Skip to main content
Log in

Might DHEA be Considered a Beneficial Replacement Therapy in the Elderly?

  • Current Opinion
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Dehydroepiandrosterone (DHEA) [prasterone] is typically secreted by the adrenal glands and its secretory rate changes throughout the human lifespan. When human development is completed and adulthood is reached, DHEA and DHEA sulphate (DHEAS) [PB-008] levels start to decline so that at 70–80 years of age, peak DHEAS concentrations are only 10–20% of those in young adults. This age-associated decrease has been termed ‘adrenopause’, and since many age-related disturbances have been reported to begin with the decline of DHEA/DHEAS levels, this provides a potential opportunity for use of DHEA as replacement therapy.

For these reasons, use of DHEA as a replacement therapy in aging men and women has been proposed and this paper outlines the reported beneficial effects of such treatment in humans. Many interesting results have been obtained in experimental animals suggesting that DHEA positively modulates most age-related disturbances. However, renewed interest in DHEA has arisen as a result of recent studies suggesting that DHEA appears to be beneficial in hypoandrogenic men as well as in postmenopausal and aging women. Menopause is the event in a woman’s life that induces a dramatic change in the steroid milieu, and use of DHEA as ‘replacement treatment’ has been reported to restore both the androgenic and estrogenic environment and reduce most of the symptoms of this change. As menopause is the beginning of the biological transition of women towards senescence, it is of great interest to better understand how DHEA might help to solve and/or overcome the problems of this complex stage of life. In men with adrenal insufficiency and hypogonadism without androgen replacement, DHEA administration results in a significant increase in circulating androgens.

Though most data are suggestive for use of DHEA as hormonal replacement treatment, more defined and specific clinical trials are needed to uncover all of the ‘secrets’ and features of this steroid before it can be used as a standard treatment. Furthermore, DHEA is perceived differently around the world, being considered only a ‘dietary supplement’ in the US, while in many European countries it is considered a ‘true hormone’ that has not been approved for use as a hormonal treatment by the European health authorities. This overview offers some points of view on use of DHEA as an experimental hormonal replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Orentreich N, Brind JL, Rizer RL, et al. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab 1984; 59: 551–5

    Article  PubMed  CAS  Google Scholar 

  2. Sizonenko PC, Paunier L. Hormonal changes in puberty III: correlation of plasma dehydroepiandrosterone, testosterone, FSH, and LH with stages of puberty and bone age in normal boys and girls and in patients with Addison’s disease or hypogonadism or with premature or late adrenarche. J Clin Endocrinol Metab 1975; 41: 894–904

    Article  PubMed  CAS  Google Scholar 

  3. Reiter EO, Fuldauer VG, Root AW. Secretion of the adrenal androgen, dehydroepiandrosterone sulfate, during normal infancy, childhood, and adolescence, in sick infants, and in children with endocrinologic abnormalities. J Pediatr 1977; 90: 766–70

    Article  PubMed  CAS  Google Scholar 

  4. Sklar CA, Kaplan SL, Grumbach MM. Evidence for dissociation between adrenarche and gonadarche: studies in patients with idiopathic precocious puberty, gonadal dysgenesis, isolated gonadotropin deficiency, and constitutionally delayed growth and adolescence. J Clin Endocrinol Metab 1980; 51: 548–56

    Article  PubMed  CAS  Google Scholar 

  5. Palmert MR, Hayden DL, Mansfield MJ, et al. The longitudinal study of adrenal maturation during gonadal suppression: evidence that adrenarche is a gradual process. J Clin Endocrinol Metab 2001; 86: 4536–42

    Article  PubMed  CAS  Google Scholar 

  6. Orentreich N, Brind JL, Vogelman JH, et al. Long-term longitudinal measurements of plasma dehydroepiandrosterone sulfate in normal men. J Clin Endocrinol Metab 1992; 75: 1002–4

    Article  PubMed  CAS  Google Scholar 

  7. Parker CR Jr, Mixon RL, Brissie RM, et al. Aging alters zonation in the adrenal cortex of men. J Clin Endocrinol Metab 1997; 82: 3898–901

