Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Cyclic nucleotide research — still expanding after half a century

Abstract

Since the discovery in 1957 that cyclic AMP acts as a second messenger for the hormone adrenaline, interest in this molecule and its companion, cyclic GMP, has grown. Over a period of nearly 50 years, research into second messengers has provided a framework for understanding transmembrane signal transduction, receptor–effector coupling, protein-kinase cascades and downregulation of drug responsiveness. The breadth and impact of this work is reflected by five different Nobel prizes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Basic mechanisms of cyclic-nucleotide regulation and function.
Figure 3: Immunocytochemical localization of three cyclic-nucleotide PDEs in rat olfactory epithelium.

References

  1. Robison, G. A., Butcher, R. W. & Sutherland, E. W. cAMP (Academic, New York and London, 1971).

    Google Scholar 

  2. Wosilait, W. D. & Sutherland, E. W. The relationship of epinephrine and glucagon to liver phosphorylase. II. Enzymatic inactivation of liver phosphorylase. J. Biol. Chem. 218, 469–481 (1957).

    Google Scholar 

  3. Krebs, E. & Fischer, E. The phosphorylase B to A converting enzyme of rabbit skeletal muscle. Biochim. Biophys. Acta 1989, 302–309 (1956).

    Google Scholar 

  4. Rall, T. W., Sutherland, E. W. & Wosilait, W. D. The relationship of epinephrine and glucagon to liver phosphorylase. III. Reactivation of liver phosphorylase in slices and in extracts. J. Biol. Chem. 218, 483–495 (1957).

    Google Scholar 

  5. Rall, T., Sutherland, E. & Berthet, J. The relationship of epinephrine and glucagon to liver phosphorylase. IV. Effect of epinephrine and glucagon on the reactivation of phosphorylase in liver homogenates. IV. J. Biol. Chem. 224, 463–475 (1957).

    CAS  PubMed  Google Scholar 

  6. Sutherland, E. W. & Rall, T. W. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J. Biol. Chem. 232, 1077–1091 (1958).

    CAS  PubMed  Google Scholar 

  7. Bourne, H., Rall, T. W. & Gallagher, G. L. Getting the message across. J. NIH Res. 2, 77–78 (1990).

    Google Scholar 

  8. Cook, W. H., Lipkin, D. & Markham, R. The formation of cyclic dianhydrodiadenylic acid by the alkaline degradation of adenosine-5′-triphosphoric acid. J. Am. Chem. Soc. 79, 3607–3608 (1957).

    CAS  Google Scholar 

  9. Lipkin, D., Cook, W. H. & Markham, R. Adenosine-3′,5′-phosphoric acid: a proof of structure. J. Am. Chem. Soc. 81, 6198–6203 (1959).

    CAS  Google Scholar 

  10. Robinson, G. A, Nahas, G. G. & Triner, L. (eds) Cyclic AMP and Cell Function. Ann. NY Acad. Sci. 185 (1970).

  11. Walsh, D. A., Perkins, J. P. & Krebs, E. G. An adenosine 3′,5′-monophosphate-dependant protein kinase from rabbit skeletal muscle. J. Biol. Chem. 243, 3763–3765 (1968).

    CAS  PubMed  Google Scholar 

  12. Brooker, G., Thomas, L. & Appleman, M. M. The assay of adenosine 3′,5′-cyclic monophosphate and guanosine 3′,5′-cyclic monophosphate in biological materials by enzymatic radio-isotopic displacement. Biochemistry 7, 4177–4181 (1968).

    CAS  PubMed  Google Scholar 

  13. Goldberg, N. D., O'Toole, A. G. & Haddox, M. K. Analysis of cyclic AMP and cyclic GMP by enzymic cycling procedures. Adv. Cyclic Nucleotide Res. 2, 63–80 (1972).

    CAS  PubMed  Google Scholar 

  14. Steiner, A. L., Parker, C. W. & Kipnis, D. M. The measurement of cyclic nucleotides by radioimmunoassay. Adv. Biochem. Psychopharmacol. 3, 89–111 (1970).

