Semin Respir Crit Care Med 2014; 35(03): 307-315
DOI: 10.1055/s-0034-1376861
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Cellular Activation in the Immune Response of Sarcoidosis

Gernot Zissel
1   Department of Pneumology, Center for Medicine, Medical Center, University of Freiburg, Freiburg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
09 July 2014 (online)

Abstract

Sarcoidosis is a chronic granulomatous disorder characterized by an accumulation of lymphocytes and macrophages in the alveoli. Ultimately, long-lasting, nontreated disease results in a distortion of the microarchitecture of the lower respiratory tract. Our current understanding of its pathogenesis is that several sequential immunological events finally resulting in granuloma formation are involved: (1) dependent on a susceptible genetic background described by a variety of functional polymorphisms (2) the exposure to one or several still elusive antigen(s), leads to (3) an activation of macrophages, (4) an attainment of T cell immunity against the antigen(s) mediated by antigen processing and presentation by macrophages, and finally to (5) induction of granuloma formation. In this article, a detailed review on cellular and molecular mechanisms underpinning the sarcoid granulomatous lesion will be given. The important role of alveolar macrophages, T lymphocytes, regulatory T cells, and various cytokines/chemokines in orchestrating the induction, evolution, and immunoregulation of the sarcoid granulomatous/fibrotic lesions will be underscored. Although an etiological agent for sarcoidosis has not been identified, plausible “sarcoid antigens” including mycobacterial antigens such as mKatG or ESAT-6, antigens from Propionibacterium acnes, or even self-antigens will be discussed. It is possible that not one single causative agent exists but several germs, microbial products, or inorganic substances might induce pathogenetic mechanisms leading to a disease called sarcoidosis.

 
  • References

  • 1 Spagnolo P, Grunewald J. Recent advances in the genetics of sarcoidosis. J Med Genet 2013; 50 (5) 290-297
  • 2 Müller-Quernheim J, Schürmann M, Hofmann S , et al. Genetics of sarcoidosis. Clin Chest Med 2008; 29 (3) 391-414 , viii
  • 3 Iannuzzi MC, Maliarik MJ, Poisson LM, Rybicki BA. Sarcoidosis susceptibility and resistance HLA-DQB1 alleles in African Americans. Am J Respir Crit Care Med 2003; 167 (9) 1225-1231
  • 4 Rybicki BA, Maliarik MJ, Poisson LM , et al. The major histocompatibility complex gene region and sarcoidosis susceptibility in African Americans. Am J Respir Crit Care Med 2003; 167 (3) 444-449
  • 5 Grunewald J, Janson CH, Eklund A , et al. Restricted V alpha 2.3 gene usage by CD4+ T lymphocytes in bronchoalveolar lavage fluid from sarcoidosis patients correlates with HLA-DR3. Eur J Immunol 1992; 22 (1) 129-135
  • 6 Oswald-Richter K, Sato H, Hajizadeh R , et al. Mycobacterial ESAT-6 and katG are recognized by sarcoidosis CD4+ T cells when presented by the American sarcoidosis susceptibility allele, DRB1*1101. J Clin Immunol 2010; 30 (1) 157-166
  • 7 Nguyen T, Liu XK, Zhang Y, Dong C. BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. J Immunol 2006; 176 (12) 7354-7360
  • 8 Valentonyte R, Hampe J, Huse K , et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat Genet 2005; 37 (4) 357-364
  • 9 Zissel G, Ernst M, Schlaak M, Müller-Quernheim J. Accessory function of alveolar macrophages from patients with sarcoidosis and other granulomatous and nongranulomatous lung diseases. J Investig Med 1997; 45 (2) 75-86
