Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The IL-23–IL-17 axis in inflammatory arthritis

An Erratum to this article was published on 15 September 2015

This article has been updated

Key Points

  • The IL-23–IL-17 axis is critically involved in the development of autoimmunity

  • Tissue-specific IL-17A expression exacerbates tissue damage and disease chronicity

  • The roles of IL-23 and IL-17 at different stages in the development and progression of rheumatoid arthrits (RA) and spondyloarthritis needs further investigation

  • Greater understanding of the role of the IL-23–IL-17 axis in RA as opposed to psoriatic arthritis and psoriasis is needed

  • Early combination therapy neutralizing both TNF activity and the IL-17/TH17 pathway might be a successful approach to achieving stable remission in patients with autoimmune disease and might even prevent disease development

Abstract

The discovery that the IL-23–IL-17 immune pathway is involved in many models of autoimmune disease has changed the concept of the role of T-helper cell subsets in the development of autoimmunity. In addition to TH17 cells, IL-17 is also produced by other T cell subsets and innate immune cells; which of these IL-17-producing cells have a role in tissue inflammation, and the timing, location and nature of their role(s), is incompletely understood. The current view is that innate and adaptive immune cells expressing the IL-23 receptor become pathogenic after exposure to IL-23, but further investigation into the role of IL-23 and IL-17 at different stages in the development and progression of chronic (destructive) inflammatory diseases is needed. Rheumatoid arthritis (RA) and spondyloarthritis (SpA) are the two most common forms of chronic immune-mediated inflammatory arthritis, and the IL-23–IL-17 axis is thought to have a critical role in both. This Review discusses the basic mechanisms of these cytokines in RA and SpA on the basis of findings from disease-specific animal models as well as human ex vivo studies. Promising therapeutic applications to modulate this immune pathway are in development or have already been approved. Blockade of IL-17 and/or TH17-cell activity in combination with anti-TNF therapy might be a successful approach to achieving stable remission or even prevention of chronic immune-mediated inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD4+ memory T-helper cells consist of different subpopulations.
Figure 2: Overview of the role of IL-17/IL-17RA and IL-23 signalling during the pathogenesis of different experimental arthritis models.
Figure 3: The IL-23–IL-17 signalling pathway in autoimmune arthritis, including ACT1 and BAFF-R signalling.
Figure 4: Schematic overview of the role of the IL-23–IL-17 immune pathway in joint inflammation, skin inflammation and enthesis.
Figure 5: The role and interaction of IL-23/TH17 cytokines in relation to tissue inflammation, autoantibody production and bone erosion in the pathogenesis of autoimmune arthritis.
Figure 6: The IL-23–IL-17 immune pathway in RA, SpA and PsA in relation to autoimmune-like or autoinflammatory pathogenesis.

Similar content being viewed by others

Change history

  • 15 September 2015

    In Figure 2a of this Review, full protection against CIA was incorrectly stated as an effect of IL-17 deficiency instead of IL-17RA deficiency.

References

  1. Lubberts, E. et al. IL-1-independent role of IL-17 in synovial inflammation and joint destruction during collagen-induced arthritis. J. Immunol. 167, 1004–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171, 6173–6177 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Lubberts, E. et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 50, 650–659 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Lubberts, E., Koenders, M. I. & van den Berg, W. B. The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res. Ther. 7, 29–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Leipe, J. et al. Role of TH17 cells in human autoimmune arthritis. Arthritis Rheum. 62, 2876–2885 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Miossec, P. & Kolls, J. K. Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug Discov. 11, 763–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Corneth, O. B. et al. Absence of interleukin-17 receptor A signalling prevents autoimmune inflammation of the joint and leads to a TH2-like phenotype in collagen-induced arthritis. Arthritis Rheum. 66, 340–349 (2014).

