Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HMGB1 release and redox regulates autophagy and apoptosis in cancer cells

Abstract

The functional relationship and cross-regulation between autophagy and apoptosis is complex. In this study we show that the high-mobility group box 1 protein (HMGB1) is a redox-sensitive regulator of the balance between autophagy and apoptosis. In cancer cells, anticancer agents enhanced autophagy and apoptosis, as well as HMGB1 release. HMGB1 release may be a prosurvival signal for residual cells after various cytotoxic cancer treatments. Diminished HMGB1 by short hairpin RNA transfection or inhibition of HMGB1 release by ethyl pyruvate or other small molecules led predominantly to apoptosis and decreased autophagy in stressed cancer cells. In this setting, reducible HMGB1 binds to the receptor for advanced glycation end products (RAGEs), but not to Toll-like receptor 4, induces Beclin1-dependent autophagy and promotes tumor resistance to alkylators (melphalan), tubulin disrupting agents (paclitaxel), DNA crosslinkers (ultraviolet light) and DNA intercalators (oxaliplatin or adriamycin). On the contrary, oxidized HMGB1 increases the cytotoxicity of these agents and induces apoptosis mediated by the caspase-9/-3 intrinsic pathway. HMGB1 release, as well as its redox state, thus links autophagy and apoptosis, representing a suitable target when coupled with conventional tumor treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Amaravadi RK, Thompson CB . (2007). The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 13: 7271–7279.

    Article  CAS  Google Scholar 

  • Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A . (2008). Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 68: 1485–1494.

    Article  CAS  PubMed Central  Google Scholar 

  • Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A et al. (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13: 1050–1059.

    Article  CAS  PubMed Central  Google Scholar 

  • Azad MB, Chen Y, Gibson SB . (2009). Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 11: 777–790.

    Article  CAS  Google Scholar 

  • Bell CW, Jiang W, Reich 3rd CF, Pisetsky DS . (2006). The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291: C1318–C1325.

    Article  CAS  Google Scholar 

  • Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J et al. (2001). Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 50: 2792–2808.

    Article  CAS  Google Scholar 

  • Choi JJ, Reich 3rd CF, Pisetsky DS . (2004). Release of DNA from dead and dying lymphocyte and monocyte cell lines in vitro. Scand J Immunol 60: 159–166.

    Article  CAS  Google Scholar 

  • Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I et al. (2010). The IKK complex contributes to the induction of autophagy. Embo J 29: 619–631.

    Article  CAS  Google Scholar 

  • Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10: 51–64.

    Article  CAS  PubMed Central  Google Scholar 

  • Geft D, Schwartzenberg S, Rogowsky O, Finkelstein A, Ablin J, Maysel-Auslender S et al. (2008). Circulating apoptotic progenitor cells in patients with congestive heart failure. PLoS ONE 3: e3238.

    Article  PubMed Central  Google Scholar 

  • Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M et al. (2004). SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6: 731–740.

    Article  CAS  Google Scholar 

  • Han J, Hou W, Goldstein LA, Lu C, Stolz DB, Yin XM et al. (2008). Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 283: 19665–19677.

    Article  CAS  PubMed Central  Google Scholar 

  • Hoppe G, Talcott KE, Bhattacharya SK, Crabb JW, Sears JE . (2006). Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1. Exp Cell Res 312: 3526–3538.

    Article  CAS  Google Scholar 

  • Ito N, Demarco RA, Mailliard RB, Han J, Rabinowich H, Kalinski P et al. (2007). Cytolytic cells induce HMGB1 release from melanoma cell lines. J Leukoc Biol 81: 75–83.

    Article  CAS  Google Scholar 

  • Kang R, Tang D, Schapiro NE, Livesey KM, Farkas A, Loughran P et al. (2010a). The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ 17: 666–676.

    Article  CAS  Google Scholar 

  • Kang R, Tang D, Yu Y, Wang Z, Hu T, Wang H et al. (2010b). WAVE1 regulates Bcl-2 localization and phosphorylation in leukemia cells. Leukemia 24: 177–186.

    Article  CAS  Google Scholar 

  • Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA . (2008). Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29: 21–32.

    Article  CAS  PubMed Central  Google Scholar 

  • Kroemer G, Levine B . (2008). Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9: 1004–1010.

    Article  CAS  PubMed Central  Google Scholar 

  • Levine B . (2007). Cell biology: autophagy and cancer. Nature 446: 745–747.

    Article  CAS  Google Scholar 

  • Liliensiek B, Weigand MA, Bierhaus A, Nicklas W, Kasper M, Hofer S et al. (2004). Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest 113: 1641–1650.

    Article  CAS  PubMed Central  Google Scholar 

  • Lotze MT, Tracey KJ . (2005). High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5: 331–342.

    Article  CAS  Google Scholar 

  • Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T et al. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120: 237–248.

    Article  CAS  Google Scholar 

  • Maiuri MC, Zalckvar E, Kimchi A, Kroemer G . (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8: 741–752.

    Article  CAS  Google Scholar 

  • Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al. (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062–1075.

