Skip to main content
Log in

Linking Pharmacovigilance with Pharmacogenetics

  • Leading Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

The ability to identify individuals who are susceptible to adverse drug reactions (ADRs) has the potential to reduce the personal and population costs of drug-related morbidity. Some individuals may show an increased susceptibility to certain ADRs through genetic polymorphisms that alter their responses to various drugs.

We wished to establish a methodology that would be acceptable to members of the general population and that would enable estimation of the risks that specific genetic factors confer on susceptibility to specific ADRs. Buccal swabs were selected as a minimally invasive method to obtain cells for DNA extraction. We wished to determine whether DNA of sufficient quantity and quality could be obtained to enable genotyping for two different polymorphic genes that code for enzymes that are widely involved in drug disposition.

This article describes a small pilot study of methodology developed in the New Zealand Intensive Medicines Monitoring Programme (IMMP) to link prescription event monitoring (PEM) studies with pharmacogenetics. The methodology involves a nested case-control study design to investigate whether patients with genetic variants in P-glycoprotein (P-gp) and cytochrome P450 (CYP) 2C9 are more susceptible to psychiatric or visual disturbances following cyclooxygenase-2 inhibitor use (ADR signals identified in the IMMP database) than matched control patients taking the medication without experiencing any ADRs.

It was concluded that the use of buccal swabs is acceptable to patients and provides DNA of sufficient quantity and quality for genotyping. Although no differences in the distribution of genotypes in the case and control populations were found in this small study, case-control studies investigating genetic risks for ADRs using drug cohorts from PEM studies are possible, and there are several areas where population-based studies of genetic risk factors for ADRs are needed.

Examples are discussed where research in large populations is required urgently. These are: (i) genetic variations affecting P-gp function; (ii) variations affecting drugs metabolised by CYP2C9 and other polymorphic CYP enzymes; (iii) genetic variation in β-adrenergic receptors and adverse outcomes from β-adrenoceptor agonist therapy; and (iv) genetic variation in cardiac cell membrane potassium channels and their association with long QT syndromes and serious cardiac dysrhythmias.

Such studies will help to identify factors that increase the risk of unwanted outcomes from drug therapy. They will also help to establish in what circumstances genotyping should be performed prior to commencing drug treatment and in tailoring drug treatment for individual patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I

Similar content being viewed by others

References

  1. McQueen EG. Intensified adverse drug reaction reporting scheme. N Z Med J 1977; 85(589): 477

    Google Scholar 

  2. Coulter DM. Signal generation in the New Zealand Intensive Medicines Monitoring Programme: a combined clinical and statistical approach. Drug Saf 2002; 25(6): 433–9

    Article  PubMed  CAS  Google Scholar 

  3. Inman WH. Postmarketing surveillance of adverse drug reactions in general practice. II: prescription-event monitoring at the University of Southampton. BMJ (Clin Res Ed) 1981; 282 (6271): 1216–7

    Article  Google Scholar 

  4. Coulter DM. The New Zealand Intensive Medicines Monitoring Programme in pro-active safety surveillance. Pharmacoepidemiol Drug Saf 2000; 9: 273–80

    Article  PubMed  CAS  Google Scholar 

  5. Brazell C, Freeman A, Mosteller M. Maximizing the value of medicines by including pharmacogenetic research in drug development and surveillance. Br J Clin Pharmacol 2002; 53(3): 224–31

    Article  PubMed  CAS  Google Scholar 

  6. Aithal GP, Day CP, Kesteven PJ, et al. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353(9154): 717–9

    Article  PubMed  CAS  Google Scholar 

  7. Drysdale CM, McGraw DW, Stack CB, et al. Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci U S A 2000; 97(19): 10483–8

    Article  PubMed  CAS  Google Scholar 

  8. Israel E, Drazen JM, Liggett SB, et al. The effect of polymorphisms of the beta (2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am J Respir Crit Care Med 2000; 162(1): 75–80

    PubMed  CAS  Google Scholar 

  9. Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002; 287(13): 1690–8

    Article  PubMed  CAS  Google Scholar 

  10. Evans WE, McLeod HL. Pharmacogenomics: drug disposition, drug targets, and side effects. N Engl J Med 2003; 348(6): 538–49

    Article  PubMed  CAS  Google Scholar 

  11. Weinshilboum R. Inheritance and drug response. N Engl J Med 2003; 348(6): 529–37

    Article  PubMed  Google Scholar 

  12. Marzolini C, Paus E, Buclin T, et al. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 2004; 75(1): 13–33

    Article  PubMed  CAS  Google Scholar 

  13. Clark D, Morgan A, Hananeia L, et al. Drug metabolism genotypes and their association with adverse drug reactions in selected populations: a pilot study of methodology. Drug Saf 2000; 9: 393–400

    CAS  Google Scholar 

  14. Coulter DM, Clark DW, Savage RL. Celecoxib, rofecoxib, and acute temporary visual impairment. BMJ 2003; 327(7425): 1214–5

    Article  PubMed  Google Scholar 

  15. Coulter DM. Acute psychiatric reactions with COX-2 inhibitors. Prescriber Update 2002; 23(2): 21

    Google Scholar 

  16. Schwab M, Eichelbaum M, Fromm MF. Genetic polymorphisms of the human MDR1 drug transporter. Annu Rev Pharmacol Toxicol 2003; 43: 285–307

    Article  PubMed  CAS  Google Scholar 

  17. Haefliger IO, Meyer P, Flammer J, et al. The vascular endothelium as a regulator of the ocular circulation: a new concept in ophthalmology? Surv Ophthalmol 1994; 39(2): 123–32

    Article  PubMed  CAS  Google Scholar 

  18. Clark DWJ, Layton D, Shakir SAW. Do some inhibitors of cyclooxygenase-2 (COX-2) increase the risk of thromboembolic events? Linking pharmacology with pharmacoepidemiology. Drug Saf 2004; 27(7): 427–56

    Article  PubMed  CAS  Google Scholar 

  19. Tang C, Shou M, Rushmore TH, et al. In-vitro metabolism of celecoxib, a cyclooxygenase-2 inhibitor, by allelic variant forms of human liver microsomal cytochrome P450 2C9: correlation with CYP2C9 genotype and in-vivo pharmacokinetics. Pharmacogenetics 2001; 11(3): 223–35

    Article  PubMed  CAS  Google Scholar 

  20. Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45(6): 525–38

    Article  PubMed  CAS  Google Scholar 

  21. Brenner SS, Herrlinger C, Dilger K, et al. Influence of age and cytochrome P450 2C9 genotype on the steady-state disposition of diclofenac and celecoxib. Clin Pharmacokinet 2003; 42(3): 283–92

    Article  PubMed  CAS  Google Scholar 

  22. Martin JH, Begg EJ, Kennedy MA, et al. Is cytochrome P450 2C9 genotype associated with NSAID gastric ulceration? Br J Clin Pharmacol 2001; 51(6): 627–30

    Article  PubMed  CAS  Google Scholar 

  23. Roberts RL, Joyce PR, Mulder RT, et al. A common P-glycoprotein polymorphism is associated with nortriptyline-induced postural hypotension in patients treated for major depression. Pharmacogenomics J 2002; 2(3): 191–6

    Article  PubMed  CAS  Google Scholar 

  24. Richards B, Skoletsky J, Shuber AP, et al. Multiplex PCR amplification from the CFTR gene using DNA prepared from buccal brushes/swabs. Hum Mol Genet 1993; 2(2): 159–63

    Article  PubMed  CAS  Google Scholar 

  25. Daly AK, Day CP. Candidate gene case-control association studies: advantages and potential pitfalls. Br J Clin Pharmacol 2001; 52(5): 489–99

    Article  PubMed  CAS  Google Scholar 

  26. Tang K, Ngoi SM, Gwee PC, et al. Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations. Pharmacogenetics 2002; 12(6): 437–50

    Article  PubMed  CAS  Google Scholar 

  27. Kroetz DL, Pauli-Magnus C, Hodges LM, et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics 2003; 13 (8): 481–94

    Article  Google Scholar 

  28. Tucker G. Pharmacogenetics: expectations and reality. BMJ 2004; 329(7456): 4–6

    Article  PubMed  Google Scholar 

  29. Brinkmann U, Roots I, Eichelbaum M. Pharmacogenetics of the human drug-transporter gene MDR1: impact of polymorphisms on pharmacotherapy. Drug Discov Today 2001; 6(16): 835–9

    Article  PubMed  CAS  Google Scholar 

  30. Seelig A. A general pattern for substrate recognition by Pglycoprotein. Eur J Biochem 1998; 251(1-2): 252–61

    Article  PubMed  CAS  Google Scholar 

  31. Benet LZ, Izumi T, Zhang Y, et al. Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. J Control Release 1999; 62(1-2): 25–31

    Article  PubMed  CAS  Google Scholar 

  32. Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 1987; 84(21): 7735–8

    Article  PubMed  CAS  Google Scholar 

  33. Kerb R, Aynacioglu AS, Brockmoller J, et al. The predictive value of MDR1, CYP2C9, and CYP2C19 polymorphisms for phenytoin plasma levels. Pharmacogenomics J 2001; 1(3): 204–10