    Article  CAS  Google Scholar 

  8. Lubberts, E. et al. Overexpression of IL-17 in the knee joint of collagen type II immunized mice promotes collagen arthritis and aggravates joint destruction. Inflamm. Res. 51, 102–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Lubberts, E. et al. Requirement of IL-17 receptor signaling in radiation-resistant cells in the joint for full progression of destructive synovitis. J. Immunol. 175, 3360–3368 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Koenders, M. I. et al. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis Rheum. 52, 3239–3247 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Infante-Duarte, C., Horton, H. F., Byrne, M. C. & Kamradt, T. Microbial lipopeptides induce the production of IL-17 in TH cells. J. Immunol. 165, 6107–6115 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Moseley, T. A., Haudenschild, D. R., Rose, L. & Reddi, A. H. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 14, 155–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Lubberts, E. The role of IL-17 and family members in the pathogenesis of arthritis. Curr. Opin. Investig. Drugs 4, 572–577 (2003).

    CAS  PubMed  Google Scholar 

  14. Kolls, J. K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Iwakura, Y., Ishigame, H., Saijo, S. & Nakae, S. Functional specialization of interleukin-17 family members. Immunity 34, 149–162 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Wright, J. F. et al. Identification of an interleukin 17F/17A heterodimer inactivated human CD4+ T cells. J. Biol. Chem. 282, 13447–13455 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Liang, S. C. et al. An IL-17F/A heterodimer protein is produced by mouse TH17 cells and induces airway neutrophil recruitment. J. Immunol. 179, 7791–7799 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Toy, D. et al. Cutting Edge: interleukin 17 signals through a heteromeric receptor complex. J. Immunol. 177, 36–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Wright, J. F. et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J. Immunol. 181, 2799–2805 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Gaffen, S. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. 9, 556–567 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song, X. et al. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat. Immunol. 12, 1151–1158 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Chang, S. H. et al. Interleukin-17C promotes TH17 cell responses and autoimmune disease via interleukin-17 receptor E. Immunity 35, 611–621 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Patel, D. D., Lee, D. M., Kolbinger, F. & Antoni, C. Effects of IL-17A blockade with secukinumab in autoimmune diseases. Ann. Rheum. Dis. 72, ii116–ii123 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Croxford, A. L., Mair, F. & Becher, B. IL-23: one cytokine in control of autoimmunity. Eur. J. Immunol. 42, 2263–2273 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484, 514–518 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Awasthi, A. et al. Cutting edge: IL-23 receptor GFP reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol. 182, 5904–5908 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 10, 314–324 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murphy, C. A. et al. Divergent pro- and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing IL-17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hueber, A. J. et al. Mast cells express IL-17A in rheumatoid arthritis synovium. J. Immunol. 184, 3336–3340 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Noordenbos, T. et al. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum. 64, 99–109 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Van Baarsen, L. et al. Heterogeneous expression pattern of interleukin-17A (IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: possible explanation for non-response to anti-IL-17 therapy? Arthritis Res. Ther. 16, 426 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Moran, E. M. et al. IL-17A expression is localised to both mononuclear and polymorphonuclear synovial cell infiltrates. PLoS ONE 6, e24048 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Appel, H. et al. Analysis of IL-17+ cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the TH17-mediated adaptive immune response. Arthritis Res. Ther. 13, R95 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cua, D. J. & Tato, C. M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10, 479–489 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Immunol. 13, 145–149 (2013).

    Article  CAS  Google Scholar 

  42. Cornelissen, F. et al. (2009). Interleukin-23 is critical for full-blown expression of a non-autoimmune destructive arthritis and regulates interleukin-17A and RORγt in γδ T cells. Arthritis Res. Ther. 11, R194 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. El-Behi, M. et al. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat. Immunol. 12, 568–575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Codarri, L. et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12, 560–567 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Campbell, I. K. et al. Protection from collagen-induced arthritis in granulocyte-macrophage colony-stimulating factor-deficient mice. J. Immunol. 161, 3639–3644 (1998).

