed  Google Scholar 

  72. Culpitt SV, Rogers DF, Shah P, et al. Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003; 167: 24–31

    PubMed  Google Scholar 

  73. Ito K, Lim S, Caramori G, et al. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J 2001; 15: 1110–2

    PubMed  CAS  Google Scholar 

  74. Panettieri RA. Effects of corticosteroids on structural cells in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 2004; 1: 231–4

    PubMed  CAS  Google Scholar 

  75. Ito K, Barnes P, Adcock I. Glucocorticoid receptor recruitment of histine deacetylase 2 inhibits IL-1 beta-induced histone H4 acetylation on lysine 8 and 12. Mol Cell Biol 2000; 20: 6891–903

    PubMed  CAS  Google Scholar 

  76. Barnes PJ. Reduced histone deacetylase in COPD: clinical implications. Chest 2006; 129: 151–5

    PubMed  CAS  Google Scholar 

  77. Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293: 1074–80

    PubMed  CAS  Google Scholar 

  78. Ito K, Jazrawi E, Cosio B, et al. p65-Activated histone acetyltransferase activity is repressed by glucocorticoids: miferistone fails to recruit HDAC2 to the p65-HAT complex. J Biol Chem 2001; 276: 30208–15

    PubMed  CAS  Google Scholar 

  79. Ito K, Yamamura S, Essilfie-Quaye S, et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-(kappa)B suppression. J Exp Med 2006; 203: 7–13

    PubMed  CAS  Google Scholar 

  80. Sher R, Leung D, Surs W, et al. Steroid resistant asthma: cellular mechanisms contributing to inadequate response to glucocorticoid therapy. J Clin Invest 1994; 93: 33–9

    PubMed  CAS  Google Scholar 

  81. Irusen E, Matthews J, Takahashi A, et al. p38 Mitogen-activated protein kinase-induced glucocorticoid receptor phosphorylation reduces its activity: role in steroid-insensitive asthma. J Allergy Clin Immunol 2002; 109: 649–57

    PubMed  CAS  Google Scholar 

  82. Szatmary Z, Garabedian MJ, Vilcek J. Inhibition of glucocorticoid receptor-mediated transcriptional activation by p38 mitogen-activated protein (MAP) kinase. J Biol Chem 2004; 279: 43708–15

    PubMed  CAS  Google Scholar 

  83. Vassallo R, Tamada K, Lau JS, et al. Cigarette smoke extract suppresses human dendritic cell function leading to preferential induction of Th-2 priming. J Immunol 2005; 175: 2684–91

    PubMed  CAS  Google Scholar 

  84. Lee MH, Chung SW, Kang BY, et al. Hydroquinone, a reactive metabolite of benzene, enhances interleukin-4 production in CD4+ T cells and increases immunoglobulin E levels in antigen-primed mice. Immunology 2002; 106: 496–502

    PubMed  CAS  Google Scholar 

  85. Zhang Q, Adiseshaiah P, Reddy SP. Matrix metalloproteinase/epidermal growth factor receptor/mitogen-activated protein kinase signaling regulate fra-1 induction by cigarette smoke in lung epithelial cells. Am J Respir Cell Mol Biol 2005; 32: 72–81

    PubMed  Google Scholar 

  86. Mochida-Nishimura K, Surewicz K, Cross J, et al. Differential activation of MAP kinase signalling pathways and nuclear factor-kappaB in bronchoalveolar cells of smokers and nonsmokers. Mol Med 2001; 7: 177–85

    PubMed  CAS  Google Scholar 

  87. Okamoto K, Tanaka H, Ogawa H, et al. Redox-dependent regulation of nuclear import of the glucocorticoid receptor. J Biol Chem 1999; 274: 10363–71

    PubMed  CAS  Google Scholar 

  88. Galigniana MD, Piwien-Pilipuk G, Assreuy J. Inhibition of glucocorticoid receptor binding by nitric oxide. Mol Pharmacol 1999; 55: 317–23