    Article  PubMed  CAS  Google Scholar 

  34. Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal Pglycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104(2): 147–53

    Article  PubMed  CAS  Google Scholar 

  35. Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A 1989; 86(2): 695–8

    Article  PubMed  CAS  Google Scholar 

  36. Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97(11): 2517–24

    Article  PubMed  CAS  Google Scholar 

  37. Sakaeda T, Nakamura T, Horinouchi M, et al. MDR1 genotyperelated pharmacokinetics of digoxin after single oral administration in healthy Japanese subjects. Pharm Res 2001; 18(10): 1400–4

    Article  PubMed  CAS  Google Scholar 

  38. Kim RB, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70(2): 189–99

    Article  PubMed  CAS  Google Scholar 

  39. Fellay J, Marzolini C, Meaden ER, et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 2002; 359(9300): 30–6

    Article  PubMed  CAS  Google Scholar 

  40. Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999; 16(3): 408–14

    Article  PubMed  CAS  Google Scholar 

  41. Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with Pglycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000; 97(7): 3473–8

    Article  PubMed  CAS  Google Scholar 

  42. Johne A, Kopke K, Gerloff T, et al. Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin Pharmacol Ther 2002; 72(5): 584–94

    Article  PubMed  CAS  Google Scholar 

  43. Morita N, Yasumori T, Nakayama K. Human MDR1 polymorphism: G2677T/A and C3435T have no effect on MDR1 transport activities. Biochem Pharmacol 2003; 65(11): 1843–52

    Article  PubMed  CAS  Google Scholar 

  44. Sekino K, Kubota T, Okada Y, et al. Effect of the single CYP2C9*3 allele on pharmacokinetics and pharmacodynamics of losartan in healthy Japanese subjects. Eur J Clin Pharmacol 2003; 59(8-9): 589–92

    Article  PubMed  CAS  Google Scholar 

  45. Soldner A, Benet LZ, Mutschler E, et al. Active transport of the angiotensin-II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and caco-2 cell monolayers. Br J Pharmacol 2000; 129(6): 1235–43

    Article  PubMed  CAS  Google Scholar 

  46. Cvetkovic M, Leake B, Fromm MF, et al. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 1999; 27(8): 866–71

    PubMed  CAS  Google Scholar 

  47. Uhr M, Steckler T, Yassouridis A, et al. Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood-brain barrier deficiency due to mdr1a P-glycoprotein gene disruption. Neuropsychopharmacology 2000; 22(4): 380–7

    Article  PubMed  CAS  Google Scholar 

  48. Nebert DW, Gonzalez FJ. P450 genes: structure, evolution, and regulation. Annu Rev Biochem 1987; 56: 945–93

    Article  PubMed  CAS  Google Scholar 

  49. Bertilsson L, Dahl ML, Dalen P, et al. Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 2002; 53(2): 111–22

    Article  PubMed  CAS  Google Scholar 

  50. Goldstein JA, de Morais SM. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994; 4(6): 285–99

    Article  PubMed  CAS  Google Scholar 

  51. Lasker JM, Wester MR, Aramsombatdee E, et al. Characterization of CYP2C19 and CYP2C9 from human liver: respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations. Arch Biochem Biophys 1998; 353(1): 16–28

    Article  PubMed  CAS  Google Scholar 

  52. Miners J. CYP2C9 polymorphism: impact on tolbutamide pharmacokinetics and response. Pharmacogenetics 2002; 12(2): 91–2

    Article  PubMed  Google Scholar 

  53. McCrea JB, Cribb A, Rushmore T, et al. Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-3174. Clin Pharmacol Ther 1999; 65(3): 348–52

    Article  PubMed  CAS  Google Scholar 

  54. Goldstein JA. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 2001; 52(4): 349–55

    Article  PubMed  CAS  Google Scholar 

  55. Gill HJ, Tjia JF, Kitteringham NR, et al. The effect of genetic polymorphisms in CYP2C9 on sulphamethoxazole N-hydroxylation. Pharmacogenetics 1999; 9(1): 43–53

    Article  PubMed  CAS  Google Scholar 

  56. Stubbins MJ, Harries LW, Smith G, et al. Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics 1996; 6(5): 429–39

    Article  PubMed  CAS  Google Scholar 

  57. Furuya H, Fernandez-Salguero P, Gregory W, et al. Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics 1995; 5(6): 389–92

    Article  PubMed  CAS  Google Scholar 

  58. Taylor DR, Drazen JM, Herbison GP, et al. Asthma exacerbations during long term beta agonist use: influence of beta (2) adrenoceptor polymorphism. Thorax 2000; 55(9): 762–7