    CAS  PubMed  Google Scholar 

  46. Plater-Zyberk, C. et al. Combined blockade of granulocyte-macrophage colony stimulating factor and interleukin 17 pathways potently suppresses chronic destructive arthritis in a tumour necrosis factor α-independent mouse model. Ann. Rheum. Dis. 68, 721–728 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Burmester, G. R. et al. Efficacy and safety of mavrilimumab in subjects with rheumatoid arthritis. Ann. Rheum. Dis. 72, 1445–1452 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Lubberts, E. TH17 cytokines and arthritis. Semin. Immunopathol. 32, 43–53 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and TH17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Qian, Y. et al. Act1, a negative regulator in CD40- and BAFF-mediated B cell survival. Immunity 21, 575–587 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Pisitkun, P., Claudio, E., Ren, N., Wang, H. & Siebenlist, U. The adapter protein CIKS/ACT1 is necessary for collagen-induced arthritis, and it contributes to the production of collagen-specific antibody. Arthritis Rheum. 62, 3334–3344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Luo, Q. et al. A novel disease-modifying antirheumatic drug, iguratimod, ameliorates murine arthritis by blocking IL-17 signaling, distinct from methotrexate and leflunomide. J. Immunol. 191, 4969–4978 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Hara, M. et al. Safety and efficacy of combination therapy of iguratimod with methotrexate for patients with active rheumatoid arthritis with an inadequate response to methotrexate: an open-label extension of a randomized, double-blind, placebo-controlled trial. Mod. Rheumatol. 24, 410–418 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Li, J. et al. Efficacy and safety of iguratimod for the treatment of rheumatoid arthritis. Clin. Dev. Immunol. 13, 310628 (2013).

    Google Scholar 

  55. Yago, T. et al. IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attentuates collagen-induced arthritis. Arthritis Res. Ther. 9, R96 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Cornelissen, F. et al. IL-23 dependent and independent stages of experimental arthritis: no clinical effect of therapeutic IL-23p19 inhibition in collagen-induced arthritis. PLoS ONE 8, e57553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krausz, S. et al. Brief report: a phase IIa, randomized, double-blind, placebo-controlled trial of apilimod mesylate, an interleukin-12/interleukin-23 inhibitor, in patients with rheumatoid arthritis. Arthritis Rheum. 64, 1750–1755 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Adamopoulos, I. E. et al. IL-23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass. J. Immunol. 187, 951–959 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, L., Wei, X. Q., Evans, B., Jiang, W. & Aeschlimann, D. IL23 promotes osteoclast formation by up-regulation of receptor activator of NF-κB (RANK) expression in myeloid precursor cells. Eur. J. Immunol. 38, 2845–2854 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Li, X. et al. IL-23 induces receptor activator of NF-κB ligand expression in fibroblast-like synoviocytes via STAT3 and NF-κB signal pathways. Imunol. Lett. 127, 100–107 (2010).

    Article  CAS  Google Scholar 

  61. Ikeuchi, H. et al. Expression of interleukin-22 in rheumatoid arthritis: potential role as a proinflammatory cytokine. Arthritis Rheum. 52, 1037–1046 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Kim, K. W. et al. Interleukin-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis Rheum. 64, 1015–1023 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Geboes, L. et al. Proinflammatory role of the TH17 cytokine interleukin-22 in collagen-induced arthritis in C57BL/6 mice. Arthritis Rheum. 60, 390–395 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Quinn, J. M. et al. IL-23 inhibits osteoclastogenesis indirectly through lymphocytes and is required for the maintenance of bone mass in mice. J. Immunol. 181, 5720–5729 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Kamiya, S. et al. Effects of IL-23 and IL-27 on osteoblasts and osteoclasts: inhibitory effects on osteoclast differentiation. J. Bone Mineral Metabol. 25, 277–285 (2007).