    CAS  PubMed  Google Scholar 

  15. Gilman, A. G. A protein binding assay for adenosine 3′,5′-cyclic monophosphate. Proc. Natl Acad. Sci. USA 67, 305–312 (1970).

    CAS  PubMed  Google Scholar 

  16. Tao, M., Salas, M. L. & Lipmann, F. Mechanism of activation by adenosine 3′,5′-cyclic monophosphate of a protein phosphokinase from rabbit reticulocytes. Proc. Natl Acad. Sci. USA 67, 408–414 (1970).

    CAS  PubMed  Google Scholar 

  17. Brostrom, M. A., Reimann, E. M., Walsh, D. A. & Krebs, E. G. A cyclic 3′,5′-AMP-stimulated protein kinase from cardiac muscle. Adv. Enzyme Regul. 8, 191–203 (1970).

    CAS  PubMed  Google Scholar 

  18. Gill, G. N. & Garren, L. D. Role of the receptor in the mechanism of action of adenosine 3′,5′- cyclic monophosphate. Proc. Natl Acad. Sci. USA 68, 786–790 (1971).

    CAS  PubMed  Google Scholar 

  19. Murad, F., Manganiello, V. & Vaughan, M. A simple, sensitive protein-binding assay for guanosine 3′,5′-monophosphate. Proc. Natl Acad. Sci. USA 68, 736–739 (1971).

    CAS  PubMed  Google Scholar 

  20. Harper, J. F. & Brooker, G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2′0 acetylation by acetic anhydride in aqueous solution. J. Cyclic Nucleotide Res. 1, 207–218 (1975).

    CAS  PubMed  Google Scholar 

  21. Pohl, S. L., Birnbaumer, L. & Rodbell, M. Glucagon-sensitive adenyl cylase in plasma membrane of hepatic parenchymal cells. Science 164, 566–567 (1969).

    CAS  PubMed  Google Scholar 

  22. Rodbell, M., Birnbaumer, L., Pohl, S. L. & Krans, H. M. Properties of the adenyl cyclase systems in liver and adipose cells: the mode of action of hormones. Acta Diabetol. Lat. 7 (Suppl. 1), 9–63 (1970).

    PubMed  Google Scholar 

  23. Pohl, S. L., Krans, H. M., Kozyreff, V., Birnbaumer, L. & Rodbell, M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. VI. Evidence for a role of membrane lipids. J. Biol. Chem. 246, 4447–4454 (1971).

    CAS  PubMed  Google Scholar 

  24. Rodbell, M., Krans, H. M., Pohl, S. L. & Birnbaumer, L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J. Biol. Chem. 246, 1872–1876 (1971).

    CAS  PubMed  Google Scholar 

  25. Rodbell, M., Birnbaumer, L., Pohl, S. L. & Krans, H. M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J. Biol. Chem. 246, 1877–1882 (1971).

    CAS  PubMed  Google Scholar 

  26. Cassel, D. & Selinger, Z. Mechanism of adenylate cyclase activation through the β-adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP. Proc. Natl Acad. Sci USA 75, 4155–4159 (1978).

    CAS  PubMed  Google Scholar 

  27. Daniel, V., Litwack, G. & Tomkins, G. M. Induction of cytolysis of cultured lymphoma cells by adenosine 3′,5′- cyclic monophosphate and the isolation of resistant variants. Proc. Natl Acad. Sci. USA 70, 76–79 (1973).

    CAS  PubMed  Google Scholar 

  28. Bourne, H. R., Coffino, P. & Tomkins, G. M. Somatic genetic analysis of cyclic AMP action: characterization of unresponsive mutants. J. Cell. Physiol. 85, 611–620 (1975).

    CAS  PubMed  Google Scholar 

  29. Ross, E. M. & Gilman, A. G. Resolution of some components of adenylate cyclase necessary for catalytic activity. J. Biol. Chem. 252, 6966–6969 (1977).