    PubMed  CAS  Google Scholar 

  89. Goleva E, Li L-b, Eves PT, et al. Increased glucocorticoid receptor beta alters steroid response in glucocorticoid insensitive asthma. Am J Respir Crit Care Med 2006; 173: 607–16

    PubMed  CAS  Google Scholar 

  90. Livingston E, Darroch C, Chaudhuri R, et al. Glucocorticoid receptor alpha to beta ratio in blood mononuclear cells is reduced in cigarette smokers. J Allergy Clin Immunol 2004; 114: 1475–8

    PubMed  CAS  Google Scholar 

  91. Cosio BG, Mann B, Ito K, et al. histone acetylase and deacetylase activity in alveolar macrophages and blood monocytes in asthma. Am J Respir Crit Care Med 2004; 170: 141–7

    PubMed  Google Scholar 

  92. Moodie FM, Marwick JA, Anderson CS, et al. Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells. FASEB J 2004; 18: 1897–9

    PubMed  CAS  Google Scholar 

  93. Marwick JA, Kirkham PA, Stevenson CS, et al. Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am J Respir Cell Mol Biol 2004; 31: 633–42

    PubMed  CAS  Google Scholar 

  94. Barnes PJ, Adcock IM, Ito K. Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J 2005; 25: 552–63

    PubMed  CAS  Google Scholar 

  95. Ito K, Ito M, Elliott WM, et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 2005; 352: 1967–76

    PubMed  CAS  Google Scholar 

  96. Montuschi P, Corradi M, Ciabattoni G, et al. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med 1999; 160: 216–20

    PubMed  CAS  Google Scholar 

  97. Horvath I, Donnelly LE, Kiss A, et al. Combined use of exhaled hydrogen peroxide and nitric oxide in monitoring asthma. Am J Respir Crit Care Med 1998; 158: 1042–6

    PubMed  CAS  Google Scholar 

  98. Sousa AR, Lane SJ, Soh C, et al. In vivo resistance to corticosteroids in bronchial asthma is associated with enhanced phosphorylation of JUN N-terminal kinase and failure of prednisolone to inhibit JUN N-terminal kinase phosphorylation. J Allergy Clin Immunol 1999; 104: 565–74

    PubMed  CAS  Google Scholar 

  99. Walters MJ, Paul-Clark MJ, McMaster SK, et al. Cigarette smoke activates human monocytes by an oxidant-AP-1 signaling pathway: implications for steroid resistance. Mol Pharmacol 2005; 68: 1343–53

    PubMed  CAS  Google Scholar 

  100. Kuo WH, Chen JH, Lin HH, et al. Induction of apoptosis in the lung tissue from rats exposed to cigarette smoke involves p38/JNK MAPK pathway. Chem Biol Interact 2005; 155: 31–42

    PubMed  CAS  Google Scholar 

  101. British guidelines on the management of asthma. Thorax 2003; 58: i1–94

    Google Scholar 

  102. Adcock IM, Ito K. Glucocorticoid pathways in chronic obstructive pulmonary disease therapy. Proc Am Thorac Soc 2005; 2: 313–9

    PubMed  CAS  Google Scholar 

  103. Morgan M, Britton J. Non-pharmacological management of COPD. Thorax 2003; 58: 453–7

    PubMed  CAS  Google Scholar 

  104. Suzuki K, Tanaka H, Kaneko S, et al. Respiratory symptoms and cigarette smoking in 3,197 pulmonologist-based asthmatic patients with a highly prevalent use of inhaled corticosteroid. J Asthma 2003; 40: 243–50

    PubMed  Google Scholar 

  105. Fennerty A, Banks J, Ebden P, et al. The effect of cigarette withdrawal on asthmatics who smoke. Eur J Respir Dis 1987; 71: 395–9

    PubMed  CAS  Google Scholar 

  106. Tonnesen P, Pisinger C, Hvidberg S, et al. Effects of smoking cessation and reduction in asthmatics. Nicotine Tob Res 2005; 7: 139–48