    Article  CAS  Google Scholar 

  66. Ju, J. H. et al. IL-23 induces receptor activator of NF-κB ligand expression on CD4+ T cells and promotes osteoclastogenesis in an autoimmune arthritis models. J. Immunol. 181, 1507–1518 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Pöllinger, B. et al. TH17 cells, not IL-17+ γδ T cells, drive arthritic bone destruction in mice and humans. J. Immunol. 186, 2602–2612 (2011).

    Article  PubMed  CAS  Google Scholar 

  68. Van Hamburg, J. P. et al. IL-17/TH17 mediated synovial inflammation is IL-22 independent. Ann. Rheum. Dis. 72, 1700–1707 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Leipe, J. et al. Interleukin-22 serum levels are associated with radiographic progression in rheumatoid arthritis. Ann. Rheum. Dis. 70, 1453–1457 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Corneth, O. B. J. et al. Impaired B cell immunity in IL-22 knockout mice in collagen-induced arthritis. Ann. Rheum. Dis. 70 (Suppl. 2), A58–A59 (2011).

    Article  Google Scholar 

  71. Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest. 122, 1791–1802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by TH17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Mus, A. M. et al. Interleukin-23 promotes TH17 differentiation by inhibiting T-bet and FoxP3 and is required for elevation of interleukin-22, but not IL-21, in autoimmune experimental arthritis. Arthritis Rheum. 62, 1043–1050 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature 423, 356–361 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Lubberts, E. IL-17/TH17 targeting: on the road to prevent chronic destructive arthritis? Cytokine 41, 84–91 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Kotake, S. et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103, 1345–1352 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chabaud, M. et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 42, 963–970 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Aarvak, T., Chabaud, M., Kallberg, E., Miossec, P., Natvig, J. B. Change in the TH1/TH2 phenotype of memory T-cell clones from rheumatoid arthritis synovium. Scand. J. Immunol. 50, 1–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Colin, E. M. et al. 1, 25-dihydroxyvitamin D3 modulates TH17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum. 62, 132–142 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. van Hamburg, J. P. et al. TH17 cells, but not TH1 cells, from patients with early rheumatoid arthritis are potent inducers of matrix metalloproteinases and proinflammatory cytokines upon synovial fibroblast interaction, including autocrine interleukin-17A production. Arthritis Rheum. 63, 73–83 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Kochi, Y. et al. A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility. Nat. Genet. 42, 515–519 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Yamada, H. et al. TH1 but not TH17 cells predominate in the joints of patients with rheumatoid arthritis. Ann. Rheum. Dis. 67, 1299–1304 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, L. et al. Elevated TH22 cells correlated with TH17 cells in patients with rheumatoid arthritis. J. Clin. Immunol. 31, 606–614 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Nistala, K. et al. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum. 58, 875–887 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gullick, N. J. et al. Enhanced and persistent levels of IL-17+D4+ T cells and serum IL-17 in patients with early inflammatory arthritis. Clin. Exp. Immunol. 174, 292–301 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim, J. et al. Elevated levels of T helper 17 cells are associated with disease activity in patients with rheumatoid arthritis. Ann. Lab. Med. 33, 52–59 (2013).

    Article  PubMed  CAS  Google Scholar 

  88. Arroyo-Villa, I. et al. Frequency of TH17 CD4+ T cells in early rheumatoid arthritis: a marker of anti-CCP seropositivity. PLoS ONE 7, e42189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Miao, J. et al. Frequencies of circulating IL-17-producing CD4+CD161+ T cells and CD4+CD161+ T cells correlate with disease activity in rheumatoid arthritis. Mod. Rheumatol. 24, 265–570 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Acosta-Rodriguez, E. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Hirota, K. et al. Preferential recruitment of CCR6-expressing TH17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med. 204, 2803–2812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Doodes, P. D. et al. Development of proteoglycan-induced arthritis is independent of IL-17. J. Immunol. 181, 329–337 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Pöllinger, B. IL-17 producing T cells in mouse models of multiple sclerosis and rheumatoid arthritis. J. Mol. Med. 90, 613–624 (2012).