    Article  PubMed  CAS  Google Scholar 

  8. Laughlin GA, Barrett-Connor E. Sexual dimorphism in the influence of advanced aging on adrenal hormone levels: the Rancho Bernardo Study. J Clin Endocrinol Metab 2000; 85: 3561–8

    Article  PubMed  CAS  Google Scholar 

  9. Kalmijn S, Launer LJ, Stolk RP, et al. prospective study on cortisol, dehydroepiandrosterone sulfate, and cognitive function in the elderly. J Clin Endocrinol Metab 1998; 83: 3487–92

    Article  PubMed  CAS  Google Scholar 

  10. Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 2005; 4: 141–94

    Article  PubMed  CAS  Google Scholar 

  11. Vermeulen A, Verdonck L. Radioimmunoassays of 17β-hydroxy-5α-androstan-3-one, 4-androstene-3,17-dione, dehydroepiandrosterone, 17β-hydroxyprogesterone and progesterone and its application to human male plasma. J Steroid Biochem 1976; 7: 1–10

    Article  PubMed  CAS  Google Scholar 

  12. Williams MR, Ling S, Dawood T, et al. Dehydroepiandrosterone inhibits human vascular smooth muscle cell proliferation independent of ARs and ERs. J Clin Endocrinol Metab 2002; 87: 176–81

    Article  PubMed  CAS  Google Scholar 

  13. Eich DM, Nestler JE, Johnson DE, et al. Inhibition of accelerated coronary atherosclerosis with dehydroepiandrosterone in heterotopic rabbit model of cardiac transplantation. Circulation 1993; 87: 261–9

    Article  PubMed  CAS  Google Scholar 

  14. Gordon GB, Bush DE, Weisman HF. Reduction of atherosclerosis by administration of dehydroepiandrosterone: a study in the hypercholesterolemic New Zealand white rabbit with aortic intimai injury. J Clin Invest 1988; 82: 712–20

    Article  PubMed  CAS  Google Scholar 

  15. Schwartz AG, Pashko LL. Dehydroepiandrosterone, glucose-6-phosphate dehydrogenase, and longevity. Ageing Res Rev 2004; Apr 3: 171–87

    Article  PubMed  CAS  Google Scholar 

  16. Morales AJ, Haubrich RH, Hwang JY, et al. The effect of six months treatment with a 100 mg daily dose of dehydroepiandrosterone (DHEA) on circulating sex steroids, body composition and muscle strength in age-advanced men and women. Clin Endocrinol (Oxf) 1998; 49: 421–32

    Article  CAS  Google Scholar 

  17. Lasco A, Frisina N, Morabito N, et al. Metabolic effects of dehydroepiandrosterone replacement therapy in postmenopausal women. Eur J Endocrinol 2001; 145: 457–61

    Article  PubMed  CAS  Google Scholar 

  18. Schwartz AG, Pashko LL. Cancer chemoprevention with the adrenocortical steroid dehydroepiandrosterone and structural analogs. J Cell Biochem 1995; 22 Suppl.: 210–7

    Article  CAS  Google Scholar 

  19. Yen TT, Allan JV, Pearson DV. Prevention of obesity in Avy/A mice by dehydroepiandrosterone. Lipids 1997; 12: 409–13

    Article  Google Scholar 

  20. Dhatariya K, Bigelow ML, Nair KS. Effects of dehydroepiandrosterone replacement on insulin sensitivity and lipids in hypoadrenal women. Diabetes 2006; 54: 765–9

    Article  Google Scholar 

  21. Carson PJ, Nichol KL, O’Brien J, et al. Immune function and vaccine responses in healthy advanced elderly patients. Arch Intern Med 2000; 160(13): 2017–24

    Article  PubMed  CAS  Google Scholar 

  22. Loria RM, Inge TH, Cook SS, et al. Protection against acute lethal viral infection with the native dehydroepiandrosterone (DHEA). J Med Virol 1988; 26: 301–14

    Article  PubMed  CAS  Google Scholar 

  23. Arlt W, Callies F, Koehler I, et al. Dehydroepiandrosterone supplementation in healthy men with an age-related decline of dehydroepiandrosterone secretion. J Clin Endocrinol Metab 2001; 86: 4686–92