  • 10 Adrianto I, Lin CP, Hale JJ , et al. Genome-wide association study of African and European Americans implicates multiple shared and ethnic specific loci in sarcoidosis susceptibility. PLoS ONE 2012; 7 (8) e43907
  • 11 Li Y, Wollnik B, Pabst S , et al. BTNL2 gene variant and sarcoidosis. Thorax 2006; 61 (3) 273-274
  • 12 Rybicki BA, Walewski JL, Maliarik MJ, Kian H, Iannuzzi MC ; ACCESS Research Group. The BTNL2 gene and sarcoidosis susceptibility in African Americans and Whites. Am J Hum Genet 2005; 77 (3) 491-499
  • 13 Ishihara M, Ohno S, Ishida T , et al. Genetic polymorphisms of the TNFB and HSP70 genes located in the human major histocompatibility complex in sarcoidosis. Tissue Antigens 1995; 46 (1) 59-62
  • 14 Seitzer U, Swider C, Stüber F , et al. Tumour necrosis factor alpha promoter gene polymorphism in sarcoidosis. Cytokine 1997; 9 (10) 787-790
  • 15 Feng Y, Zhou J, Gu C , et al. Association of six well-characterized polymorphisms in TNF-α and TNF-β genes with sarcoidosis: a meta-analysis. PLoS ONE 2013; 8 (11) e80150
  • 16 Somoskövi A, Zissel G, Seitzer U, Gerdes J, Schlaak M, Müller-Quernheim J. Polymorphisms at position -308 in the promoter region of the TNF-alpha and in the first intron of the TNF-beta genes and spontaneous and lipopolysaccharide-induced TNF-alpha release in sarcoidosis. Cytokine 1999; 11 (11) 882-887
  • 17 Vasakova M, Sterclova M, Kolesar L , et al. Cytokine gene polymorphisms and BALF cytokine levels in interstitial lung diseases. Respir Med 2009; 103 (5) 773-779
  • 18 Zissel G, Homolka J, Schlaak J, Schlaak M, Müller-Quernheim J. Anti-inflammatory cytokine release by alveolar macrophages in pulmonary sarcoidosis. Am J Respir Crit Care Med 1996; 154 (3 Pt 1) 713-719
  • 19 Krein PM, Winston BW. Roles for insulin-like growth factor I and transforming growth factor-beta in fibrotic lung disease. Chest 2002; 122 (6, Suppl): 289S-293S
  • 20 Sgonc R, Wick G. Pro- and anti-fibrotic effects of TGF-beta in scleroderma. Rheumatology (Oxford) 2008; 47 (Suppl. 05) v5-v7
  • 21 Prud'homme GJ. Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest 2007; 87 (11) 1077-1091
  • 22 Muraközy G, Gaede KI, Zissel G, Schlaak M, Müller-Quernheim J. Analysis of gene polymorphisms in interleukin-10 and transforming growth factor-beta 1 in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2001; 18 (2) 165-169
  • 23 Gaede KI, Amicosante M, Schürmann M, Fireman E, Saltini C, Müller-Quernheim J. Function associated transforming growth factor-beta gene polymorphism in chronic beryllium disease. J Mol Med (Berl) 2005; 83 (5) 397-405
  • 24 Kruit A, Grutters JC, Ruven HJ , et al. Transforming growth factor-beta gene polymorphisms in sarcoidosis patients with and without fibrosis. Chest 2006; 129 (6) 1584-1591
  • 25 Pabst S, Fränken T, Schönau J , et al. Transforming growth factor-beta gene polymorphisms in different phenotypes of sarcoidosis. Eur Respir J 2011; 38 (1) 169-175
  • 26 Crouser ED, Julian MW, Crawford M , et al. Differential expression of microRNA and predicted targets in pulmonary sarcoidosis. Biochem Biophys Res Commun 2012; 417 (2) 886-891
  • 27 Pabst S, Baumgarten G, Stremmel A , et al. Toll-like receptor (TLR) 4 polymorphisms are associated with a chronic course of sarcoidosis. Clin Exp Immunol 2006; 143 (3) 420-426
  • 28 Pabst S, Bradler O, Gillissen A, Nickenig G, Skowasch D, Grohe C. Toll-like receptor-9 polymorphisms in sarcoidosis and chronic obstructive pulmonary disease. Adv Exp Med Biol 2013; 756: 239-245
  • 29 Veltkamp M, van Moorsel CH, Rijkers GT, Ruven HJ, Grutters JC. Genetic variation in the Toll-like receptor gene cluster (TLR10-TLR1-TLR6) influences disease course in sarcoidosis. Tissue Antigens 2012; 79 (1) 25-32