    Article  PubMed  CAS  Google Scholar 

  94. Koenders, M. I. et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am. J. Pathol. 167, 141–149 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miossec, P. Interleukin-17 in rheumatoid arthritis. If T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum. 48, 594–601 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Bombara, M. P. et al. Cell contact between T cells and synovial fibroblasts causes induction of adhesion molecules and cytokines. J. Leukoc. Biol. 54, 399–406 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Brennan, F. M. & McInnes, I. B. Evidence that cytokines play a role in rheumatoid arthritis. J. Clin. Invest. 118, 3537–3545 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McInnes, I. B., Leung, B. P. & Liew, F. Y. Cell–cell interactions in synovitis. Interactions between T lymphocytes and synovial cells. Arthritis Res. 2, 374–378 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Parsonage, G. et al. Prolonged, granulocyte-macrophage colony-stimulating factor-dependent, neutrophil survival following rheumatoid synovial fibroblast activation by IL-17 and TNFα. Arthritis Res. Ther. 10, R47 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Tran, C. N. et al. Molecular interactions between T cells and fibroblast-like synoviocytes: role of membrane tumor necrosis factor-α on cytokine-activated T cells. Am. J. Pathol. 171, 1588–1598 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ogura, H. et al. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 29, 628–636 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Koenders, M. I. et al. Tumor necrosis factor-interleukin-17 interplay induces S100A8, interleukin-1β, and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: rationale for combination treatment during arthritis. Arthritis Rheum. 63, 2329–2339 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Zwerina, K. et al. Anti IL-17A therapy inhibits bone loss in TNF-α-mediated murine arthritis by modulation of the T-cell balance. Eur. J. Immunol. 42, 413–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Alzabin, S. et al. Incomplete response of inflammatory arthritis to TNFα blockade is associated with the TH17 pathway. Ann. Rheum. Dis. 71, 1741–1748 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Eljaafari, A. et al. Bone marrow-derived and synovium-derived mesenchymal cells promote TH17 cell expansion and activation through caspase 1 activation: contribution to the chronicity of rheumatoid arthritis. Arthritis Rheum. 64, 2147–2157 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Paulissen, S. M. et al. Synovial fibroblasts directly induce TH17 pathogenicity via the cyclooxygenase/prostaglandin E2 pathway, independent of IL-23. J. Immunol. 191, 1364–1372 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. van Hamburg, J. P. et al. TNF blockade requires 1,25(OH)2D3 to control human TH17-mediated synovial inflammation. Ann. Rheum. Dis. 71, 606–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Chen, D. Y. et al. Increasing levels of circulating TH17 cells and interleukin-17 in rheumatoid arthritis patients with an inadequate response to anti-TNF-α therapy. Arthritis Res. Ther. 13, R126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Notley, C. A. et al. Blockade of tumor necrosis factor in collagen-induced arthritis reveals a novel immunoregulatory pathway for TH1 and TH17 cells. J. Exp. Med. 205, 2491–2497 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Aerts, N. E. et al. Increased IL-17 production by peripheral T helper cells after tumour necrosis factor blockade in rheumatoid arthritis is accompanied by inhibition of migration-associated chemokine receptor expression. Rheumatology 49, 2264–2272 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Kawashiri, S. Y. et al. Proinflammatory cytokines synergistically enhance the production of chemokine ligand 20 (CCL20) from rheumatoid fibroblast-like synovial cells in vitro and serum CCL20 is reduced in vivo by biologic disease-modifying antirheumatic drugs. J. Rheumatol. 36, 2397–2402 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Evans, H. G. et al. TNF-α blockade induces IL-10 expression in human CD4+ T cells. Nat. Commun. 5, 3199 (2014).

    Article  PubMed  CAS  Google Scholar 

  113. Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484, 514–518 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Genovese, M. C. et al. A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheum. 66, 1693–1704 (2014).