    CAS  PubMed  Google Scholar 

  30. Ross, E. M. & Gilman, A. G. Reconstitution of catecholamine-sensitive adenylate cyclase activity: interactions of solubilized components with receptor-replete membranes. Proc. Natl Acad. Sci. USA 74, 3715–3719 (1977).

    CAS  PubMed  Google Scholar 

  31. Ross, E. M., Howlett, A. C., Ferguson, K. M. & Gilman, A. G. Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J. Biol. Chem. 253, 6401–6412 (1978).

    CAS  PubMed  Google Scholar 

  32. Pfeuffer, T. & Thomas, R. Stimulation of adenylate cyclase from avian erythrocyte membranes by GTP analogs. Separation and partial purification of a GTP-binding protein. Hoppe. Seyler's Z. Physiol. Chem. 355, 1237–1238 (1974).

    CAS  PubMed  Google Scholar 

  33. Miki, N., Baraban, J. M., Keirns, J. J., Boyce, J. J. & Bitensky, M. W. Purification and properties of the light-activated cyclic nucleotide phosphodiesterase of rod outer segments. J. Biol. Chem. 250, 6320–6327 (1975).

    CAS  PubMed  Google Scholar 

  34. Stryer, L. The molecules of visual excitation. Sci. Am. 257, 42–50 (1987).

    CAS  PubMed  Google Scholar 

  35. Hanoune, J. & Defer, N. Regulation and role of adenylyl cyclase isoforms. Annu. Rev. Pharmacol. Toxicol. 41, 145–174 (2001).

    CAS  PubMed  Google Scholar 

  36. Ashman, D. F., Lipton, R., Melicow, M. M. & Price, T. D. Isolation of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate from rat urine. Biochem. Biophys. Res. Commun. 11, 330–334 (1963).

    CAS  PubMed  Google Scholar 

  37. Hardman, J. G., Davis, J. W. & Sutherland, E. W. Measurement of guanosine 3′,5′-monophosphate and other cyclic nucleotides. Variations in urinary excretion with hormonal state of the rat. J. Biol. Chem. 241, 4812–4815 (1966).

    CAS  PubMed  Google Scholar 

  38. Hardman, J. G. & Sutherland, E. W. Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3′,5′- monophosphate from guanosine trihosphate. J. Biol. Chem. 244, 6363–6370 (1969).

    CAS  PubMed  Google Scholar 

  39. Furchgott, R. F. & Zawadzki, J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–376 (1980).

    CAS  PubMed  Google Scholar 

  40. Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. & Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl Acad. Sci. USA 84, 9265–9269 (1987).

    CAS  PubMed  Google Scholar 

  41. Ignarro, L. J., Byrns, R. E. & Wood, K. S. Endothelium-dependent modulation of cGMP levels and intrinsic smooth muscle tone in isolated bovine intrapulmonary artery and vein. Circ. Res. 60, 82–92 (1987).

    CAS  PubMed  Google Scholar 

  42. Rapoport, R. M., Waldman, S. A., Ginsburg, R., Molina, C. R. & Murad, F. Effects of glyceryl trinitrate on endothelium-dependent and -independent relaxation and cyclic GMP levels in rat aorta and human coronary artery. J. Cardiovasc. Pharmacol. 10, 82–89 (1987).

    CAS  PubMed  Google Scholar 

  43. Waldman, S. A., Rapoport, R. M. & Murad, F. Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J. Biol. Chem. 259, 14332–14334 (1984).

    CAS  PubMed  Google Scholar 

  44. Kuno, T. et al. Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J. Biol. Chem. 261, 5817–5823 (1986).

    CAS  PubMed  Google Scholar 

  45. Lowe, D. G. et al. Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J. 8, 1377–1384 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chinkers, M. et al. A membrane form of guanylyl cyclase is an atrial naturetic peptide receptor. Nature 338, 78–83 (1989).