    Article  CAS  PubMed Central  Google Scholar 

  • Mizushima N, Yoshimori T . (2007). How to interpret LC3 immunoblotting. Autophagy 3: 542–545.

    Article  CAS  Google Scholar 

  • Mollica L, De Marchis F, Spitaleri A, Dallacosta C, Pennacchini D, Zamai M et al. (2007). Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol 14: 431–441.

    Article  CAS  Google Scholar 

  • Muller S, Scaffidi P, Degryse B, Bonaldi T, Ronfani L, Agresti A et al. (2001). New EMBO members′ review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. Embo J 20: 4337–4340.

    Article  CAS  PubMed Central  Google Scholar 

  • Ohndorf UM, Rould MA, He Q, Pabo CO, Lippard SJ . (1999). Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399: 708–712.

    Article  CAS  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H et al. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282: 24131–24145.

    Article  CAS  Google Scholar 

  • Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927–939.

    Article  CAS  Google Scholar 

  • Scaffidi P, Misteli T, Bianchi ME . (2002). Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418: 191–195.

    Article  CAS  Google Scholar 

  • Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J et al. (2009). RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 7: 17.

    Article  PubMed Central  Google Scholar 

  • Sy LK, Yan SC, Lok CN, Man RY, Che CM . (2008). Timosaponin A-III induces autophagy preceding mitochondria-mediated apoptosis in HeLa cancer cells. Cancer Res 68: 10229–10237.

    Article  CAS  Google Scholar 

  • Tang D, Kang R, Cao L, Zhang G, Yu Y, Xiao W et al. (2008). A pilot study to detect high mobility group box 1 and heat shock protein 72 in cerebrospinal fluid of pediatric patients with meningitis. Crit Care Med 36: 291–295.

    Article  CAS  Google Scholar 

  • Tang D, Kang R, Xiao W, Jiang L, Liu M, Shi Y et al. (2007a). Nuclear Heat Shock Protein 72 as a Negative Regulator of Oxidative Stress (Hydrogen Peroxide)-Induced HMGB1 Cytoplasmic Translocation and Release. J Immunol 178: 7376–7384.

    Article  CAS  PubMed Central  Google Scholar 

  • Tang D, Kang R, Xiao W, Wang H, Calderwood SK, Xiao X . (2007b). The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. J Immunol 179: 1236–1244.

    Article  CAS  PubMed Central  Google Scholar 

  • Tang D, Kang R, Xiao W, Zhang H, Lotze MT, Wang H et al. (2009). Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function. Am J Respir Cell Mol Biol 41: 651–660.

    Article  CAS  PubMed Central  Google Scholar 

  • Tang D, Kang R, Zeh 3rd HJ, Lotze MT . (2010). High-mobility group box 1 and cancer. Biochim Biophys Acta 1799: 131–140.

    Article  CAS  PubMed Central  Google Scholar 

  • Tang D, Shi Y, Jang L, Wang K, Xiao W, Xiao X . (2005). Heat shock response inhibits release of high mobility group box 1 protein induced by endotoxin in murine macrophages. Shock 23: 434–440.

    Article  CAS  Google Scholar 

  • Tang D, Shi Y, Kang R, Li T, Xiao W, Wang H et al. (2007c). Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol 81: 741–747.

    Article  CAS  Google Scholar 

  • Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L et al. (2008). Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 15: 3–12.

    Article  CAS  Google Scholar 

  • Thorburn J, Horita H, Redzic J, Hansen K, Frankel AE, Thorburn A . (2009). Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ 16: 175–183.

    Article  CAS  Google Scholar 

  • Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H et al. (2007). Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8: 487–496.

    Article  CAS  Google Scholar 

  • Ulloa L, Ochani M, Yang H, Tanovic M, Halperin D, Yang R et al. (2002). Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci USA 99: 12351–12356.

    Article  CAS  Google Scholar 

  • Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J et al. (1999). HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251.

    Article  CAS  Google Scholar 

  • Wang P, Yu J, Zhang L . (2007). The nuclear function of p53 is required for PUMA-mediated apoptosis induced by DNA damage. Proc Natl Acad Sci USA 104: 4054–4059.

    Article  CAS  Google Scholar 

  • White E, DiPaola RS . (2009). The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15: 5308–5316.

    Article  PubMed Central  Google Scholar 

  • Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L et al. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8: 1124–1132.

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B . (2000). Role of Bax in the apoptotic response to anticancer agents. Science 290: 989–992.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by a grant from the NIH 1 P01 CA 101944–04 (Michael T. Lotze) integrating NK and DC into Cancer Therapy from the National Cancer Institute. Thoughtful discussions and review of this work with Timothy Billiar and Sarah Berman at the University of Pittsburgh and with external colleagues Guido Kroemer, Douglas Green, Matthew Albert and Beth Levine are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Tang, H J Zeh or M T Lotze.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, D., Kang, R., Cheh, CW. et al. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29, 5299–5310 (2010). https://doi.org/10.1038/onc.2010.261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.261

Keywords

This article is cited by

Search

Quick links