    Article  CAS  Google Scholar 

  115. van den Berg, W. B. & Miossec, P. IL-17 as a future therapeutic target for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 549–553 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Pieper, J. et al. CTLA4-Ig (abatacept) therapy modulates T cell effector functions in autoantibody-positive rheumatoid arthritis patients. BMC Immunol. 14, 34 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Scarsi, M. et al. Reduction of peripheral blood T cells producing IFN-γ and IL-17 after therapy with abatacept for rheumatoid arthritis. Clin. Exp. Rheumatol. 32, 204–210 (2014).

    CAS  PubMed  Google Scholar 

  118. Jain, M. et al. Increased plasma IL-17F levels in rheumatoid arthritis patients are responsive to methotrexate, anti-TNF, and T cell costimulatory modulation. Inflammation 38, 180–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Samson, M. et al. Brief report: inhibition of interleukin-6 function corrects TH17/TREG cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum. 64, 2499–2503 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Pesce, B. et al. Effect of interleukin-6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin. Exp. Immunol. 171, 237–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hueber, W. et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci. Transl. Med. 2, 52ra72 (2010).

    Article  PubMed  CAS  Google Scholar 

  122. Genovese, M. C. et al. LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis. Arthritis Rheum. 62, 929–939 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Martin, D. A. et al. A phase 1b multiple ascending dose study evaluating safety, pharmacokinetics, and early clinical response of brodalumab, a human anti-IL-17R antibody, in methotrexate-resistant rheumatoid arthritis. Arthritis Res. Ther. 15, R164 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Genovese, M. C. et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann. Rheum. Dis. 72, 863–869 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Genovese, M. C. et al. One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomized, placebo-controlled study. J. Rheumatol. 41, 414–421 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Ye, P. et al. Requirement of interleukin-17 receptor signalling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defence. J. Exp. Med. 194, 519–527 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Smith, E. et al. IL-17A inhibits the expansion of IL-17A-producing T cells in mice through “short-loop” inhibition via IL-17 receptor. J. Immunol. 181, 1357–1364 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Mease, P. J. et al. Brodalumab, an anti-IL-17RA monoclonal antibody, in psoriatic arthritis. N. Engl. J. Med. 370, 2295–2306 (2014).

    Article  PubMed  CAS  Google Scholar 

  129. Papp, K. A. et al. Brodalumab, an anti-IL-17-receptor antibody for psoriasis. N. Engl. J. Med. 366, 1181–1189 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Sherlock, J. P., Buckley, C. D. & Cua, D. J. The critical role of interleukin-23 in spondyloarthropathy. Mol. Immunol. 57, 38–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Hreggvidsdottir, H. S., Noordenbos, T. & Baeten, D. L. Inflammatory pathways in spondyloarthritis. Mol. Immunol. 57, 28–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Noordenbos, T. et al. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum. 64, 99–109 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Lories, R. J. & Baeten, D. L. Differences in pathophysiology between rheumatoid arthritis and ankylosing spondylitis. Clin. Exp. Rheumatol. 27, S10–14 (2009).

    CAS  PubMed  Google Scholar 

  134. Rueda, B. et al. The IL23R Arg381Gln non-synonymous polymorphism confers susceptibility to ankylosing spondylitis. Ann. Rheum. Dis. 67, 1451–1454 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Reveille, J. D. et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet. 42, 123–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Coffre, M. et al. Combinatorial control of TH17 and TH1 cell function by genetic variation at genes associated with the IL-23 signaling pathway in spondyloarthritis. Arthritis Rheum. 65, 1510–1521 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Singh, R., Aggarwal, A. & Misra, R. TH1/TH17 cytokine profiles in patients with reactive arthritis/undifferentiated spondyloarthropathy. J. Rheumatol. 34, 2285–2290 (2007).

    CAS  PubMed  Google Scholar 

  138. Jandus, C. et al. Increased numbers of circulating polyfunctional TH17 memory cells in patients with seronegative spondylarthritides. Arthritis Rheum. 58, 2307–2317 (2008).