  • 30 Veltkamp M, Grutters JC, van Moorsel CH, Ruven HJ, van den Bosch JM. Toll-like receptor (TLR) 4 polymorphism Asp299Gly is not associated with disease course in Dutch sarcoidosis patients. Clin Exp Immunol 2006; 145 (2) 215-218
  • 31 Agostini C, Meneghin A, Semenzato G. T-lymphocytes and cytokines in sarcoidosis. Curr Opin Pulm Med 2002; 8 (5) 435-440
  • 32 Nicod LP, Cochand L, Dreher D. Antigen presentation in the lung: dendritic cells and macrophages. Sarcoidosis Vasc Diffuse Lung Dis 2000; 17 (3) 246-255
  • 33 Agerberth B, Grunewald J, Castaños-Velez E , et al. Antibacterial components in bronchoalveolar lavage fluid from healthy individuals and sarcoidosis patients. Am J Respir Crit Care Med 1999; 160 (1) 283-290
  • 34 Zissel G, Bäumer I, Fleischer B, Schlaak M, Müller-Quernheim J. TCR V beta families in T cell clones from sarcoid lung parenchyma, BAL, and blood. Am J Respir Crit Care Med 1997; 156 (5) 1593-1600
  • 35 Darlington P, Haugom-Olsen H, von Sivers K , et al. T-cell phenotypes in bronchoalveolar lavage fluid, blood and lymph nodes in pulmonary sarcoidosis—indication for an airborne antigen as the triggering factor in sarcoidosis. J Intern Med 2012; 272 (5) 465-471
  • 36 Crowley LE, Herbert R, Moline JM , et al. “Sarcoid like” granulomatous pulmonary disease in World Trade Center disaster responders. Am J Ind Med 2011; 54 (3) 175-184
  • 37 Izbicki G, Chavko R, Banauch GI , et al. World Trade Center “sarcoid-like” granulomatous pulmonary disease in New York City Fire Department rescue workers. Chest 2007; 131 (5) 1414-1423
  • 38 Jordan HT, Stellman SD, Prezant D, Teirstein A, Osahan SS, Cone JE. Sarcoidosis diagnosed after September 11, 2001, among adults exposed to the World Trade Center disaster. J Occup Environ Med 2011; 53 (9) 966-974
  • 39 Kveim AM. the date is OK, page numbers are 169-172. Nord Med 1941; 9: 169-172
  • 40 Chase MW, Siltzbach LE. Concentration of the active principle responsible for the Kveim reaction. La Sarcoidose, Rapp IV e Conf intern 1967: 150-153
  • 41 Mitchell DN. The nature and physical characteristics of a transmissible agent from human sarcoid tissue. Ann N Y Acad Sci 1976; 278: 233-248
  • 42 Mitchell DN, Rees RJ, Goswami KK. Transmissible agents from human sarcoid and Crohn's disease tissues. Lancet 1976; 2 (7989) 761-765
  • 43 Mitchell DN. Mycobacteria and sarcoidosis. Lancet 1996; 348 (9030) 768-769
  • 44 Moller DR. Potential etiologic agents in sarcoidosis. Proc Am Thorac Soc 2007; 4 (5) 465-468
  • 45 Maertzdorf J, Weiner III J, Mollenkopf HJ , et al; TBornotTB Network. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc Natl Acad Sci U S A 2012; 109 (20) 7853-7858
  • 46 Abe C, Iwai K, Mikami R, Hosoda Y. Frequent isolation of Propionibacterium acnes from sarcoidosis lymph nodes. Zentralbl Bakteriol Mikrobiol Hyg [A] 1984; 256 (4) 541-547
  • 47 Eishi Y, Suga M, Ishige I , et al. Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis. J Clin Microbiol 2002; 40 (1) 198-204
  • 48 Wahlström J, Dengjel J, Persson B , et al. Identification of HLA-DR-bound peptides presented by human bronchoalveolar lavage cells in sarcoidosis. J Clin Invest 2007; 117 (11) 3576-3582
  • 49 Wahlström J, Dengjel J, Winqvist O , et al. Autoimmune T cell responses to antigenic peptides presented by bronchoalveolar lavage cell HLA-DR molecules in sarcoidosis. Clin Immunol 2009; 133 (3) 353-363
  • 50 Müller-Quernheim J, Gaede KI, Fireman E, Zissel G. Diagnoses of chronic beryllium disease within cohorts of sarcoidosis patients. Eur Respir J 2006; 27 (6) 1190-1195