    PubMed  Google Scholar 

  107. Chaudhuri R, Livingston E, McMahon A, et al. Smoking cessation improves lung function in smokers with asthma. Proc Am Thorac Soc 2005; 2: A625

    Google Scholar 

  108. Lancaster T, Stead LF. Self-help interventions for smoking cessation. Cochrane Database Syst Rev 2005; (4): 1–80

  109. Raherison C, Marjary A, Valpromy B, et al. Evaluation of smoking cessation success in adults. Resp Med 2005; 99: 1303–10

    CAS  Google Scholar 

  110. West R, McNeill A, Raw M. Smoking cessation guidelines for health professionals: an update. Thorax 2000; 55: 987–99

    PubMed  CAS  Google Scholar 

  111. Eisner M, Yelin E, Katz P, et al. Predictors of cigarette smoking and smoking cessation among adults with asthma. Am J Public Health 2000; 90: 1307–11

    PubMed  CAS  Google Scholar 

  112. Silagy C, Lancaster T, Stead L, et al. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev 2004 (updated May 2005); (3): CD000146

  113. Wagena E, van der Meer R, Ostelo R, et al. The efficacy of smoking cessation strategies in people with chronic obstructive pulmonary disease: results from a systematic review. Resp Med 2004; 98: 805–15

    CAS  Google Scholar 

  114. Le Houezec J. Why a nicotine vaccine? Clin Pharmacol Ther 2005; 78: 453–5

    PubMed  Google Scholar 

  115. Berger P, Perot V, Desbarats P, et al. Airway wall thickness in cigarette smokers: quantitative thin-section CT assessment. Radiology 2005; 235: 1055–64

    PubMed  Google Scholar 

  116. Cohen C, Kodas E, Griebel G. CB1 receptor antagonists for the treatment of nicotine addiction. Pharmacol Biochem Behav 2005; 81: 387–95

    PubMed  CAS  Google Scholar 

  117. Covey L, Sullivan M, Johnston J, et al. Advances in non-nicotine pharmacotherapy for smoking cessation. Drugs 2000; 59: 17–31

    PubMed  CAS  Google Scholar 

  118. Zbikowski S, Klesges R, Robinson L, et al. Risk factors for smoking among adolescents with asthma. J Adolesc Health 2002; 30: 279–87

    PubMed  Google Scholar 

  119. Wakefield M, Ruffin R, Campbell D, et al. Smoking-related beliefs and behaviour among adults with asthma in a representative population sample. Aust NZ J Med 1995; 25: 12–7

    CAS  Google Scholar 

  120. Barnes PJ. Theophylline: new perspectives for an old drug. Am J Respir Crit Care Med 2003; 167: 813–8

    PubMed  Google Scholar 

  121. Ito K, Lim S, Chung KF, et al. Theophylline enhances histone deacetylase activity and restores glucocorticoid function during oxidative stress. Am J Respir Crit Care Med 2002; 165: A625

    Google Scholar 

  122. Ito K, Caramori G, Cosio M, et al. A molecular mechanism of action of theophylline: induction of histone deacetylase to decrease inflammatory gene expression. Proc Natl Acad Sci 2002; 99: 8921–6

    PubMed  CAS  Google Scholar 

  123. Evans DJ, Taylor DA, Zetterstrom O, et al. A comparison of low-dose inhaled budesonide plus theophylline and high-dose inhaled budesonide for moderate asthma. N Engl J Med 1997; 337: 1412–9

    PubMed  CAS  Google Scholar 

  124. University of Glasgow. Rosiglitazone versus theophylline in asthmatic smokers [online]. Available from URL: www.clinicaltrials.gov/ct/show/NCT00119496?order=12005 [Accessed 2006 Feb 22]

  125. Busse W, Kraft M. Cysteinyl leukotrienes in allergic inflammation: strategic target for therapy. Chest 2005; 127: 1312–26

    PubMed  CAS  Google Scholar 

  126. Fauler J, Frolich J. Cigarette smoking stimulates cysteinyl leukotriene production in man. Eur J Clin Invest 1997; 27: 43–7