    Article  PubMed  CAS  Google Scholar 

  24. Savvas M, Studd JWW, Fogelman I, et al. Skeletal effects of oral oestrogen compared with subcutaneous oestrogen and testosterone in postmenopausal women. Br Med J 1988; 297: 331–3

    Article  CAS  Google Scholar 

  25. Benz DJ, Haussler MR, Thomas MA, et al. High-affinity androgen binding and androgenic regulation of 1 (I)-procollagen and transforming growth factor-β steady state messenger ribonucleic acid levels in human osteoblast-like osteosarcoma cells. Endocrinology 1991; 128: 2723–30

    Article  PubMed  CAS  Google Scholar 

  26. Diamond P, Cusan L, Gomez JL, et al. Metabolic effects of 12-month percutaneous dehydroepiandrosterone replacement therapy in postmenopausal women. J Endocrinol 1996; 150 Suppl.: S43–50

    Article  PubMed  CAS  Google Scholar 

  27. Stomati M, Monteleone P, Casarosa E, et al. Six-months oral dehydroepiandrosterone supplementation in early and late postmenopause. Gynecol Endocrinol 2000; 14: 342–63

    Article  PubMed  CAS  Google Scholar 

  28. Genazzani AD, Stomati M, Bernardi F, et al. Long term low-dose dehydroepiandrosterone in early and late postmenopausal women modulates endocrine parameters and synthesis of neuroactive steroids. Fertil Steril 2003; 80: 1495–501

    Article  PubMed  Google Scholar 

  29. Pye JK, Mansel RE, Hughes LE. Clinical experience of drug treatments for mastalgia. Lancet 1985; 2: 373–7

    Article  PubMed  CAS  Google Scholar 

  30. Sherwin BB, Gelfand MM. Effects of parenteral administration of estrogen and androgen on plasma hormone levels and hot flushes in the surgical menopause. Am J Obstet Gynecol 1984; 148: 552–7

    PubMed  CAS  Google Scholar 

  31. Martel C, Rheaume E, Takahashi M, et al. Distribution of 17β-hydroxysteroid dehydrogenase gene expression and activity in rat and human tissues [abstract]. J Steroid Biochem Mol Biol 1992; 41: 597–603

    Article  PubMed  CAS  Google Scholar 

  32. Martel C, Meiner MH, Gagne D, et al. Widespread tissue distribution of steroid sulfatase, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD), 17β-HSD, 5α-reductase and aromatase activities in the rhesus monkey. Mol Cell Endocrinol 1994; 104: 103–11

    Article  PubMed  CAS  Google Scholar 

  33. Jakob F, Siggelkow H, Homann D, et al. Local estradiol metabolism in osteoblast- and osteoclast-like cells. J Steroid Biochem Mol Biol 1997; 61: 167–74

    Article  PubMed  CAS  Google Scholar 

  34. Krazeisen A, Breitling R, Imai K, et al. Determination of cDNA, gene structure and chromosomal localization of the novel human 17β-hydroxysteroid dehydrogenase type 7(1). FEBS Lett 1999; 460: 373–9

    Article  PubMed  CAS  Google Scholar 

  35. English MA, Hughes SV, Kane KF, et al. Oestrogen inactivation in the colon: analysis of the expression and regulation of 17β-hydroxysteroid dehydrogenase isozymes in normal colon and colonic cancer. Br J Cancer 2000; 83: 550–8

    Article  PubMed  CAS  Google Scholar 

  36. Labrie F. Intracrinology [abstract]. Mol Cell Endocrinol 1991; 78: C113–8

    Article  PubMed  CAS  Google Scholar 

  37. Arlt W, Justl HG, Callies F, et al. Oral dehydroepiandrosterone for adrenal androgen replacement: pharmacokinetics and peripheral conversion to androgens and estrogens in young healthy females after dexamethasone suppression. J Clin Endocrinol Metab 1998; 83: 1928–34

    Article  PubMed  CAS  Google Scholar 

  38. Arlt W, Haas J, Callies F, et al. Biotransformation of oral dehydroepiandrosterone in elderly men: significant increase in circulating estrogens. J Clin Endocrinol Metab 1999; 84: 2170–6

    Article  PubMed  CAS  Google Scholar 

  39. Young J, Couzinet B, Nahoul K, et al. Panhypopituitarism as a model to study the metabolism of dehydroepiandrosterone (DHEA) in humans. J Clin Endocrinol Metab 1997; 82: 2578–85

