Skip to main content
Log in

Mechanisms of sensing and adaptive responses to low oxygen conditions in mammals and yeasts

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Oxygen is required for effective production of ATP and plays a key role in the maintenance of life for all organisms, excepting strict anaerobes. The ability of aerobic organisms to sense and respond to changes in oxygen level is a basic requirement for their survival. Eukaryotes have developed adaptive mechanisms to sense and respond to decreased oxygen concentrations (hypoxia) through adjustment of oxygen homeostasis by upregulating hypoxic and downregulating aerobic nuclear genes. This review summarizes recent data on mechanisms of cells sensing and responding to changes in oxygen availability in mammals and in yeasts. In the first part of the review, prominence is given to functional regulation and stabilization of hypoxia-inducible factors (HIFs), HIF-mediated regulation of electron transport flux and repression of lipogenesis, as well as to hypoxia-induced mitochondrial permeability transition (pore) opening, cell death, and autophagy. In the second part of the review emphasis is placed on oxygen sensing in nonpathogenic yeasts by heme, unsaturated fatty acids, and sterols, as well as on responses to hypoxia in fungal pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FAS:

fatty acid synthase

FIH:

factor inhibiting HIF

HIF:

hypoxia-inducible factor

mPTP:

mitochondrial permeability transition pore

ODD:

oxygen-dependent degradation domain

PDH:

pyruvate dehydrogenase

PHD:

prolyl-4-hyrdoxylase domain enzymes

ROS:

reactive oxygen species

SCAP:

SREBP cleavage-acting protein

SREBP:

sterol regulatory element binding protein

TAD:

terminal transactivation domain

References

  1. Alcaide-German, M. L., Vara-Vega, A., Garcia-Fernandez, L. F., Landazuri, M. O., and del Peso, L. (2008) A yeast three-hybrid system that reconstitutes mammalian hypoxia inducible factor regulatory machinery, BMC Cell Biol., 9, 18.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Jung, M. E., Simpkins, J. W., Wilson, A. M., Downey, H. F., and Mallet, R. T. (2008) Intermittent hypoxia conditioning prevents behavioral deficit and brain oxidative stress in ethanol-withdrawn rats, J. Appl. Physiol., 105, 510–517.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Hon, T., Dodd, A., Dirmeier, R., Gorman, N., Sinclair, P. R., Zhang, L., and Poyton, R. O. (2003) A mechanism of oxygen sensing in yeast. Multiple oxygen-responsive steps in the heme biosynthetic pathway affect Hap1 activity, J. Biol. Chem., 278, 50771–50780.

    Article  CAS  PubMed  Google Scholar 

  4. Hoppeler, H., Vogt, M., Weibel, E. R., and Fluck, M. (2003) Response of skeletal muscle mitochondria to hypoxia, Exp. Physiol., 88, 109–119.

    Article  CAS  PubMed  Google Scholar 

  5. Chachami, G., Paraskeva, E., Mingot, J. M., Braliou, G. G., Gorlich, D., and Simos, G. (2009) Transport of hypoxia-inducible factor HIF-1α into the nucleus involves importins 4 and 7, Biochem. Biophys. Res. Commun., 390, 235–240.

    Article  CAS  PubMed  Google Scholar 

  6. Culver, C., Melvin, A., Mudie, S., and Rocha, S. (2011) HIF-1α depletion results in SP1-mediated cell cycle disruption and alters the cellular response to chemotherapeutic drugs, Cell Cycle, 10, 1249–1260.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Guzy, R. D., and Schumacker, P. T. (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia, Exp. Physiol., 91, 807–819.

    Article  CAS  PubMed  Google Scholar 

  8. Bruick, R. K. (2003) Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor, Genes Devel., 17, 2614–2623.

    Article  CAS  PubMed  Google Scholar 

  9. Majmundar, A. J., Wong, W. J., and Simon, M. C. (2010) Hypoxia-inducible factors and the response to hypoxic stress, Mol. Cell, 40, 294–309.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chun, Y.-S., Choi, E., Kim, T.-Y., Kim, M.-S., and Park, J.-W. (2002) A dominant-negative isoform lacking exons 11 and 12 of the human hypoxia-inducible factor-1α gene, Biochem. J., 362, 71–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kaelin, W. G., Jr. (2002) How oxygen makes its presence felt, Genes Devel., 16, 1441–1445.