  • 51 Zissel G, Prasse A, Müller-Quernheim J. Immunologic response of sarcoidosis. Semin Respir Crit Care Med 2010; 31 (4) 390-403
  • 52 Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 2007; 81 (1) 1-5
  • 53 Pechkovsky DV, Zalutskaya OM, Ivanov GI, Misuno NI. Calprotectin (MRP8/14 protein complex) release during mycobacterial infection in vitro and in vivo. FEMS Immunol Med Microbiol 2000; 29 (1) 27-33
  • 54 Korthagen NM, Nagtegaal MM, van Moorsel CH, Kazemier KM, van den Bosch JM, Grutters JC. MRP14 is elevated in the bronchoalveolar lavage fluid of fibrosing interstitial lung diseases. Clin Exp Immunol 2010; 161 (2) 342-347
  • 55 Bargagli E, Olivieri C, Prasse A , et al. Calgranulin B (S100A9) levels in bronchoalveolar lavage fluid of patients with interstitial lung diseases. Inflammation 2008; 31 (5) 351-354
  • 56 Veress B, Malmsköld K. The distribution of S100 and lysozyme immunoreactive cells in the various phases of granuloma development in sarcoidosis. Sarcoidosis 1987; 4 (1) 33-37
  • 57 Riva M, Källberg E, Bjork P , et al. Induction of nuclear factor-κB responses by the S100A9 protein is Toll-like receptor-4-dependent. Immunology 2012; 137 (2) 172-182
  • 58 Yonekawa K, Neidhart M, Altwegg LA , et al. Myeloid related proteins activate Toll-like receptor 4 in human acute coronary syndromes. Atherosclerosis 2011; 218 (2) 486-492
  • 59 Ashitani J, Matsumoto N, Nakazato M. Elevated alpha-defensin levels in plasma of patients with pulmonary sarcoidosis. Respirology 2007; 12 (3) 339-345
  • 60 Biragyn A, Ruffini PA, Leifer CA , et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 2002; 298 (5595) 1025-1029
  • 61 Paone G, Lucantoni G, Leone A , et al. Human neutrophil peptides stimulate tumor necrosis factor-alpha release by alveolar macrophages from patients with sarcoidosis. Chest 2009; 135 (2) 586-587
  • 62 Chen ES, Song Z, Willett MH , et al. Serum amyloid A regulates granulomatous inflammation in sarcoidosis through Toll-like receptor-2. Am J Respir Crit Care Med 2010; 181 (4) 360-373
  • 63 Oswald-Richter KA, Culver DA, Hawkins C , et al. Cellular responses to mycobacterial antigens are present in bronchoalveolar lavage fluid used in the diagnosis of sarcoidosis. Infect Immun 2009; 77 (9) 3740-3748
  • 64 Pathak SK, Basu S, Basu KK , et al. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol 2007; 8 (6) 610-618
  • 65 Murphy EE, Terres G, Macatonia SE , et al. B7 and interleukin 12 cooperate for proliferation and interferon gamma production by mouse T helper clones that are unresponsive to B7 costimulation. J Exp Med 1994; 180 (1) 223-231
  • 66 Gabrilovich MI, Walrath J, van Lunteren J , et al. Disordered Toll-like receptor 2 responses in the pathogenesis of pulmonary sarcoidosis. Clin Exp Immunol 2013; 173 (3) 512-522
  • 67 Wikén M, Grunewald J, Eklund A, Wahlström J. Higher monocyte expression of TLR2 and TLR4, and enhanced pro-inflammatory synergy of TLR2 with NOD2 stimulation in sarcoidosis. J Clin Immunol 2009; 29 (1) 78-89
  • 68 Wikén M, Idali F, Al Hayja MA, Grunewald J, Eklund A, Wahlström J. No evidence of altered alveolar macrophage polarization, but reduced expression of TLR2, in bronchoalveolar lavage cells in sarcoidosis. Respir Res 2010; 11: 121
  • 69 Veltkamp M, Wijnen PA, van Moorsel CH , et al. Linkage between Toll-like receptor (TLR) 2 promotor and intron polymorphisms: functional effects and relevance to sarcoidosis. Clin Exp Immunol 2007; 149 (3) 453-462