    Article  PubMed  CAS  Google Scholar 

  40. Moghissi E, Ablan F, Horton R. Origin of plasma androstanediol glucuronide in men. J Clin Endocrinol Metab 1984; 59: 417–21

    Article  PubMed  CAS  Google Scholar 

  41. Labrie F, Luu-The V, Belanger A, et al. Is dehydroepiandrosterone a hormone? J Endocrinol 2005 Nov; 187(2): 169–96

    Article  PubMed  CAS  Google Scholar 

  42. Baulieu EE. Neuroactive neurosteroids: dehydroepiandrosterone (DHEA) and DHEA sulphate. Acta Paediatr 1999; 88 Suppl.: 78–80

    Article  CAS  Google Scholar 

  43. Corpechot C, Robel P, Axelson M, et al. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci U S A 1981; 78: 4704–7

    Article  PubMed  CAS  Google Scholar 

  44. Compagnone NA, Bulfone A, Rubenstein JL, et al. Steroidogenic enzyme P450cl7 is expressed in the embryonic central nervous system. Endocrinology 1995; 136: 5212–23

    Article  PubMed  CAS  Google Scholar 

  45. Zwain IH, Yen SS. Dehydroepiandrosterone: biosynthesis and metabolism in the brain. Endocrinology 1999; 140: 880–7

    Article  PubMed  CAS  Google Scholar 

  46. Compagnone NA, Mellon SH. Dehydroepiandrosterone: a potential signalling molecule for neocortical organization during development. Proc Natl Acad Sci U S A 1998; 95: 4678–83

    Article  PubMed  CAS  Google Scholar 

  47. Debonnel G, Bergeron R, de Montigny C. Potentiation of neuronal NMDA response induced by dehydroepiandrosterone and its suppression by progesterone: effects mediated via sigma receptors. J Neurosci 1996; 16: 1193–202

    PubMed  Google Scholar 

  48. Majewska MD, Demirgoren S, Spivak CE, et al. The neurosteroid dehydroepiandrosterone sulfate is an allosteric antagonist of the GABAA receptor. Brain Res 1990; 526: 143–6

    Article  PubMed  CAS  Google Scholar 

  49. Demirgoren S, Majewska MD, Spivak CE, et al. Receptor binding and electrophysiological effects of dehydroepiandrosterone sulfate, an antagonist of the GABAA receptor. Neuroscience 1991; 45: 127–35

    Article  PubMed  CAS  Google Scholar 

  50. Meikle AW, Dorchuck RW, Araneo BA, et al. The presence of a dehydroepiandrosterone-specific receptor binding complex in murine T cells. J Steroid Biochem Mol Biol 1992; 42: 293–304

    Article  PubMed  CAS  Google Scholar 

  51. Okabe T, Haji M, Takayanagi R, et al. Up-regulation of high-affinity dehydroepiandrosterone binding activity by dehydroepiandrosterone in activated human T lymphocytes. J Clin Endocrinol Metab 1995; 80: 2993–6

    Article  PubMed  CAS  Google Scholar 

  52. Liu D, Dillon JS. Dehydroepiandrosterone activates endothelial cell nitric oxide synthase by a specific plasma membrane receptor coupled to Gα i2,3. J Biol Chem 2002; 277: 21379–88

    Article  PubMed  CAS  Google Scholar 

  53. Flood JF, Roberts E. Dehydroepiandrosterone sulphate improves memory in aging mice. Brain Res 1998; 448: 178–81

    Article  Google Scholar 

  54. Melchior CL, Ritzmann RF. Dehydroepiandrosterone enhances the hypnotic and hypothermie effects of ethanol and pentobar-bital. Pharmacol Biochem Behav 1992; 43: 223–7

    Article  PubMed  CAS  Google Scholar 

  55. Van Vollenhoven RF, Park JL, Genovese MC, et al. A doubleblind, placebo-controlled, clinical trial of dehydroepiandrosterone in severe systemic lupus erythematosus. Lupus 1999; 8(3): 181–7