    Article  CAS  PubMed  Google Scholar 

  12. Semenza, G. L. (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1, Biochem. J., 405, 1–9.

    CAS  PubMed  Google Scholar 

  13. Berra, E., Benizri, E., Ginouves, A., Volmat, V., Roux, D., and Pouyssegur, J. (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia, EMBO J., 22, 4082–4090.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Minamishima, Y. A., Moslehi, J., Bardeesy, N., Cullen, D., Bronson, R. T., and Kaelin, W. G., Jr. (2008) Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure, Blood, 111, 3236–3244.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Takeda, K., Aguila, H. L., Parikh, N. S., Li, X., Lamothe, K., Duan, L. J., Takeda, H., Lee, F. S., and Fong, G. H. (2008) Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins, Blood, 111, 3229–3235.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kwon, H. S., Kim, D. R., Yang, E. G., Park, Y. K., Ahn, H. C., Min, S. J., and Ahn, D. R. (2012) Inhibition of VEGF transcription through blockade of the hypoxia inducible factor-1α-p300 interaction by a small molecule, Bioorg. Med. Chem. Lett., 22, 5249–5252.

    Article  CAS  PubMed  Google Scholar 

  17. Hagen, T. (2012) Oxygen versus reactive oxygen in the regulation of HIF-1α: the balance tips, Biochem. Res. Int., 2012, 436981.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Isaacs, J. S., Jung, Y. J., Mimnaugh, E. G., Martinez, A., Cuttitta, F., and Neckers, L. M. (2002) Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway, J. Biol. Chem., 277, 29936–29944.

    Article  CAS  PubMed  Google Scholar 

  19. Kong, X., Lin, Z., Liang, D., Fath, D., Sang, N., and Caro, J. (2006) Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1α, Mol. Cell. Biol., 26, 2019–2028.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Turrens, J. F. (2003) Mitochondrial formation of reactive oxygen species, J. Physiol., 552, 335–344.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Izyumov, D. S., Domnina, L. V., Nepryakhina, O. K., Avetisyan, A. V., Golyshev, S. A., Ivanova, O. Y., Korotetskaya, M. V., Lyamzaev, K. G., Pletjushkina, O. Y., Popova, E. N., and Chernyak, B. V. (2010) Mitochondria as source of reactive oxygen species under oxidative stress. Study with novel mitochondria-targeted antioxidants — the “Skulachev-ion” derivatives, Biochemistry (Moscow), 75, 123–129.

    Article  CAS  Google Scholar 

  22. Murphy, A. N. (2009) In a flurry of PINK, mitochondrial bioenergetics takes a leading role in Parkinson’s disease, EMBO Mol. Med., 1, 81–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.

    Article  CAS  PubMed  Google Scholar 

  24. Brunelle, J. K., Bell, E. L., Quesada, N. M., Vercauteren, K., Tiranti, V., Zeviani, M., Scarpulla, R. C., and Chandel, N. S. (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation, Cell Metab., 1, 409–414.

    Article  CAS  PubMed  Google Scholar 

  25. Mansfield, K. D., Guzy, R. D., Pan, Y., Young, R. M., Cash, T. P., Schumacker, P. T., and Simon, M. C. (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation, Cell Metab., 1, 393–399.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Taylor, C. T., and Moncada, S. (2010) Nitric oxide, cytochrome c oxidase, and the cellular response to hypoxia, Arterioscler. Thromb. Vasc. Biol., 30, 643–647.

    Article  CAS  PubMed  Google Scholar 

  27. Reed, L. J. (2001) A trail of research from lipoic acid to α-keto acid dehydrogenase complexes, J. Biol. Chem., 276, 38329–38336.