    Article  PubMed  Google Scholar 

  139. Shen, H., Goodall, J. C. & Hill Gaston, J. S. Frequency and phenotype of peripheral blood TH17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum. 60, 1647–1656 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Zhang, L. et al. Increased frequencies of TH22 cells as well as TH17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PLoS ONE 7, e31000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Melis, L. et al. Systemic levels of IL-23 are strongly associated with disease activity in rheumatoid arthritis but not spondyloarthritis. Ann. Rheum. Dis. 69, 618–623 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Appel, H. et al. Analysis of IL-17+ cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the TH17-mediated adaptive immune response. Arthritis Res. Ther. 13, R95 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yeremenko, N. & Baeten, D. IL-17 in spondyloarthritis: is the T-party over? Arthritis Res. Ther. 13, 115 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kenna, T. J. & Brown, M. A. The role of IL-17-secreting mast cells in inflammatory joint disease. Nat. Rev. Rheum. 9, 375–379 (2013).

    Article  CAS  Google Scholar 

  145. Ambarus, C., Yeremenko, N., Tak, P. P. & Baeten, D. Pathogenesis of spondyloarthritis: autoimmune or autoinflammatory? Curr. Opin. Rheumatol. 24, 351–358 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Ciccia, F. et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 60, 955–965 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Takahashi, N. et al. IL-17 produced by Paneth cells drives TNF-induced shock. J. Exp. Med. 205, 1755–1761 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Ruutu, M. et al. β-glucan triggers spondylarthritis and Crohn's disease-like ileitis in SKG mice. Arthritis Rheum. 64, 2211–2222 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Benham, H. et al. IL-23-mediates the intestinal response to microbial β-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol. 66, 1755–1767 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Bowes, J. et al. Confirmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis. Ann. Rheum. Dis. 70, 1641–1644 (2011).

    Article  PubMed  Google Scholar 

  152. Filer, C. et al. Investigation of association of the IL12B and IL23R genes with psoriatic arthritis. Arthritis Rheum. 58, 3705–3709 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hüffmeier, U. et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat. Genet. 42, 996–999 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Raychaudhuri, S. P., Raychaudhuri, S. K. & Genovese, M. C. IL-17 receptor and its functional significance in psoriatic arthritis. Mol. Cell. Biochem. 359, 419–429 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Mrabet, D. et al. Synovial fluid and serum levels of IL-17, IL-23, and CCL-20 in rheumatoid arthritis and psoriatic arthritis: a Tunisian cross-sectional study. Rheumatol. Int. 33, 265–266 (2013).

    Article  PubMed  Google Scholar 

  156. Tonel, G. et al. Cutting edge: A critical functional role for IL-23 in psoriasis. J. Immunol. 185, 5688–5691 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Wilson, N. J. et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol. 8, 950–957 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Chan, J. R. et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J. Exp. Med. 203, 2577–2587 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. van der Fits, L. et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 182, 5836–5845 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Rizzo, H. L. et al. IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J. Immunol. 186, 1495–1502 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Cai, Y. et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35, 596–610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Benham, H. et al. TH17 and TH22 cells in psoriatic arthritis and psoriasis. Arthritis Res. Ther. 15, R136 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Costello, P., Bresnihan, B., O'Farrelly, C. & FitzGerald, O. Predominance of CD8+ T lymphocytes in psoriatic arthritis. J. Rheumatol. 26, 1117 (1999).

    CAS  PubMed  Google Scholar 

  164. Menon, B. et al. Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol. 66, 1272–1281 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ory, P. A., Gladman, D. D. & Mease, P. J. Psoriatic arthritis and imaging. Ann. Rheum. Dis. 64 (Suppl. 2), ii14–17 (2005).