    PubMed  CAS  Google Scholar 

  127. Zhu J, Kilty I, Granger H, et al. Gene expression and immunolocalization of 15-lipoxygenase isozymes in the airway mucosa of smokers with chronic bronchitis. Am J Respir Cell Mol Biol 2002; 27: 666–77

    PubMed  CAS  Google Scholar 

  128. Calverley P, Pauwels R, Vestbo J, et al. Combination salmeterol and fluticasone in the treatment of chronic obstructive pulmonary: a randomised controlled trial. Lancet 2003; 361: 449–56

    PubMed  CAS  Google Scholar 

  129. Johnson M. Interactions between corticosteroids and beta2-agonists in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 2004; 1: 200–6

    PubMed  CAS  Google Scholar 

  130. Nie M, Knox AJ, Pang L. beta2-Adrenoceptor agonists, like glucocorticoids, repress eotaxin gene transcription by selective inhibition of histone H4 acetylation. J Immunol 2005; 175: 478–86

    PubMed  CAS  Google Scholar 

  131. Adcock I, Caramori G. Kinase targets and inhibitors for the treatment of airway inflammatory diseases: the next generation of drugs for severe asthma and COPD? BioDrugs 2004; 18: 167–80

    PubMed  CAS  Google Scholar 

  132. Standiford TJ, Keshamouni VG, Reddy RC. Peroxisome proliferator-activated receptor-gamma as a regulator of lung inflammation and repair. Proc Am Thorac Soc 2005; 2: 226–31

    PubMed  CAS  Google Scholar 

  133. Rubin BK, Henke MO. Immunomodulatory activity and effectiveness of macrolides in chronic airway disease. Chest 2004; 125: 70S–8

    PubMed  CAS  Google Scholar 

  134. Shimizu T, Shimizu S, Hattori R, et al. In vivo and in vitro effects of macrolide antibiotics on mucus secretion in airway epithelial cells. Am J Respir Crit Care Med 2003; 168: 581–7

    PubMed  Google Scholar 

  135. McKay A, Leung BP, McInnes IB, et al. A novel anti-inflammatory role of simvastatin in a murine model of allergic asthma. J Immunol 2004; 172: 2903–8

    PubMed  CAS  Google Scholar 

  136. Lee J-H, Lee D-S, Kim E-K, et al. Simvastatin inhibits cigarette smoking-induced emphysema and pulmonary hypertension in rat lungs. Am J Respir Crit Care Med 2005; 172: 987–93

    PubMed  Google Scholar 

  137. Barnes PJ. Chronic obstructive pulmonary disease 12: new treatments for COPD. Thorax 2003; 58: 803–8

    PubMed  CAS  Google Scholar 

  138. Caramori G, Adcock I. Pharmacology of airway inflammation in asthma and COPD. Pulm Pharmacol Therapeut 2003; 16: 247–77

    CAS  Google Scholar 

  139. Caramori G, Papi A. Oxidants and asthma. Thorax 2004; 59: 170–3

    PubMed  CAS  Google Scholar 

  140. Poole P, Black P. Oral mucolytic drugs for exacerbations of chronic obstructive pulmonary disease: systematic review. BMJ 2001; 322: 1271

    PubMed  CAS  Google Scholar 

  141. Caramori GIK, Adcock IM. Transcription factors in asthma and COPD. Drugs 2004; 7: 764–70

    CAS  Google Scholar 

  142. Chung KF. Phosphodiesterase inhibitors in airways disease. Eur J Pharmacol 2006; 533: 110–7

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Asthma UK and Chest Heart & Stroke (Scotland) for their support and Kathy McFall from the Medical Illustration Departments at the Western Infirmary and Gartnavel General for assistance with the figures. No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil C. Thomson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomson, N.C., Shepherd, M., Spears, M. et al. Corticosteroid Insensitivity in Smokers with Asthma. Treat Respir Med 5, 467–481 (2006). https://doi.org/10.2165/00151829-200605060-00010

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00151829-200605060-00010

Keywords

Navigation