    Article  CAS  PubMed  Google Scholar 

  28. Fries, M., Jung, H. I., and Perham, R. N. (2003) Reaction mechanism of the heterotetrameric (α2β2) E1 component of 2-oxo acid dehydrogenase multienzyme complexes, Biochemistry, 42, 6996–7002.

    Article  CAS  PubMed  Google Scholar 

  29. Sugden, M. C., and Holness, M. J. (2003) Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs, Am. J. Physiol. Endocrinol. Metab., 284, E855–862.

    CAS  PubMed  Google Scholar 

  30. Kristo, G., Yoshimura, Y., Niu, J., Keith, B. J., Mentzer, R. M., Jr., Bunger, R., and Lasley, R. D. (2004) The intermediary metabolite pyruvate attenuates stunning and reduces infarct size in in vivo porcine myocardium, Am. J. Physiol. Heart Circ. Physiol., 286, H517–524.

    Article  CAS  PubMed  Google Scholar 

  31. Wigfield, S. M., Winter, S. C., Giatromanolaki, A., Taylor, J., Koukourakis, M. L., and Harris, A. L. (2008) PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer, Brit. J. Cancer, 98, 1975–1984.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Brahimi-Horn, M. C., Chiche, J., and Pouyssegur, J. (2007) Hypoxia signalling controls metabolic demand, Curr. Opin. Cell Biol., 19, 223–229.

    Article  CAS  PubMed  Google Scholar 

  33. Lu, H., Dalgard, C. L., Mohyeldin, A., McFate, T., Tait, A. S., and Verma, A. (2005) Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1, J. Biol. Chem., 280, 41928–41939.

    Article  CAS  PubMed  Google Scholar 

  34. Choi, S. M., Cho, H. J., Cho, H., Kim, K. H., Kim, J. B., and Park, H. (2008) Stra13/DEC1 and DEC2 inhibit sterol regulatory element binding protein-1c in a hypoxia-inducible factor-dependent mechanism, Nucleic Acids Res., 36, 6372–6385.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Bernardi, P., Krauskopf, A., Basso, E., Petronilli, V., Blachly-Dyson, E., Di Lisa, F., and Forte, M. A. (2006) The mitochondrial permeability transition from in vitro artifact to disease target, FEBS J., 273, 2077–2099.

    Article  CAS  PubMed  Google Scholar 

  36. Leung, A. W., and Halestrap, A. P. (2008) Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore, Biochim. Biophys. Acta, 1777, 946–952.

    Article  CAS  PubMed  Google Scholar 

  37. Halestrap, A. P. (2009) What is the mitochondrial permeability transition pore? J. Mol. Cell. Cardiol., 46, 821–831.

    Article  CAS  PubMed  Google Scholar 

  38. Kuzminova, A. E., Zhuravlyova, A. V., Vyssokikh, M. Yu., Zorova, L. D., Krasnikov, B. F., and Zorov, D. B. (1998) The permeability transition pore induced under anaerobic conditions in mitochondria energized with ATP, FEBS Lett., 434, 313–316.

    Article  CAS  PubMed  Google Scholar 

  39. Krasnikov, B. F., Kuzminova, A. E., and Zorov, D. B. (1997) The Ca2+-induced pore opening in mitochondria energized by succinate-ferricyanide electron transport, FEBS Lett., 419, 137–140.

    Article  CAS  PubMed  Google Scholar 

  40. Nishida, T., Inoue, T., Kamiike, W., Kawashima, Y., and Tagawa, K. (1989) Involvement of Ca2+ release and activation of phospholipase A2 in mitochondrial dysfunction during anoxia, J. Biochem., 106, 533–538.

    CAS  PubMed  Google Scholar 

  41. Wang, X., Karlsson, J. O., Zhu, C., Bahr, B. A., Hagberg, H., and Blomgren, K. (2001) Caspase-3 activation after neonatal rat cerebral hypoxia-ischemia, Biol. Neonate, 79, 172–179.

