Skip to main content
Log in

Prospects and Limits of Pharmacogenetics

The Thiopurine Methyl Transferase (TPMT) Experience

  • Current Opinion
  • Published:
American Journal of Pharmacogenomics

Abstract

Thiopurine drug metabolism is a quintessential case of pharmacogenetics. A wealth of experimental and clinical data on polymorphisms in the thiopurine metabolizing enzyme thiopurine methyl transferase (TPMT) has been generated in the past decade. Pharmacogenetic testing prior to thiopurine treatment is already being practiced to some extent in the clinical context, and it is likely that it will be among the first pharmacogenetic tests applied on a regular basis.

We analyzed the published TPMT data and identified some lessons to be learned for the future implementation of pharmacogenetics for thiopurines as well as in other fields. These include the need for comprehensive and unbiased data on allele frequencies relevant to a broad range of populations worldwide. The nature and frequency of TPMT gene polymorphisms in some ethnic groups is still a matter of speculation, as the vast majority of studies on TPMT allele distribution are limited to only a small subset of alleles and populations. Secondly, an appreciation of the limits of pharmacogenetics is warranted, as pharmacogenetic testing can help in avoiding some, but by far not all adverse effects of drug therapy. An analysis of six clinical studies correlating adverse thiopurine effects and TPMT genotype revealed that an average of 78% of adverse drug reactions were not associated with TPMT polymorphisms. Pharmacogenetic testing will thus not eliminate the need for careful clinical monitoring of adverse drug reactions. Finally, a careful approach toward dose increases for patients with high enzyme activity is necessary, as TPMT-mediated methylation of thiopurines generates a possibly hepatotoxic byproduct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1

Similar content being viewed by others

References

  1. Nebert DW, Bingham E. Pharmacogenomics: out of the lab and into the community. Trends Biotechnol 2001; 19: 519–23

    Article  PubMed  CAS  Google Scholar 

  2. Rothstein MA, Epps PG. Ethical and legal implications of pharmacogenomics. Nat Rev Genet 2001; 2: 228–31

    Article  PubMed  CAS  Google Scholar 

  3. Freund CL, Wilfond BS. Emerging ethical issues in pharmacogenomics: from research to clinical practice. Am J PharmacoGenomics 2002; 2(4): 273–81

    Article  PubMed  Google Scholar 

  4. Weinshilboum R. Thiopurine pharmacogenetics: clinical and molecular studies of thiopurine methyltransferase. Drug Metab Dispos 2001; 29: 601–5

    PubMed  CAS  Google Scholar 

  5. McLeod HL Krynetski EY, Relling MV, et al. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 2000; 14: 567–72

    Article  PubMed  CAS  Google Scholar 

  6. Spire-Vayron de la Moureyre C, Debuysere H, Mastain B, et al. Genotypic and phenotypic analysis of the polymorphic thiopurine S-methyltransferase gene TPMT in a European population. Br J Pharmacol 1998; 125: 879–87

    Article  PubMed  CAS  Google Scholar 

  7. Evans WE, Hon YY, Bomgaars L, et al. Preponderance of thiopurine S-methyl-transferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J Clin Oncol 2001; 19: 2293–301

    PubMed  CAS  Google Scholar 

  8. Krynetski EY, Schuetz JD, Galpin AJ, et al. A single point mutation leading to loss of catalytic activity in human thiopurine S-methytransferase. Proc Natl Acad Sci USA 1995; 92: 949–53

    Article  PubMed  CAS  Google Scholar 

  9. Tai HL, Krynetski EY, Yates CR, et al. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet 1996; 58: 694–702

    PubMed  CAS  Google Scholar 

  10. Otterness D, Szumlanski CL, Wood TC, et al. Human thiopurine methyltransferase pharmacogenetics. J Clin Invest 1998; 101: 1036–44

    Article  PubMed  CAS  Google Scholar 

  11. Hon YY, Fessing MY, Pui CH, et al. Polymorphism of the thiopurine S-methyltransferase gene in African-Americans. Hum Mol Genet 1999; 8: 371–6

    Article  PubMed  CAS  Google Scholar 

  12. Colombel JF, Ferrari N, Debuysere H, et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology 2000; 118: 1025–30

    Article  PubMed  CAS  Google Scholar 

  13. Spire-Vayron de la Moureyre C, Debuysere H, Sabbagh N, et al. Detection of known and new mutations in the thiopurine S-methyltransferase gene by single-strand conformation polymorphism analysis. Hum Mutat 1998; 12: 177–85

    Article  PubMed  CAS  Google Scholar 

  14. Otterness D, Szumlanski C, Lennard L, et al. Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin Pharmacol Ther 1997; 62: 60–73

    Article  PubMed  CAS  Google Scholar 

  15. Schütz E, von Ahsen N, Oellerich M. Genotyping of eight thiopurine methyltransferase mutations: three-color multiplexing ‘two-color/shared’ anchor and fluorescence-quenching hybridisation probe assays based on thermodynamic nearest-neighbor probe design. Clin Chem 2000; 46: 1728–37

    PubMed  Google Scholar 

  16. Cuffari C, Theoret Y, Latour S, et al. 6-Mercaptopurine metabolism in Crohn’s disease correlation with efficacy and toxicity. Gut 1996; 39: 401–6

    Article  PubMed  CAS  Google Scholar 

  17. Ameyaw MM, Collie-Duguid ES, Powrie RH, et al. Thiopurine methyltransferase alleles in British and Ghanaian populations. Hum Mol Genet 1999; 8: 367–70

    Article  PubMed  CAS  Google Scholar 

  18. Black AJ, McLeod HL, Capell HA, et al. Thiopurine methyltransferase genotype predicts therapy-limiting severe toxicity from azathioprine. Ann Intern Med 1998; 129: 716–8