    Article  PubMed  Google Scholar 

  56. Baulieu EE, Thomas G, Legrain S, et al. Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge Study to a sociobiomedical issue. Proc Natl Acad Sci USA 2000; 97: 4279–84

    Article  PubMed  CAS  Google Scholar 

  57. Labrie F, Bélanger A, Cusan L, et al. Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab 1997; 82: 2396–402

    Article  PubMed  CAS  Google Scholar 

  58. Martel C, Sourla A, Pelletier G, et al. Predominant androgenic component in the stimulatory effect of dehydroepiandrosterone on bone mineral density in the rat. J Endocrinol 1998; 157: 433–42

    Article  PubMed  CAS  Google Scholar 

  59. MacEwen EG, Kurzmann ID. Obesity in the dog: role of the adrenal steroid dehydroepiandrosterone. J Nutr 1991; 121: 51–5

    Google Scholar 

  60. Casson PR, Santoro N, Elkind-Hirsch K, et al. Postmenopausal dehydroepiandrosterone administration increases free insulin-like growth factor-I and decreases high-density lipoprotein: a six-month trial. Fertil Steril 1998; 70: 107–10

    Article  PubMed  CAS  Google Scholar 

  61. Morales AJ, Nolan JJ, Nelson JC, et al. Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age. J Clin Endocrinol Metab 1994; 78: 1360–7

    Article  PubMed  CAS  Google Scholar 

  62. Villareal DT, Holloszy JO, Kohrt WM. Effects of DHEA replacement on bone mineral density and body composition in elderly women and men. Clin Endocrinol (Oxf) 2000; 53: 561–8

    Article  CAS  Google Scholar 

  63. Yen SS, Morales AJ, Khorram O. Replacement of DHEA in aging men and women: potential remedial effects. Ann New York Acad Sci 1995; 774: 128–42

    Article  CAS  Google Scholar 

  64. Young DG, Skibinski G, Mason JI, et al. The influence of age and gender on serum dehydroepiandrosterone sulphate (DHEA-S), IL-6, IL-6 soluble receptor (IL-6 sR) and transforming growth factor βl (TGF-βl) levels in normal healthy blood donors. Clin Exp Immunol 1999; 117: 476–81

    Article  PubMed  CAS  Google Scholar 

  65. Straub RH, Konecna L, Hrach S, et al. Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: possible link between endocrinosenescence and immunosenescence. J Clin Endocrinol Metab 1998; 83: 2012–7

    Article  PubMed  CAS  Google Scholar 

  66. Delpedro AD, Barjavel MJ, Mamdouh Z, et al. Activation of human monocytes by LPS and DHEA. J Interferon Cytokine Res 1998; 18: 125–35

    Article  PubMed  CAS  Google Scholar 

  67. Young DG, Skibinski G, Skibinska A, et al. Preliminary studies on the effect of dehydroepiandrosterone (DHEA) on both constitutive and phytohaemagglutinin (PHA)-inducible IL-6 and IL-2 mRNA expression and cytokine production in human spleen mononuclear cell suspensions in vitro. Clin Exp Immunol 2001; 123: 28–35

    Article  PubMed  CAS  Google Scholar 

  68. McLachlan JA, Serkin CD, Bakouche O. Dehydroepiandrosterone modulation of lipopolysaccharide-stimulated monocyte cytotoxicity. J Immunol 1996; 156: 328–35

    PubMed  CAS  Google Scholar 

  69. Casson PR, Andersen RN, Herrod HG, et al. Oral dehydroepiandrosterone in physiologic doses modulates immune function in postmenopausal women. Am J Obstet Gynecol 1993; 169: 1536–9

    PubMed  CAS  Google Scholar 

  70. Solerte SB, Fioravanti M, Vignati G, et al. Dehydroepiandrosterone sulfate enhances natural killer cell cytotoxicity in humans via locally generated immunoreactive insulin-like growth factor I. J Clin Endocrinol Metab 1999; 84: 3260–7

    Article  PubMed  CAS  Google Scholar 

  71. Daynes RA, Dudley DJ, Araneo BA. Regulation of murine lymphokine production in vivo: II. Dehydroepiandrosterone is a natural enhancer of interleukin 2 synthesis by helper T cells. Eur J Immunol 1990; 20: 793–802

    Article  PubMed  CAS  Google Scholar 

  72. Schmidt M, Kreutz M, Loffler G, et al. Conversion of dehydroepiandrosterone to downstream steroid hormones in macrophages. J Endocrinol 2000; 164: 161–9

    Article  PubMed  CAS  Google Scholar 

  73. Sansoni P, Cossarizza A, Brianti V, et al. Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood 1993; 82(9): 2767–73

    PubMed  CAS  Google Scholar 

  74. Daynes RA, Araneo BA, Ershler WB, et al. Altered regulation of IL6 production with normal aging: probable linkage to the age-associated decline in dehydroepiandrosterone and its sulfate derivative. Immunology 1993; 150 Suppl.: S219–30

    Google Scholar 

  75. Ershler WB, Sun WH, Binkley N, et al. Interleukine 6 and aging: blood levels and mononuclear cell production increase with advancing age and in vitro production is modifiable by dietary restriction. Lymphokine Cytokine Res 1993; 12: 225–30

    PubMed  CAS  Google Scholar 

  76. Krishnaraj R, Blandford G. Age-associated alterations in human natural killer cells. Clin Immunol Immunopathol 1987; 45: 268–85

    Article  PubMed  CAS  Google Scholar 

  77. Murasko DM, Nelson BJ, Silver R, et al. Immunologic response in an elderly population with a mean age of 85. Am J Med 1986; 81: 612–8

    Article  PubMed  CAS  Google Scholar 

  78. Daynes RA, Araneo BA, Hennebold J, et al. Steroids as regulators of the mammalian immune response. J Invest Dermatol 1995; 105(1 Suppl.): 14S–9S

    Article  PubMed  CAS  Google Scholar 

  79. Loria RM, Regelson W, Padgett DA. Immune response facilitation to virus and bacterial infections with dehydroepiandrosterone (DHEA). In: Kalimi M, Regelson W, editors. The biologic role of dehydroepiandrosterone (DHEA). New York: Walter de Gruyter and Co, 1990: 101–26

    Google Scholar 

  80. Chang DM, Lan JL, Lin HY, et al. Dehydroepiandrosterone treatment of women with mild-to-moderate systemic lupus erythematosus: a multicenter randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2002; 46(11): 2924–7

    Article  PubMed  CAS  Google Scholar 

  81. Van Vollenhoven RF, Engelman EG, McGuire JL. An open study of dehydroepiandrosterone in systemic lupus erythematosus. Arthritis Rheum 1994; 37(9): 1305–10

    Article  PubMed  Google Scholar 

  82. Van Vollenhoven RF, Engleman EG, McGuire JL. Dehydroepiandrosterone in systemic lupus erythematosus: results of a double-blind, placebo-controlled, randomized clinical trial. Arthritis Rheum 1995; 38: 1826–31

    Article  PubMed  Google Scholar 

  83. Labrie F, Diamond P, Cusan L, et al. Effect of 12-month dehydroepiandrosterone replacement therapy on bone, vagina, and endometrium in postmenopausal women. J Clin Endocrinol Metab 1997; 82: 3498–505

    Article  PubMed  CAS  Google Scholar 

  84. Bachmann G, Bancroft J, Braunstein G, et al. Female androgen insufficiency: the Princeton consensus statement on definition, classification, and assessment. Fertil Steril 2002 Apr; 77(4): 660–5

    Article  PubMed  Google Scholar 

  85. Muller M, Van Den Beld AW, Van Der Schouw YT, et al. Effects of dehydroepiandrosterone and atamestane supplementation on frailty in elderly men. J Clin Endocrinol Metab 2006; 91: 3988–91

    Article  PubMed  CAS  Google Scholar 

  86. Genazzani AR, Inglese S, Lombardi I, et al. Long-term low dose dehydroepiandrosterone replacement therapy in aging males with partial androgen deficiency. Aging Male 2004; 7: 133–43

    Article  PubMed  CAS  Google Scholar 

  87. Migeon CJ, Keller AR, Lawrence B, et al. Dehydroepiandrosterone and androsterone levels in human plasma: effect of age and sex: day-to-day and diurnal variations. J Clin Endocrinol Metab 1957; 17: 1051–62