  • 70 Hogan LH, Heninger E, Elsner RA , et al. Requirements for CD4(+) T cell levels in acute Mycobacterium bovis strain bacille Calmette Guerin (BCG)-induced granulomas differ for optimal mycobacterial control versus granuloma formation. Int Immunol 2007; 19 (5) 627-633
  • 71 Du Bois RM, Kirby M, Balbi B, Saltini C, Crystal RG. T-lymphocytes that accumulate in the lung in sarcoidosis have evidence of recent stimulation of the T-cell antigen receptor. Am Rev Respir Dis 1992; 145 (5) 1205-1211
  • 72 Müller-Quernheim J, Saltini C, Sondermeyer P, Crystal RG. Compartmentalized activation of the interleukin 2 gene by lung T lymphocytes in active pulmonary sarcoidosis. J Immunol 1986; 137 (11) 3475-3483
  • 73 Devergne O, Emilie D, Peuchmaur M, Crevon MC, D'Agay MF, Galanaud P. Production of cytokines in sarcoid lymph nodes: preferential expression of interleukin-1 beta and interferon-gamma genes. Hum Pathol 1992; 23 (3) 317-323
  • 74 Richmond BW, Ploetze K, Isom J , et al. Sarcoidosis Th17 cells are ESAT-6 antigen specific but demonstrate reduced IFN-γ expression. J Clin Immunol 2013; 33 (2) 446-455
  • 75 Facco M, Cabrelle A, Teramo A , et al. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax 2011; 66 (2) 144-150
  • 76 Furusawa H, Suzuki Y, Miyazaki Y, Inase N, Eishi Y. Th1 and Th17 immune responses to viable Propionibacterium acnes in patients with sarcoidosis. Respir Investig 2012; 50 (3) 104-109
  • 77 Ten Berge B, Paats MS, Bergen IM , et al. Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis. Rheumatology (Oxford) 2012; 51 (1) 37-46
  • 78 Bianco A, Spiteri MA. Peripheral anergy and local immune hyperactivation in sarcoidosis: a paradox or birds of a feather. Clin Exp Immunol 1997; 110 (1) 1-3
  • 79 Hudspith BN, Brostoff J, McNicol MW, Johnson NM. Anergy in sarcoidosis: the role of interleukin-1 and prostaglandins in the depressed in vitro lymphocyte response. Clin Exp Immunol 1984; 57 (2) 324-330
  • 80 Bansal AS, Bruce J, Hogan PG, Allen RK. An assessment of peripheral immunity in patients with sarcoidosis using measurements of serum vitamin D3, cytokines and soluble CD23. Clin Exp Immunol 1997; 110 (1) 92-97
  • 81 Mathew S, Bauer KL, Fischoeder A, Bhardwaj N, Oliver SJ. The anergic state in sarcoidosis is associated with diminished dendritic cell function. J Immunol 2008; 181 (1) 746-755
  • 82 Oswald-Richter KA, Richmond BW, Braun NA , et al. Reversal of global CD4+ subset dysfunction is associated with spontaneous clinical resolution of pulmonary sarcoidosis. J Immunol 2013; 190 (11) 5446-5453
  • 83 Miyara M, Amoura Z, Parizot C , et al. The immune paradox of sarcoidosis and regulatory T cells. J Exp Med 2006; 203 (2) 359-370
  • 84 Lee NS, Barber L, Kanchwala A , et al. Low levels of NF-κB/p65 mark anergic CD4+ T cells and correlate with disease severity in sarcoidosis. Clin Vaccine Immunol 2011; 18 (2) 223-234
  • 85 Mroz RM, Korniluk M, Stasiak-Barmuta A, Ossolinska M, Chyczewska E. Increased levels of Treg cells in bronchoalveolar lavage fluid and induced sputum of patients with active pulmonary sarcoidosis. Eur J Med Res 2009; 14 (Suppl. 04) 165-169
  • 86 Wikén M, Grunewald J, Eklund A, Wahlström J. Multiparameter phenotyping of T-cell subsets in distinct subgroups of patients with pulmonary sarcoidosis. J Intern Med 2012; 271 (1) 90-103
  • 87 Rappl G, Pabst S, Riemann D , et al. Regulatory T cells with reduced repressor capacities are extensively amplified in pulmonary sarcoid lesions and sustain granuloma formation. Clin Immunol 2011; 140 (1) 71-83
  • 88 Taflin C, Miyara M, Nochy D , et al. FoxP3+ regulatory T cells suppress early stages of granuloma formation but have little impact on sarcoidosis lesions. Am J Pathol 2009; 174 (2) 497-508