    PubMed  CAS  Google Scholar 

  19. McLeod HL, Coulthard S, Thomas A, et al. Analysis of thiopurine methyltransferase variant alleles in childhood acute lymphoblastic leukaemia. Br J Haematol 1999; 105: 696–700

    Article  PubMed  CAS  Google Scholar 

  20. Brouwer C, Marinaki AM, Lambooy LHJ, et al. Pitfalls in determination of mutant alleles of the thiopurine methyltransferase gene. Leukemia 2001; 15: 1792–3

    Article  PubMed  CAS  Google Scholar 

  21. Rossi AM, Bianchi M, Guarnieri C, et al. Genotype-phenotype correlation for thiopurine S-methyltransferase in healthy Italian subjects. Eur J Clin Pharmacol 2001; 57: 51–4

    Article  PubMed  CAS  Google Scholar 

  22. Dervieux T, Medard Y, Verpillat P, et al. Possible implication of thiopurine S-methyltransferase in occurrence of infectious episodes during maintenance therapy of childhood lymphoblastic leukemia with mercaptopurine. Leukemia 2001; 15: 1706–12

    Article  PubMed  CAS  Google Scholar 

  23. Relling MV, Hancock ML, Rivera GK, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 1999; 91: 2001–8

    Article  PubMed  CAS  Google Scholar 

  24. McLeod HL, Pritchard SC, Githang’a J, et al. Ethnic differences in thiopurine methyltransferase pharmacogenetics evidence for allele specificity in Caucasian and Kenyan individuals. Pharmacogenetics 1999; 9: 773–6

    Article  PubMed  CAS  Google Scholar 

  25. Ando M, Ando Y, Hasegawa Y, et al. Genetic polymorphisms of thiopurine S-methyltransferase and 6-mercaptopurine toxicity in Japanese children with acute lymphoblastic leukemia. Pharmacogenetics 2001; 11: 269–73

    Article  PubMed  CAS  Google Scholar 

  26. Kubota T, Chiba K. Frequencies of thiopurine S-methyltransferase mutant alleles TPMT*2 *3A *3B and *3C in 151 healthy Japanese subjects and the inheritance of TPMT*3C in the family of a propositus. Br J Clin Pharmacol 2001; 51: 475–7

    Article  PubMed  CAS  Google Scholar 

  27. Kumagai K, Hiyama K, Ishioka S, et al. Allelotype frequency of the thiopurine methyltransferase TPMT gene in Japanese. Pharmacogenetics 2001; 11: 275–8

    Article  PubMed  CAS  Google Scholar 

  28. Ishioka S, Hiyama K, Sato H, et al. Thiopurine methyltransferase genotype and the toxicity of azathioprine in Japanese. Intern Med 1999; 38: 944–7

    Article  PubMed  CAS  Google Scholar 

  29. Collie-Duguid ES, Pritchard SC, Powrie RH, et al. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 1999; 9: 37–42

    Article  PubMed  CAS  Google Scholar 

  30. Hiratsuka M, Inoue T, Omori F, et al. Detection assay of rare variants of the thiopurine methyltransferase gene by PCR-RFLP using a mismatch primer in a Japanese population. Biol Pharm Bull 2000; 23: 1090–3

    Article  PubMed  CAS  Google Scholar 

  31. Hongeng S, Sasanakul W, Chuansumrit A, et al. Frequency of thiopurine S-methyltransferase genetic variation in Thai children with acute leukemia. Med Pediatr Oncol 2000; 35: 410–4

    Article  PubMed  CAS  Google Scholar 

  32. Schwartz RS. Racial profiling in medical research. N Engl J Med 2001; 344: 1392–3

    Article  PubMed  CAS  Google Scholar 

  33. Lennard L, Van Loon JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther 1989; 46: 149–54

    Article  PubMed  CAS  Google Scholar 

  34. Chocair PR, Duley JA, Simmonds HA, et al. The importance of thiopurine methyltransferase activity for the use of azathioprine in transplant recipients. Transplantation 1992; 53: 1051–6

    Article  PubMed  CAS  Google Scholar 

  35. Stolk JN, Boerbooms AMT, de Abreu RA, et al. Reduced thiopurine methyltransferase activity and development of side effects of azathioprine treatment in patients with rheumatoid arthritis. Arthritis Rheum 1998; 41: 1858–66

    Article  PubMed  CAS  Google Scholar 

  36. Lennard L, Lilleyman JS, van Loon J, et al. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 1990; 336: 225–9

    Article  PubMed  CAS  Google Scholar 

  37. Naughton MA, Battaglia E, O’Brien S, et al. Identification of thiopurine methyltransferase TPMT polymorphisms cannot predict myelosuppression in systemic lupus erythematosus patients taking azathioprine. Rheumatology 1999; 38: 640–4

    Article  PubMed  CAS  Google Scholar 

  38. Dubinsky MC, Lamothe S, Yang HY, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 2000; 118: 705–13

    Article  PubMed  CAS  Google Scholar 

  39. Kirchheiner J, Brøsen K, Dahl ML, et al. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104: 173–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Forschungsschwerpunkt Biotechnik, Gesellschaft und Umwelt, Universitat Hamburg, Hamburg, Germany We thank the German Ministry for Education and Research (BMBF) for research funding and Dr. Paula Bradish for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regine Kollek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Aken, J., Schmedders, M., Feuerstein, G. et al. Prospects and Limits of Pharmacogenetics. Am J Pharmacogenomics 3, 149–155 (2003). https://doi.org/10.2165/00129785-200303030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200303030-00001

Keywords

Navigation