    Google Scholar 

  166. Novelli, L., Chimenti, M. S., Chiricozzi, A. & Perricone, R. The new era for the treatment of psoriasis and psoriatic arthritis: perspectives and validated strategies. Autoimmun. Rev. 13, 64–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Suzuki, E., Mellins, E. D., Gershwin, M. E., Nestle, F. O. & Adamopoulos, I. E. The IL-23/IL-17 axis in psoriatic arthritis. Autoimmun. Rev. 13, 496–502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gaffen, S. L., Jain, R., Garg, A. V., Cua, D. J. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585–600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Leonardi, C. et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med. 366, 1190–1199 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Rich, P. et al. Secukinumab induction and maintenance therapy in moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled, phase II regimen-finding study. Br. J. Dermatol. 168, 402–411 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Papp, K. A. et al. Dose-dependent improvement in chronic plaque psoriasis following treatment with anti-IL-23p19 humanized monoclonal antibody (MK-3222) [abstract]. Presented at the American Academy of Dermatology 71st Annual Meeting (2013).

  172. Chiricozzi, A. & Krueger, J. G. IL-17 targeted therapies for psoriasis. Expert Opin. Investig. Drugs 22, 993–1005 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Kirkham, B. W., Kavanaugh, A. & Reich, K. Interleukin-17A: a unique pathway in immune-mediated diseases: psoriasis, psoriatic arthritis and rheumatoid arthritis. Immunology 141, 133–142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Schett, G., Elewaut, D., McInnes, I. B., Dayer, J. M. & Neurath, M. F. How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nat. Med. 19, 822–824 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Paulissen, S. M. et al. Higher proportions of pathogenic CCR6+ T cell subpopulations in ACPA+ compared to ACPA patients with early rheumatoid arthritis. Ann. Rheum. Dis. 73 (Suppl. 1), A33–A34 (2014).

    Google Scholar 

  176. Abbas, A. K., Murphy, K. M., Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  177. Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  178. Szabo, S. J., Sullivan, B. M., Peng, S. L., Glimcher, L. H. Molecular mechanisms regulating TH1 immune responses. Annu. Rev. Immunol. 21, 713–758 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Kuchroo, V. K. et al. T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu. Rev. Immunol. 20, 101–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  180. Zheng, W., Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  181. Mosmann, T. R., Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  182. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Veldhoen, M. et al. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Bettelli, E., Korn, T., Oukka, M., Kuchroo, V. K. Induction and effector functions of TH17 cells. Nature 453, 1051–1057 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kanno, Y., Vahedi, G., Hirahara, K., Singleton, K. & O'Shea, J. J. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol. 30, 707–731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Radhakrishnan, S. et al. Reprogrammed FOXP3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. J. Immunol. 181, 3137–3147 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Xu, L., Kitani, A., Fuss, I. & Strober, W. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become TH17 cells in the absence of exogenous TGF-β. J. Immunol. 178, 6725–6729 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Yang, X. O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR α and ROR γ. Immunity 28, 29–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Koenen, H. J. et al. Human CD25highFoxppos regulatory T cells differentiate into IL-17-producing cells. Blood 112, 2340–2352 (2008).

    Article  CAS  PubMed  Google Scholar 

  192. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lexberg, M. H. et al. TH memory for interleukin-17 expression is stable in vivo. Eur. J. Immunol. 38, 2654–2664 (2008).

    Article  CAS  PubMed  Google Scholar 

  195. Martin-Orozco, N., Chung, Y., Chang, S. H., Wang, Y. H. & Dong, C. TH17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into TH1 cells. Eur. J. Immunol. 39, 216–224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges team members (past and present) of the Lubberts Lab and the collaborating clinicians and researchers for scientific interactions and helpful discussions regarding this topic, as well as the Dutch Arthritis Association for financial grant support in different projects related to this topic in the past 10 years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Lubberts.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubberts, E. The IL-23–IL-17 axis in inflammatory arthritis. Nat Rev Rheumatol 11, 415–429 (2015). https://doi.org/10.1038/nrrheum.2015.53

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.53

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing