Skip to main content
Log in

Immunomodulatory Effects of Macrolide Antibiotics in Respiratory Disease

Therapeutic Implications for Asthma and Cystic Fibrosis

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

The macrolide antibiotics are a family of related 14- or 15-membered lactone ring antibiotics. There has been recent interest in the beneficial effects of these drugs as immune modulators in respiratory conditions in children. Cystic fibrosis (CF) and asthma, both of which occur in childhood, have an underlying inflammatory component and are associated with significant morbidity. The pathogenesis of both conditions is poorly understood but several molecular mechanisms have been suggested.

In CF, these mechanisms broadly involve altered chloride transport and alteration of the airway surface liquid with disordered neutrophilic inflammation. There is much evidence for a proinflammatory propensity in CF immune effector and epithelial cells and many studies indicate that macrolides modulate these inflammatory processes. Recent studies have confirmed a clinical improvement in CF following treatment with macrolides, but the exact mechanisms by which they work are unknown. Asthma is likely to represent several different phenotypes but in all of these, airway obstruction, bronchial hyperresponsiveness, and inflammation are central processes. Results from trials using macrolides have suggested an improvement in clinical outcome.

The putative mechanisms of macrolide immunomodulatory action include improvement of the primary defense mechanisms, inhibition of the bacteria-epithelial cell interaction, modulation of the signaling pathway and chemokine release, and direct neutrophil effects. Putative mechanisms of phenotypic modulation have also been proposed involving interactions with nitric oxide, endothelin-1, and bronchoconstriction, endothelial growth factors and airway remodeling, and bioactive phospholipids in both CF and asthma.

Further characterization of these effects and development of targeted designer drugs will further expand our therapeutic repertoire and lead to improved quality and quantity of life for patients with CF and asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I

Similar content being viewed by others

References

  1. FitzSimmons SC. The changing epidemiology of cystic fibrosis. J Pediatr 1993 Jan; 122(1): 1–9

    Article  PubMed  CAS  Google Scholar 

  2. Khan TZ, Wagener JS, Bost T, et al. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 1995 Apr; 151(4): 1075–82

    PubMed  CAS  Google Scholar 

  3. DiMango E, Ratner AJ, Bryan R, et al. Activation of NF-kappaB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J Clin Invest 1998 Jun 1; 101(11): 2598–605

    Article  PubMed  CAS  Google Scholar 

  4. Weber AJ, Soong G, Bryan R, et al. Activation of NF-kappaB in airway epithelial cells is dependent on CFTR trafficking and Cl− channel function. Am J Physiol Lung Cell Mol Physiol 2001 Jul; 281(1): L71–8

    PubMed  CAS  Google Scholar 

  5. Corvol H, Fitting C, Chadelat K, et al. Distinct cytokine production by lung and blood neutrophils from children with cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2003 Jun; 284(6): L997–1003

    PubMed  CAS  Google Scholar 

  6. Dai Y, Dean TP, Church MK, et al. Desensitisation of neutrophil responses by systemic interleukin 8 in cystic fibrosis. Thorax 1994 Sep; 49(9): 867–71

    Article  PubMed  CAS  Google Scholar 

  7. Saba S, Soong G, Greenberg S, et al. Bacterial stimulation of epithelial G-CSF and GM-CSF expression promotes PMN survival in CF airways. Am J Respir Cell Mol Biol 2002 Nov; 27(5): 561–7

    PubMed  CAS  Google Scholar 

  8. Stockley RA. Role of inflammation in respiratory tract infections. Am J Med 1995 Dec 29; 99(6B): 8S–13S

    Article  PubMed  CAS  Google Scholar 

  9. Tosi MF, Zakem H, Berger M. Neutrophil elastase cleaves C3bi on opsonized pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J Clin Invest 1990 Jul; 86(1): 300–8

    Article  PubMed  CAS  Google Scholar 

  10. Meng QH, Springall DR, Bishop AE, et al. Lack of inducible nitric oxide synthase in bronchial epithelium: a possible mechanism of susceptibility to infection in cystic fibrosis. J Pathol 1998 Mar; 184(3): 323–31

    Article  PubMed  CAS  Google Scholar 

  11. Gaston B, Ratjen F, Vaughan JW, et al. Nitrogen redox balance in the cystic fibrosis airway: effects of antipseudomonal therapy. Am J Respir Crit Care Med 2002 Feb 1; 165(3): 387–90

    PubMed  Google Scholar 

  12. Payne DN. Nitric oxide in allergic airway inflammation. Curr Opin Allergy Clin Immunol 2003 Apr; 3(2): 133–7

    Article  PubMed  CAS  Google Scholar 

  13. Bush A, Tiddens H, Silverman M. Clinical implications of inflammation in young children. Am J Respir Crit Care Med 2000 Aug; 162(2 Pt 2): S11–4

    PubMed  CAS  Google Scholar 

  14. Payne DN, Wilson NM, James A, et al. Evidence for different subgroups of difficult asthma in children. Thorax 2001 May; 56(5): 345–50

    Article  PubMed  CAS  Google Scholar 

  15. Johansson SG, Hourihane JO, Bousquet J, et al. A revised nomenclature for allergy: an EAACI position statement from the EAACI nomenclature task force [published erratum appears in Allergy 2001 Dec; 56 (12): 1229]. Allergy 2001 Sep; 56(9): 813–24

    Article  PubMed  CAS  Google Scholar 

  16. Nicholson KG, Kent J, Ireland DC. Respiratory viruses and exacerbations of asthma in adults. BMJ 1993; 307(6910): 982–6

    Article  PubMed  CAS  Google Scholar 

  17. Johnston SL, Pattemore PK, Sanderson G, et al. Community study of role of viral infections in exacerbations of asthma in 9–11 year old children. BMJ 1995; 310(6989): 1225–9

    Article  PubMed  CAS  Google Scholar 

  18. Vuillermin P, South M, Robertson C. Parent-initiated oral corticosteroid therapy for intermittent wheezing illnesses in children. Cochrane Database Syst Rev 2006 Jul 19; 3: CD005311

    PubMed  Google Scholar 

  19. Berry MA, Hargadon B, Shelley M, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 2006 Feb 16; 354(7): 697–708

    Article  PubMed  CAS  Google Scholar 

  20. Turner H, Kinet JP. Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature 1999 Nov 25; 402(6760 Suppl.): B24–30

    Article  PubMed  CAS  Google Scholar 

  21. Ammit AJ, Bekir SS, Johnson PR, et al. Mast cell numbers are increased in the smooth muscle of human sensitized isolated bronchi. Am J Respir Crit Care Med 1997 Mar; 155(3): 1123–9

    PubMed  CAS  Google Scholar 

  22. Cazzola M, Polosa R. Anti-TNF-alpha and Th1 cytokine-directed therapies for the treatment of asthma. Curr Opin Allergy Clin Immunol 2006 Feb; 6(1): 43–50

    Article  PubMed  CAS  Google Scholar 

  23. Bousquet J, Chanez P, Lacoste JY, et al. Eosinophilic inflammation in asthma. N Engl J Med 1990 Oct 11; 323(15): 1033–9

    Article  PubMed  CAS  Google Scholar 

  24. Forster R, Schubel A, Breitfeld D, et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999 Oct 1; 99(1): 23–33

    Article  PubMed  CAS  Google Scholar 

  25. Chanez P, Bousquet J, Couret I, et al. Increased numbers of hypodense alveolar macrophages in patients with bronchial asthma. Am Rev Respir Dis 1991 Oct; 144(4): 923–30

    Article  PubMed  CAS  Google Scholar 

  26. Fuller RW. The role of the alveolar macrophage in asthma. Respir Med 1989 May; 83(3): 177–8

    Article  PubMed  CAS  Google Scholar 

  27. Thepen T, Van Rooijen N, Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J Exp Med 1989 Aug 1; 170(2): 499–509

    Article  PubMed  CAS  Google Scholar 

  28. Bentley AM, Hamid Q, Robinson DS, et al. Prednisolone treatment in asthma: reduction in the numbers of eosinophils, T cells, tryptase-only positive mast cells, and modulation of IL-4, IL-5, and interferon-gamma cytokine gene expression within the bronchial mucosa. Am J Respir Crit Care Med 1996 Feb; 153(2): 551–6

    PubMed  CAS  Google Scholar 

  29. Nickel R, Beck LA, Stellato C, et al. Chemokines and allergic disease. J Allergy Clin Immunol 1999 Oct; 104(4 Pt 1): 723–42

    Article  PubMed  CAS  Google Scholar 

  30. Dworski R, Fitzgerald GA, Oates JA, et al. Effect of oral prednisone on airway inflammatory mediators in atopic asthma. Am J Respir Crit Care Med 1994 Apr; 149(4 Pt 1): 953–9

    PubMed  CAS  Google Scholar 

  31. Elwood W, Lotvall JO, Barnes PJ, et al. Effect of dexamethasone and cyclosporin A on allergen-induced airway hyperresponsiveness and inflammatory cell responses in sensitized Brown-Norway rats. Am Rev Respir Dis 1992 Jun; 145(6): 1289–94

    PubMed  CAS  Google Scholar 

  32. Giembycz MA, Lindsay MA. Pharmacology of the eosinophil. Pharmacol Rev 1999 Jun; 51(2): 213–340

    PubMed  CAS  Google Scholar 

  33. Birrell MA, Battram CH, Woodman P, et al. Dissociation by steroids of eosinophilic inflammation from airway hyperresponsiveness in murine airways. Respir Res 2003; 4(1): 3

    Article  PubMed  Google Scholar 

  34. Stamler DA, Edelstein MA, Edelstein PH. Azithromycin pharmacokinetics and intracellular concentrations in Legionella pneumophila-infected and uninfected guinea pigs and their alveolar macrophages. Antimicrob Agents Chemother 1994 Feb; 38(2): 217–22

    Article  PubMed  CAS  Google Scholar 

  35. Westphal JF. Macrolide-induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: an update focused on clarithromycin, azithromycin and dirithromycin. Br J Clin Pharmacol 2000; 50(4): 285–95

    Article  PubMed  CAS  Google Scholar 

  36. Hatipoglu U, Rubinstein I. Low-dose, long-term macrolide therapy in asthma: an overview. Clin Mol Allergy 2004; 2(1): 4

    Article  PubMed  Google Scholar 

  37. Niven AS, Argyros G. Alternate treatments in asthma. Chest 2003; 123(4): 1254–65

    Article  PubMed  Google Scholar 

  38. Nalca Y, Jansch L, Bredenbruch F, et al. Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PA01: a global approach. Antimicrob Agents Chemother 2006 May; 50(5): 1680–8

    Article  PubMed  CAS  Google Scholar 

  39. Schultz MJ, Speelman P, Zaat S, et al. Erythromycin inhibits tumor necrosis factor alpha and interleukin 6 production induced by heat-killed Streptococcus pneumoniae in whole blood. Antimicrob Agents Chemother 1998 Jul; 42(7): 1605–9

    PubMed  CAS  Google Scholar 

  40. Brugiere O, Milleron B, Antoine M, et al. Diffuse panbronchiolitis in an Asian immigrant. Thorax 1996 Oct; 51(10): 1065–7

    Article  PubMed  CAS  Google Scholar 

  41. Hoiby N. Diffuse panbronchiolitis and cystic fibrosis: East meets West. Thorax 1994 Jun; 49(6): 531–2

    Article  PubMed  CAS  Google Scholar 

  42. Kobayashi H, Takeda H, Sakayori S, et al. Study on azithromycin in treatment of diffuse panbronchiolitis. Kansenshogaku Zasshi 1995 Jun; 69(6): 711–22

    PubMed  CAS  Google Scholar 

  43. Takeda H, Miura H, Kawahira M, et al. Long-term administration study on TE-031 (A-56268) in the treatment of diffuse panbronchiolitis. Kansenshogaku Zasshi 1989 Jan; 63(1): 71–8

    PubMed  CAS  Google Scholar 

  44. Jaffe A, Francis J, Rosenthal M, et al. Long-term azithromycin may improve lung function in children with cystic fibrosis. Lancet 1998 Feb 7; 351(9100): 420

    Article  PubMed  CAS  Google Scholar 

  45. Ordonez CL, Stulbarg M, Grundland H, et al. Effect of clarithromycin on airway obstruction and inflammatory markers in induced sputum in cystic fibrosis: a pilot study. Pediatr Pulmonol 2001 Jul; 32(1): 29–37

    Article  PubMed  CAS  Google Scholar 

  46. Wolter J, Seeney S, Bell S, et al. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax 2002 Mar; 57(3): 212–6

    Article  PubMed  CAS  Google Scholar 

  47. Equi A, Balfour-Lynn IM, Bush A, et al. Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet 2002 Sep 28; 360(9338): 978–84

    Article  PubMed  CAS  Google Scholar 

  48. Saiman L, Marshall BC, Mayer-Hamblett N, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 2003 Oct 1; 290(13): 1749–56

    Article  PubMed  CAS  Google Scholar 

  49. Pirzada OM, McGaw J, Taylor CJ, et al. Improved lung function and body mass index associated with long-term use of macrolide antibiotics. J Cyst Fibros 2003 Jun; 2(2): 69–71

    Article  PubMed  CAS  Google Scholar 

  50. Clement A, Tamalet A, Le Roux E, et al. Long term effects of azithromycin in patients with cystic fibrosis: a double-blind, placebo-controlled trial. Thorax 2006; 61(10): 895–902

    Article  PubMed  CAS  Google Scholar 

  51. Jaffe A, Bush A. Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmonol 2001 Jun; 31(6): 464–73

    Article  PubMed  CAS  Google Scholar 

  52. Saiman L, Mayer-Hamblett N, Campbell P, et al. Heterogeneity of treatment response to azithromycin in patients with cystic fibrosis. Am J Respir Crit Care Med 2005 Oct 15; 172(8): 1008–12

    Article  PubMed  Google Scholar 

  53. Cystic Fibrosis Foundation home page [online]. Available from URL: http://www.cff.org [Accessed 2007 Feb 28]

  54. Dinwiddie R. Anti-inflammatory therapy in cystic fibrosis. J Cyst Fibros 2005; 4Suppl. 2: 45–8

    Article  PubMed  CAS  Google Scholar 

  55. Kaplan MA, Goldin M. The use of triacetyloleandomycin in chronic infectious asthma. In: Welch H, Marti-Ibanez F, editors. Antibiotic annual 1958–59. New York: Interscience Publishers, Inc., 1959: 273–6

    Google Scholar 

  56. Itkin IH, Menzel ML. The use of macrolide antibiotic substances in the treatment of asthma. J Allergy 1970 Mar; 45(3): 146–62

    Article  PubMed  CAS  Google Scholar 

  57. Zeiger RS, Schatz M, Sperling W, et al. Efficacy of troleandomycin in outpatients with severe, corticosteroid-dependent asthma. J Allergy Clin Immunol 1980 Dec; 66(6): 438–46

    Article  PubMed  CAS  Google Scholar 

  58. Nelson HS, Hamilos DL, Corsello PR, et al. A double-blind study of troleandomycin and methylprednisolone in asthmatic subjects who require daily corticosteroids. Am Rev Respir Dis 1993 Feb; 147(2): 398–404

    PubMed  CAS  Google Scholar 

  59. Eitches RW, Rachelefsky GS, Katz RM, et al. Methylprednisolone and troleandomycin in treatment of steroid-dependent asthmatic children. Am J Dis Child 1985 Mar; 139(3): 264–8

    PubMed  CAS  Google Scholar 

  60. Ball BD, Hill MR, Brenner M, et al. Effect of low-dose troleandomycin on glucocorticoid pharmacokinetics and airway hyperresponsiveness in severely asthmatic children. Ann Allergy 1990 Jul; 65(1): 37–45

    PubMed  CAS  Google Scholar 

  61. Shimizu T, Kato M, Mochizuki H, et al. Roxithromycin reduces the degree of bronchial hyperresponsiveness in children with asthma. Chest 1994 Aug; 106(2): 458–61

    Article  PubMed  CAS  Google Scholar 

  62. Fost DA, Leung DY, Martin RJ, et al. Inhibition of methylprednisolone elimination in the presence of clarithromycin therapy. J Allergy Clin Immunol 1999 Jun; 103(6): 1031–5

    Article  PubMed  CAS  Google Scholar 

  63. Rosenberg SM, Gerhard H, Grunstein MM, et al. Use of TAO without methyl-prednisolone in the treatment of severe asthma. Chest 1991 Sep; 100(3): 849–50

    Article  PubMed  CAS  Google Scholar 

  64. Miyatake H, Taki F, Taniguchi H, et al. Erythromycin reduces the severity of bronchial hyperresponsiveness in asthma. Chest 1991 Mar; 99(3): 670–3

    Article  PubMed  CAS  Google Scholar 

  65. Amayasu H, Yoshida S, Ebana S, et al. Clarithromycin suppresses bronchial hyperresponsiveness associated with eosinophilic inflammation in patients with asthma. Ann Allergy Asthma Immunol 2000 Jun; 84(6): 594–8

    Article  PubMed  CAS  Google Scholar 

  66. Ackermann G, Rodloff AC. Drugs of the 21st century: telithromycin (HMR 3647): the first ketolide. J Antimicrob Chemother 2003 Mar; 51(3): 497–511

    Article  PubMed  CAS  Google Scholar 

  67. Johnston SL, Blasi F, Black PN, et al. The effect of telithromycin in acute exacerbations of asthma. N Engl J Med 2006 Apr 13; 354(15): 1589–600

    Article  PubMed  CAS  Google Scholar 

  68. Emre U, Roblin PM, Gelling M, et al. The association of Chlamydia pneumoniae infection and reactive airway disease in children. Arch Pediatr Adolesc Med 1994 Jul; 148(7): 727–32

    Article  PubMed  CAS  Google Scholar 

  69. Hahn DL, Bukstein D, Luskin A, et al. Evidence for Chlamydia pneumoniae infection in steroid-dependent asthma. Ann Allergy Asthma Immunol 1998 Jan; 80(1): 45–9

    Article  PubMed  CAS  Google Scholar 

  70. Kaneko K, Yamashiro Y, Maruyama T, et al. Chlamydia pneumoniae infection in children with persistent cough. Arch Dis Child 1999 Jun; 80(6): 581–2

    Article  PubMed  CAS  Google Scholar 

  71. Sakito O, Kadota J, Kohno S, et al. Interleukin 1 beta, tumor necrosis factor alpha, and interleukin 8 in bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis: a potential mechanism of macrolide therapy. Respiration 1996; 63(1): 42–8

    Article  PubMed  CAS  Google Scholar 

  72. Khair OA, Devalia JL, Abdelaziz MM, et al. Effect of erythromycin on Haemophilus influenzae endotoxin-induced release of IL-6, IL-8 and sICAM-1 by cultured human bronchial epithelial cells. Eur Respir J 1995 Sep; 8(9): 1451–7

    PubMed  CAS  Google Scholar 

  73. Tsai WC, Rodriguez ML, Young KS, et al. Azithromycin blocks neutrophil recruitment in Pseudomonas endobronchial infection. Am J Respir Crit Care Med 2004 Dec 15; 170(12): 1331–9

    Article  PubMed  Google Scholar 

  74. Li Y, Azuma A, Takahashi S, et al. Fourteen-membered ring macrolides inhibit vascular cell adhesion molecule 1 messenger RNA induction and leukocyte migration: role in preventing lung injury and fibrosis in bleomycin-challenged mice. Chest 2002 Dec; 122(6): 2137–45

    Article  PubMed  CAS  Google Scholar 

  75. Lin HC, Wang CH, Liu CY, et al. Erythromycin inhibits beta2-integrins (CD11b/CD18) expression, interleukin-8 release and intracellular oxidative metabolism in neutrophils. Respir Med 2000 Jul; 94(7): 654–60

    Article  PubMed  CAS  Google Scholar 

  76. Okubo Y. Macrolides reduce the expression of surface Mac-1 molecule on neutrophil. Kurume Med J 1997; 44(2): 115–23

    Article  PubMed  CAS  Google Scholar 

  77. Kawasaki S, Takizawa H, Ohtoshi T, et al. Roxithromycin inhibits cytokine production by and neutrophil attachment to human bronchial epithelial cells in vitro. Antimicrob Agents Chemother 1998 Jun; 42(6): 1499–502

    PubMed  CAS  Google Scholar 

  78. Brennan S, Cooper D, Sly PD. Directed neutrophil migration to IL-8 is increased in cystic fibrosis: a study of the effect of erythromycin. Thorax 2001 Jan; 56(1): 62–4

    Article  PubMed  CAS  Google Scholar 

  79. Uriarte SM, Molestina RE, Miller RD, et al. Effect of macrolide antibiotics on human endothelial cells activated by Chlamydia pneumoniae infection and tumor necrosis factor-alpha. J Infect Dis 2002 Jun 1; 185(11): 1631–6

    Article  PubMed  CAS  Google Scholar 

  80. Labro MT, el Benna J, Babin-Chevaye C. Comparison of the in-vitro effect of several macrolides on the oxidative burst of human neutrophils. J Antimicrob Chemother 1989 Oct; 24(4): 561–72

    Article  PubMed  CAS  Google Scholar 

  81. Anderson R. Erythromycin and roxithromycin potentiate human neutrophil locomotion in vitro by inhibition of leukoattractant-activated superoxide generation and autooxidation. J Infect Dis 1989 May; 159(5): 966–73

    Article  PubMed  CAS  Google Scholar 

  82. Culic O, Erakovic V, Cepelak I, et al. Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol 2002 Aug 30; 450(3): 277–89

    Article  PubMed  CAS  Google Scholar 

  83. Aoshiba K, Nagai A, Konno K. Erythromycin shortens neutrophil survival by accelerating apoptosis. Antimicrob Agents Chemother 1995 Apr; 39(4): 872–7

    Article  PubMed  CAS  Google Scholar 

  84. Mitsuyama T, Hidaka K, Furuno T, et al. Neutrophil-induced endothelial cell damage: inhibition by a 14-membered ring macrolide through the action of nitric oxide. Int Arch Allergy Immunol 1997 Oct; 114(2): 111–5

    Article  PubMed  CAS  Google Scholar 

  85. Tamaoki J, Kondo M, Kohri K, et al. Macrolide antibiotics protect against immune complex-induced lung injury in rats: role of nitric oxide from alveolar macrophages. J Immunol 1999 Sep 1; 163(5): 2909–15

    PubMed  CAS  Google Scholar 

  86. Takizawa H, Desaki M, Ohtoshi T, et al. Erythromycin and clarithromycin attenuate cytokine-induced endothelin-1 expression in human bronchial epithelial cells. Eur Respir J 1998 Jul; 12(1): 57–63

    Article  PubMed  CAS  Google Scholar 

  87. Yatsunami J, Fukuno Y, Nagata M, et al. Antiangiogenic and antitumor effects of 14-membered ring macrolides on mouse B16 melanoma cells. Clin Exp Metastasis 1999 Jun; 17(4): 361–7

    Article  PubMed  CAS  Google Scholar 

  88. Yatsunami J, Tsuruta N, Hara N, et al. Inhibition of tumor angiogenesis by roxithromycin, a 14-membered ring macrolide antibiotic. Cancer Lett 1998 Sep 25; 131(2): 137–43

    Article  PubMed  CAS  Google Scholar 

  89. Fujitani Y, Trifilieff A. In vivo and in vitro effects of SAR 943, a rapamycin analogue, on airway inflammation and remodeling. Am J Respir Crit Care Med 2003 Jan 15; 167(2): 193–8

    Article  PubMed  Google Scholar 

  90. Feldman C, Anderson R, Theron A, et al. The effects of ketolides on bioactive phospholipid-induced injury to human respiratory epithelium in vitro. Eur Respir J 1999 May; 13(5): 1022–8

    Article  PubMed  CAS  Google Scholar 

  91. Lallemand JY, Stoven V, Annereau JP, et al. Induction by antitumoral drugs of proteins that functionally complement CFTR: a novel therapy for cystic fibrosis? Lancet 1997 Sep 6; 350(9079): 711–2

    Article  PubMed  CAS  Google Scholar 

  92. Gant TW, O’Connor CK, Corbitt R, et al. In vivo induction of liver P-glycoprotein expression by xenobiotics in monkeys. Toxicol Appl Pharmacol 1995 Aug; 133(2): 269–76

    Article  PubMed  CAS  Google Scholar 

  93. Tamaoki J, Isono K, Sakai N, et al. Erythromycin inhibits Cl secretion across canine tracheal epithelial cells. Eur Respir J 1992 Feb; 5(2): 234–8

    PubMed  CAS  Google Scholar 

  94. Tagaya E, Tamaoki J, Kondo M, et al. Effect of a short course of clarithromycin therapy on sputum production in patients with chronic airway hypersecretion. Chest 2002 Jul; 122(1): 213–8