  • 89 Fehrenbach H, Zissel G, Goldmann T , et al. Alveolar macrophages are the main source for tumour necrosis factor-alpha in patients with sarcoidosis. Eur Respir J 2003; 21 (3) 421-428
  • 90 Wallis RS, Ehlers S. Tumor necrosis factor and granuloma biology: explaining the differential infection risk of etanercept and infliximab. Semin Arthritis Rheum 2005; 34 (5) (Suppl. 01) 34-38
  • 91 Baughman RP, Drent M, Kavuru M , et al; Sarcoidosis Investigators. Infliximab therapy in patients with chronic sarcoidosis and pulmonary involvement. Am J Respir Crit Care Med 2006; 174 (7) 795-802
  • 92 Idali F, Wahlström J, Müller-Suur C, Eklund A, Grunewald J. Analysis of regulatory T cell associated forkhead box P3 expression in the lungs of patients with sarcoidosis. Clin Exp Immunol 2008; 152 (1) 127-137
  • 93 Liu G, Ma H, Qiu L , et al. Phenotypic and functional switch of macrophages induced by regulatory CD4+CD25+ T cells in mice. Immunol Cell Biol 2011; 89 (1) 130-142
  • 94 Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A 2007; 104 (49) 19446-19451
  • 95 Prasse A, Pechkovsky DV, Toews GB , et al. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am J Respir Crit Care Med 2006; 173 (7) 781-792
  • 96 Pechkovsky DV, Prasse A, Kollert F , et al. Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction. Clin Immunol 2010; 137 (1) 89-101
  • 97 Cai M, Bonella F, He X , et al. CCL18 in serum, BAL fluid and alveolar macrophage culture supernatant in interstitial lung diseases. Respir Med 2013; 107 (9) 1444-1452
  • 98 Julian MW, Shao G, Schlesinger LS , et al. Nicotine treatment improves Toll-like receptor 2 and Toll-like receptor 9 responsiveness in active pulmonary sarcoidosis. Chest 2013; 143 (2) 461-470
  • 99 Valeyre D, Soler P, Clerici C , et al. Smoking and pulmonary sarcoidosis: effect of cigarette smoking on prevalence, clinical manifestations, alveolitis, and evolution of the disease. Thorax 1988; 43 (7) 516-524
  • 100 Hattori T, Konno S, Shijubo N, Ohmichi M, Nishimura M. Increased prevalence of cigarette smoking in Japanese patients with sarcoidosis. Respirology 2013; 18 (7) 1152-1157
  • 101 Gupta D, Singh AD, Agarwal R, Aggarwal AN, Joshi K, Jindal SK. Is tobacco smoking protective for sarcoidosis? A case-control study from North India. Sarcoidosis Vasc Diffuse Lung Dis 2010; 27 (1) 19-26
  • 102 Delgado M, Gomariz RP, Martinez C, Abad C, Leceta J. Anti-inflammatory properties of the type 1 and type 2 vasoactive intestinal peptide receptors: role in lethal endotoxic shock. Eur J Immunol 2000; 30 (11) 3236-3246
  • 103 Delgado M, Ganea D. Vasoactive intestinal peptide inhibits IL-8 production in human monocytes. Biochem Biophys Res Commun 2003; 301 (4) 825-832
  • 104 Prasse A, Zissel G, Lützen N , et al. Inhaled vasoactive intestinal peptide exerts immunoregulatory effects in sarcoidosis. Am J Respir Crit Care Med 2010; 182 (4) 540-548
  • 105 Lyons DJ, Donald S, Mitchell DN, Asherson GL. Chemical inactivation of the Kveim reagent. Respiration 1992; 59 (1) 22-26
  • 106 Roberts SD, Wilkes DS, Burgett RA, Knox KS. Refractory sarcoidosis responding to infliximab. Chest 2003; 124 (5) 2028-2031
  • 107 Okamoto Yoshida Y, Umemura M, Yahagi A , et al. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol 2010; 184 (8) 4414-4422
  • 108 Zhang Y, Chen L, Gao W , et al. IL-17 neutralization significantly ameliorates hepatic granulomatous inflammation and liver damage in Schistosoma japonicum infected mice. Eur J Immunol 2012; 42 (6) 1523-1535