    Article  CAS  PubMed  Google Scholar 

  42. Belosludtsev, K. N., Saris, N.-E. L., Belosludtseva, N. V., Trudovishnikov, A. S., Lukyanova, L. D., and Mironova, G. D. (2009) Physiological aspects of the mitochondrial cyclosporin A-insensitive palmitate/Ca2+-induced pore: tissue specificity, age profile and dependence on the animal’s adaptation to hypoxia, J. Bioenerg. Biomembr., 41, 395–401.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu, C., Qiu, L., Wang, X., Hallin, U., Cande, C., Kroemer, G., Hagberg, H., and Blomgren, K. (2003) Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain, J. Neurochem., 6, 306–317.

    Google Scholar 

  44. Kang, P. M., Haustetter, A., Aoki, H., Usheva, A., and Izumo, S. (2000) Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation, Circ. Res., 87, 118–125.

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka, T., Miyata, T., Inagi, R., Kurokawa, K., Adler, S., Fujita, T., and Nangaku, M. (2003) Hypoxia-induced apoptosis in cultured glomerular endothelial cells: involvement of mitochondrial pathways, Kidney Int., 64, 2020–2032.

    Article  CAS  PubMed  Google Scholar 

  46. Yuan, G., Adhikary, G., McCormic, A. A., Holcroft, J. J., Kumar, G. K., and Prabhakar, N. R. (2004) Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in rat PC12 cells, J. Physiol., 557, 773–783.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Chen, D., Li, M., Luo, J., and Gu, W. (2003) Direct interactions between HIF-1α and Mdm2 modulate p53 function, J. Biol. Chem., 278, 13595–13598.

    Article  CAS  PubMed  Google Scholar 

  48. Greijer, A. E., and van der Wall, E. (2004) The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis, J. Clin. Pathol., 57, 1009–1014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Hansson, L. O., Friedler, A., Freund, S., Rudiger, S., and Fersht, A. R. (2002) Two sequence motifs from HIF-1α bind to the DNA-binding site of p53, Proc. Natl. Acad. Sci. USA, 99, 10305–10309.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Wang, X., Ma, S., and Qi, G. (2012) Effect of hypoxia-inducible factor 1α on hypoxia/reoxygenation-induced apoptosis in primary neonatal rat cardiomyocytes, Biochem. Biophys. Res. Commun., 417, 1227–1234.

    Article  CAS  PubMed  Google Scholar 

  51. Kilic, M., Kasperczyk, H., Fulda, S., and Debatin, K. M. (2007) Role of hypoxia inducible factor-1α in modulation of apoptosis resistance, Oncogene, 26, 2027–2038.

    Article  CAS  PubMed  Google Scholar 

  52. Van Hoecke, M., Prigent-Tessier, A. S., Garnier, P. E., Bertrand, N. M., Filomenko, R., Bettaieb, A., Marie, C., and Beley, A. G. (2007) Evidence of HIF-1 functional binding activity to caspase-3 promoter after photothrombotic cerebral ischemia, Mol. Cell. Neurosci., 34, 40–47.

    Article  PubMed  Google Scholar 

  53. Whelan, K. A., Caldwell, S. A., Shahriari, K. S., Jackson, S. R., Franchetti, L. D., Johannes, G. J., and Reginato, M. J. (2010) Hypoxia suppression of Bim and Bmf blocks anoikis and luminal clearing during mammary morphogenesis, Mol. Biol. Cell, 21, 3829–3837.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Bertout, J. A., Majmundar, A. J., Gordan, J. D., Lam, J. C., Ditsworth, D., Keith, B., Brown, E. J., Nathanson, K. L., and Simon, M. C. (2009) HIF2α inhibition promotes p53 pathway activity, tumor cell death, and radiation responses, Proc. Natl. Acad. Sci. USA, 106, 14391–14396.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Turchi, L., Aberdam, E., Mazure, N., Pouyssegur, J., Deckert, M., Kitajima, S., Aberdam, D., and Virolle, T. (2008) Hif-2α mediates UV-induced apoptosis through a novel ATF3-dependent death pathway, Cell Death & Differentiation, 15, 1472–1480.