    Article  PubMed  CAS  Google Scholar 

  59. Green SA, Rathz DA, Schuster AJ, et al. The Ile164 beta (2)-adrenoceptor polymorphism alters salmeterol exosite binding and conventional agonist coupling to G (s). Eur J Pharmacol 2001; 421(3): 141–7

    Article  PubMed  CAS  Google Scholar 

  60. Mann M, Chowdhury B, Sullivan E, et al. Serious asthma exacerbations in asthmatics treated with high-dose formoterol. Chest 2003; 124(1): 70–4

    Article  PubMed  CAS  Google Scholar 

  61. Lipworth BJ, Aziz I. Bronchodilator response to albuterol after regular formoterol and effects of acute corticosteroid administration. Chest 2000; 117(1): 156–62

    Article  PubMed  CAS  Google Scholar 

  62. Lipworth BJ. Airway subsensitivity with long-acting beta 2-agonists: is there cause for concern? Drug Saf 1997; 16(5): 295–308

    Article  PubMed  CAS  Google Scholar 

  63. Green SA, Turki J, Bejarano P, et al. Influence of beta 2-adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am J Respir Cell Mol Biol 1995; 13(1): 25–33

    PubMed  CAS  Google Scholar 

  64. Liggett SB. Polymorphisms of the beta2-adrenergic receptor and asthma. Am J Respir Crit Care Med 1997; 156(4 Pt 2): S156–62

    PubMed  CAS  Google Scholar 

  65. Liggett SB. Genetics of beta 2-adrenergic receptor variants in asthma. Clin Exp Allergy 1995; 25Suppl. 2: 89–94

    Article  PubMed  Google Scholar 

  66. Lima JJ, Thomason DB, Mohamed MH, et al. Impact of genetic polymorphisms of the beta2-adrenergic receptor on albuterol bronchodilator pharmacodynamics. Clin Pharmacol Ther 1999; 65(5): 519–25

    Article  PubMed  CAS  Google Scholar 

  67. Littlejohn MD, Taylor DR, Miller AL, et al. Determination of beta2-adrenergic receptor (ADRB2) haplotypes by a multiplexed polymerase chain reaction assay [abstract]. Hum Mutat 2002; 20(6): 479

    Article  PubMed  Google Scholar 

  68. Taylor DR, Kennedy MA. Genetic variation of the beta (2)-adrenoceptor: its functional and clinical importance in bronchial asthma. Am J Pharmacogenomics 2001; 1(3): 165–74

    Article  PubMed  CAS  Google Scholar 

  69. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med 2004; 350(10): 1013–22

    Article  PubMed  CAS  Google Scholar 

  70. Escande D. Pharmacogenetics of cardiac K (+) channels. Eur J Pharmacol 2000; 410(2-3): 281–7

    Article  PubMed  CAS  Google Scholar 

  71. Guzey C, Spigset O. Genotyping of drug targets: a method to predict adverse drug reactions? Drug Saf 2002; 25(8): 553–60

    Article  PubMed  CAS  Google Scholar 

  72. Haddad PM, Anderson IM. Antipsychotic-related QTc prolongation, torsade de pointes and sudden death. Drugs 2002; 62(11): 1649–71

    Article  PubMed  CAS  Google Scholar 

  73. Hu S, Wang S, Gibson J, et al. Inhibition of delayed rectifier K+ channels by dexfenfluramine (Redux). J Pharmacol Exp Ther 1998; 287(2): 480–6

    PubMed  CAS  Google Scholar 

  74. Davies M, Behr E, Carter N, et al. Methodology of the Drug-Induced Arrythmia Risk Evaluation (DARE) study [abstract]. Pharmacoepidemiol Drug Saf 2003; 12: S115

    Google Scholar 

Download references

Acknowledgements

A generous grant from the New Zealand Pharmacy Education and Research Foundation has enabled us to undertake the experimental work described in this article. We are also grateful to Janelle Ashton for invaluable assistance with this study and to Deborah Layton and Andrew Boshier for further information on pharmacogenetic studies initiated in the Drug Safety Research Unit. Dr Kennedy is a Senior Research Fellow of the Health Research Council of New Zealand. Dr Roberts is the recipient of a Health Sciences Career Development Award of the University of Otago. The New Zealand Intensive Medicines Monitoring Programme (IMMP) has been supported financially by Medsafe of the NZ Ministry of Health and some pharmaceutical companies, in particular, Merck Research Laboratories, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. J. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, D.W.J., Donnelly, E., Coulter, D.M. et al. Linking Pharmacovigilance with Pharmacogenetics. Drug-Safety 27, 1171–1184 (2004). https://doi.org/10.2165/00002018-200427150-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200427150-00002

Keywords

Navigation