    Article  PubMed  CAS  Google Scholar 

  88. Vermeulen A, Deslypene JP, Schelfhout W, et al. Adrenocortical function in old age: response to acute adrenocorticotropin stimulation. J Clin Endocrinol Metab 1982; 54: 187–91

    Article  PubMed  CAS  Google Scholar 

  89. Bélanger A, Candas B, Dupont A, et al. Changes in serum concentrations of conjugated and unconjugated steroids in 40-to 80-year-old men. J Clin Endocrinol Metab 1994; 79: 1086–90

    Article  PubMed  Google Scholar 

  90. Labrie F, Luu-The V, Lin SX, et al. The key role of 17β-HSDs in sex steroid biology. Steroids 1997; 62: 148–58

    Article  PubMed  CAS  Google Scholar 

  91. Chesnut CH, Ivey JL, Gruber HE, et al. Stanozolol in postmenopausal osteoporosis: therapeutic efficacy and possible mechanisms of action. Metabolism 1983; 32: 571–80

    Article  PubMed  Google Scholar 

  92. Need AG, Horowitz M, Morris HA, et al. Effects of nandrolone therapy on forearm bone mineral content in osteoporosis. Clin Orthopaed Related Res 1987; 225: 273–8

    Google Scholar 

  93. Miller KK, Biller BM, Hier J, et al. Androgens and bone density in women with hypopituitarism. J Clin Endocrinol Metab 2002; 87: 2770–6

    Article  PubMed  CAS  Google Scholar 

  94. Davis SR, McCloud P, Strauss BJ, et al. Testosterone enhances estradiol’s effects on postmenopausal density and sexuality. Maturitas 1995; 21: 227–36

    Article  PubMed  CAS  Google Scholar 

  95. Basson R. A new model of female sexual desire. Endocrine News 2004; 29: 22

    Google Scholar 

  96. Greenblatt RB, Barfield WE, Garner JF, et al. Evaluation of an estrogen, androgen, estrogen-androgen combination, and a placebo in the treatment of the menopause. J Clin Endocrinol Metab 1950; 10: 1547–58

    Article  PubMed  CAS  Google Scholar 

  97. Sherwin BB, Gelfand MM. The role of androgen in the maintenance of sexual functioning in oophorectomized women. Psychosom Med 1987; 49: 397–409

    PubMed  CAS  Google Scholar 

  98. Sherwin BB. Affective changes with estrogen and androgen replacement therapy in surgically menopausal women. J Affect Disorders 1988; 14: 177–87

    Article  PubMed  CAS  Google Scholar 

  99. Shifren JL, Braunstein GD, Simon JA, et al. Transdermal testosterone treatment in women with impaired sexual function after oophorectomy. N Eng J Med 2000; 343: 682–8

    Article  CAS  Google Scholar 

  100. Goldstat R, Briganti E, Tran J, et al. Transdermal testosterone therapy improves well-being, mood, and sexual function in premenopausal women. Menopause 2003; 10: 390–8

    Article  PubMed  Google Scholar 

  101. Sherwin BB, Gelfand MM. Differential symptom response to parenteral estrogen and/or androgen administration in the surgical menopause. Am J Obstet Gynecol 1985; 151: 153–60

    PubMed  CAS  Google Scholar 

  102. Notelovitz M, Watts N, Timmons C, et al. Effects of estrogen plus low dose androgen vs estrogen alone on menopausal symptoms in oophorectomized/hysterectomized women. In: Proceedings of the North American Menopause Society; 1991 Sept 16–19; Montreal, Canada, 101

  103. De Fazio J, Meldrum DR, Winer JH, et al. Direct action of androgen on hot flushes in the human male. Maturitas 1984; 6: 3–8

    Article  Google Scholar 

  104. Fournier A, Berrino F, Riboli E, et al. Breast cancer risk in relation to different types of hormone replacement therapy in the E3N-EPIC cohort. Int J Cancer 2005 Apr 10; 114(3): 448–54

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this article. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro D. Genazzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genazzani, A.D., Lanzoni, C. & Genazzani, A.R. Might DHEA be Considered a Beneficial Replacement Therapy in the Elderly?. Drugs Aging 24, 173–185 (2007). https://doi.org/10.2165/00002512-200724030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200724030-00001

Keywords

Navigation