    Article  CAS  Google Scholar 

  56. Yu, E. Z., Li, Y. Y., Liu, X. H., Kagan, E., and McCarron, R. M. (2004) Antiapoptotic action of hypoxia-inducible factor-1α in human endothelial cells, Lab. Invest., 84, 553–561.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, H., Bosch-Marce, M., Shimoda, L. A., Tan, Y. S., Baek, J. H., Wesley, J. B., Gonzalez, F. J., and Semenza, G. L. (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia, J. Biol. Chem., 283, 10892–10903.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Song, Z. C., Zhou, W., Shu, R., and Ni, J. (2012) Hypoxia induces apoptosis and autophagic cell death in human periodontal ligament cells through HIF-1α pathway, Cell Prolif., 45, 239–248.

    Article  CAS  PubMed  Google Scholar 

  59. Wang, M., Crager, M., and Pugazhenthi, S. (2012) Modulation of apoptosis pathways by oxidative stress and autophagy in β cells, Exp. Diabetes Res., 2012, 647914.

    PubMed Central  PubMed  Google Scholar 

  60. Ryter, S. W., and Choi, A. M. (2010) Autophagy in the lung, Proc. Am. Thoracic Soc., 7, 13–21.

    Article  Google Scholar 

  61. Lai, L. C., Kosorukoff, A. L., Burke, P. V., and Kwast, K. E. (2006) Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae, Eukaryotic Cell, 5, 1468–1489.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Gonzalez Siso, M. I., Becerra, M., Lamas Maceiras, M., Vizoso Vazquez, A., and Cerdan, M. E. (2012) The yeast hypoxic responses, resources for new biotechnological opportunities, Biotechnol. Lett., 34, 2161–2173.

    Article  PubMed  Google Scholar 

  63. Grahl, N., and Cramer, R. A., Jr. (2010) Regulation of hypoxia adaptation: an overlooked virulence attribute of pathogenic fungi? Med. Mycol., 48, 1–15.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Forsburg, S. L., and Guarente, L. (1989) Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer, Genes Devel., 3, 1166–1178.

    Article  CAS  PubMed  Google Scholar 

  65. Olesen, J. T., and Guarente, L. (1990) The HAP2 subunit of yeast CCAAT transcriptional activator contains adjacent domains for subunit association and DNA recognition: model for the HAP2/3/4 complex, Genes Devel., 4, 1714–1729.

    Article  CAS  PubMed  Google Scholar 

  66. Zitomer, R. S., and Lowry, C. V. (1992) Regulation of gene expression by oxygen in Saccharomyces cerevisiae, Microbiol. Mol. Biol. Rev., 56, 1–11.

    CAS  Google Scholar 

  67. Nakagawa, Y., Ueda, A., Kaneko, Y., and Harashima, S. (2003) Merging of multiple signals regulating Δ9 fatty acid desaturase gene transcription in Saccharomyces cerevisiae, Mol. Genet. Genom., 269, 370–380.

    Article  CAS  Google Scholar 

  68. Jiang, Y., Vasconcelles, M. J., Wretzel, S., Light, A., Martin, C. E., and Goldberg, M. A. (2001) MGA2 is involved in the low-oxygen response element-dependent hypoxic induction of genes in Saccharomyces cerevisiae, Mol. Cell. Biol., 21, 6161–6169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Rape, M., Hoppe, T., Gorr, I., Kalocay, M., Richly, H., and Jentsch, S. (2001) Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone, Cell, 107, 667–677.

    Article  CAS  PubMed  Google Scholar 

  70. Vasconcelles, M. J., Jiang, Y., McDaid, K., Gilooly, L., Wretzel, S., Porter, D. L., Martin, C. E., and Goldberg, M. A. (2001) Identification and characterization of a low oxygen response element involved in the hypoxic induction of a family of Saccharomyces cerevisiae genes. Implications for the conservation of oxygen sensing in eukaryotes, J. Biol. Chem., 276, 14374–14384.