    Article  PubMed  CAS  Google Scholar 

  95. Advenier C, Sarria B, Naline E, et al. Contractile activity of three endothelins (ET-1, ET-2 and ET-3) on the human isolated bronchus. Br J Pharmacol 1990 May; 100(1): 168–72

    Article  PubMed  CAS  Google Scholar 

  96. Takizawa H, Desaki M, Ohtoshi T, et al. Erythromycin modulates IL-8 expression in normal and inflamed human bronchial epithelial cells. Am J Respir Crit Care Med 1997 Jul; 156(1): 266–71

    PubMed  CAS  Google Scholar 

  97. Barker PM, Gillie DJ, Schechter MS, et al. Effect of macrolides on in vivo ion transport across cystic fibrosis nasal epithelium. Am J Respir Crit Care Med 2005 Apr 15; 171(8): 868–71

    Article  PubMed  Google Scholar 

  98. Equi AC, Davies JC, Painter H, et al. Exploring the mechanisms of macrolides in cystic fibrosis. Respir Med 2006 Apr; 100(4): 687–97

    Article  PubMed  Google Scholar 

  99. Engelhardt JF, Yankaskas JR, Ernst SA, et al. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet 1992 Nov; 2(3): 240–8

    Article  PubMed  CAS  Google Scholar 

  100. Basbaum CB, Jany B, Finkbeiner WE. The serous cell. Annu Rev Physiol 1990; 52: 97–113

    Article  PubMed  CAS  Google Scholar 

  101. Goldman MJ, Anderson GM, Stolzenberg ED, et al. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 1997 Feb 21; 88(4): 553–60

    Article  PubMed  CAS  Google Scholar 

  102. Ashitani J, Mukae H, Nakazato M, et al. Elevated concentrations of defensins in bronchoalveolar lavage fluid in diffuse panbronchiolitis. Eur Respir J 1998 Jan; 11(1): 104–11

    Article  PubMed  CAS  Google Scholar 

  103. Hiratsuka T, Mukae H, Iiboshi H, et al. Increased concentrations of human beta-defensins in plasma and bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis. Thorax 2003 May; 58(5): 425–30

    Article  PubMed  CAS  Google Scholar 

  104. Pamukcu A, Bush A, Buchdahl R. Effects of Pseudomonas aeruginosa colonization on lung function and anthropometric variables in children with cystic fibrosis. Pediatr Pulmonol 1995 Jan; 19(1): 10–5

    Article  PubMed  CAS  Google Scholar 

  105. Davies J, Dewar A, Bush A, et al. Reduction in the adherence of Pseudomonas aeruginosa to native cystic fibrosis epithelium with anti-asialoGM1 antibody and neuraminidase inhibition. Eur Respir J 1999 Mar; 13(3): 565–70

    Article  PubMed  CAS  Google Scholar 

  106. Schroeder TH, Lee MM, Yacono PW, et al. CFTR is a pattern recognition molecule that extracts Pseudomonas aeruginosa LPS from the outer membrane into epithelial cells and activates NF-kappa B translocation. Proc Natl Acad Sci U S A 2002 May 14; 99(10): 6907–12

    Article  PubMed  CAS  Google Scholar 

  107. Davies JC, Stern M, Dewar A, et al. CFTR gene transfer reduces the binding of Pseudomonas aeruginosa to cystic fibrosis respiratory epithelium. Am J Respir Cell Mol Biol 1997 Jun; 16(6): 657–63

    PubMed  CAS  Google Scholar 

  108. Nakashio S, Susa C, Qiu S, et al. Antimicrobial activity of clarithromycin and its effect on bacterial adherence to medical material. Jpn J Antibiot 1993 Jun; 46(6): 428–36

    PubMed  CAS  Google Scholar 

  109. Baumann U, Fischer JJ, Gudowius P, et al. Buccal adherence of Pseudomonas aeruginosa in patients with cystic fibrosis under long-term therapy with azithromycin. Infection 2001 Jan-Feb; 29(1): 7–11

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this article. A. Jaffe has received a grant from Pfizer for another project. The other authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Jaffe, A. & Dixon, G. Immunomodulatory Effects of Macrolide Antibiotics in Respiratory Disease. Pediatr-Drugs 9, 107–118 (2007). https://doi.org/10.2165/00148581-200709020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00148581-200709020-00004

Keywords

Navigation