    CAS  PubMed  Google Scholar 

  71. Todd, B. L., Stewart, E. V., Burg, J. S., Hughes, A. L., and Espenshade, P. J. (2006) Sterol regulatory element binding protein is a principal regulator of anaerobic gene expression in fission yeast, Mol. Cell. Biol., 26, 2817–2831.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Hughes, B. T., and Espenshade, P. J. (2008) Oxygen-regulated degradation of fission yeast SREBP by Ofd1, a prolyl hydroxylase family member, EMBO J., 27, 1491–1501.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Synnott, J. M., Guida, A., Mulhern-Haughey, S., Higgins, D. G., and Butler, G. (2010) Regulation of the hypoxic response in Candida albicans, Eukaryot. Cell, 9, 1734–1746.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Bien, C. M., and Espenshade, P. J. (2010) Sterol regulatory element binding proteins in fungi: hypoxic transcription factors linked to pathogenesis, Eukaryot. Cell, 9, 352–359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Lando, D., Balmer, J., Laue, E. D., and Kouzarides, T. (2012) The S. pombe histone H2A dioxygenase Ofd2 regulates gene expression during hypoxia, PloS One, 7, e29765.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Davies, B. S., Wang, H. S., and Rine, J. (2005) Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae: similar activation/regulatory domains but different response mechanisms, Mol. Cell. Biol., 25, 7375–7385.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Kovaleva, M. V., Sukhanova, E. I., Trendeleva, T. A., Zyl’kova, M. V., Ural’skaya, L. A., Popova, K. M., Saris, N.-E. L., and Zvyagilskaya, R. A. (2009) Induction of a non-specific permeability transition in mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, J. Bioenerg. Biomembr., 41, 239–249.

    Article  CAS  PubMed  Google Scholar 

  78. Kovaleva, M. V., Sukhanova, E. I., Trendeleva, T. A., Popova, K. M., Zylkova, M. V., Uralskaya, L. A., and Zvyagilskaya, R. A. (2010) Induction of permeability of the inner membrane of yeast mitochondria, Biochemistry (Moscow), 75, 297–303.

    Article  CAS  Google Scholar 

  79. Trendeleva, T., Sukhanova, E., Ural’skaya, L., Saris, N.-E. L., and Zvyagilskaya, R. (2011) Mitochondria from Dipodascus (Endomyces) magnusii and Yarrowia lipolytica yeasts did not undergo a Ca2+-dependent permeability transition even under anaerobic conditions, J. Bioenerg. Biomembr., 43, 623–631.

    Article  CAS  PubMed  Google Scholar 

  80. Ernst, J. F., and Tielker, D. (2009) Responses to hypoxia in fungal pathogens, Cell. Microbiol., 11, 183–190.

    Article  CAS  PubMed  Google Scholar 

  81. Cleary, I. A., Mulabagal, P., Reinhard, S. M., Yadev, N. P., Murdoch, C., Thornhill, M. H., Lazzell, A. L., Monteagudo, C., Thomas, D. P., and Saville, S. P. (2010) Pseudohyphal regulation by the transcription factor Rfg1p in Candida albicans, Eukaryot. Cell, 9, 1363–1373.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Stichternoth, C., and Ernst, J. F. (2009) Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans, Appl. Environ. Microbiol., 75, 3663–3672.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Askew, C., Sellam, A., Epp, E., Hogues, H., Mullick, A., Nantel, A., and Whiteway, M. (2009) Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans, PLOS Pathogens, 5, e1000612.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Kelly, M. T., MacCallum, D. M., Clancy, S. D., Odds, F. C., Brown, A. J., and Butler, G. (2004) The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence, Mol. Microbiol., 53, 969–983.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Trendeleva.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 8, pp. 944–956.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trendeleva, T.A., Aliverdieva, D.A. & Zvyagilskaya, R.A. Mechanisms of sensing and adaptive responses to low oxygen conditions in mammals and yeasts. Biochemistry Moscow 79, 750–760 (2014). https://doi.org/10.1134/S0006297914080033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914080033

Key words

Navigation