    CAS  PubMed  Google Scholar 

  47. Murad, F. Nitric oxide signaling: would you believe that a simple free radical could be a second messenger, autacoid, paracrine substance, neurotransmitter, and hormone? Recent Prog. Horm. Res. 53, 43–59 (1998).

    CAS  PubMed  Google Scholar 

  48. Krebs, E. G. & Beavo, J. A. Phosphorylation-dephosphorylation of enzymes. Annu. Rev. Biochem. 48, 923–959 (1979).

    CAS  PubMed  Google Scholar 

  49. Nestler, E. J. & Greengard, P. Protein phosphorylation in the brain. Nature 305, 583–588 (1983).

    CAS  PubMed  Google Scholar 

  50. Langan, T. A. Histone phosphorylation: stimulation by adenosine 3′,5′-monophosphate. Science 162, 579–580 (1968).

    CAS  PubMed  Google Scholar 

  51. Lohmann, S. M., Walter, U. & Greengard, P. Identification of endogenous substrate proteins for cAMP-dependent protein kinase in bovine brain. J. Biol. Chem. 255, 9985–9992 (1980).

    CAS  PubMed  Google Scholar 

  52. Steinberg, D. et al. Hormonal regulation of lipase, phosphorylase and glycogen synthase in adipose tissue. Adv. Cyclic Nucleotide Res. 5, 549–568 (1975).

    CAS  PubMed  Google Scholar 

  53. Beavo, J. A., Hardman, J. G. & Sutherland, E. W. Stimulation of adenosine 3′,5′-monophosphate hydrolysis by guanosine 3′,5′-monophosphate. J. Biol. Chem. 246, 3841–3846 (1971).

    CAS  PubMed  Google Scholar 

  54. Aravind, L. & Ponting, C. P. The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem. Sci. 22, 458–459 (1997).

    CAS  PubMed  Google Scholar 

  55. Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Annu. Rev. Pharmacol. Toxicol. 24, 275–328 (1984).

    Google Scholar 

  56. Kaupp, U. B. & Seifert, R. Cyclic nucleotide-gated ion channels. Physiol. Rev. 82, 769–824 (2002).

    CAS  PubMed  Google Scholar 

  57. de Rooij, J. et al. EPAC is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474–477 (1998).

    CAS  Google Scholar 

  58. Kawasaki, H. et al. A family of cAMP-binding proteins that directly activate Rap1. Science 282, 2275–2279 (1998).

    CAS  Google Scholar 

  59. Wicks, W. D. Induction of hepatic enzymes by adenosine 3′,5′-monophosphate in organ culture. J. Biol. Chem. 244, 3941–3950 (1969).

    CAS  PubMed  Google Scholar 

  60. Montminy, M. R., Sevarino, K. A., Wagner, J. A., Mandel, G. & Goodman, R. H. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc. Natl Acad. Sci. USA 83, 6682–6686 (1986).

    CAS  PubMed  Google Scholar 

  61. Short, J. M., Wynshaw-Boris, A., Short, H. P. & Hanson, R. W. Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. II. Identification of cAMP and glucocorticoid regulatory domains. J. Biol. Chem. 261, 9721–9726 (1986).

    CAS  PubMed  Google Scholar 

  62. Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature Rev. Mol. Cell Biol. 2, 599–609 (2001).

    CAS  Google Scholar 

  63. Pittenger, C. et al. Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 34, 447–462 (2002).

    CAS  Google Scholar 

  64. Torgersen, K. M., Vang, T., Abrahamsen, H., Yaqub, S. & Tasken, K. Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal. 14, 1–9 (2002).

    CAS  PubMed  Google Scholar 

  65. Cheung, W. Y. Cyclic nucleotide 3′,5′-nucleotide phosphodiesterase: evidence for and properties of a protein activator. Biochem. Biophys. Res. Comm. 38, 533–538 (1970).

    CAS  PubMed  Google Scholar 

  66. Rall, T. Introduction. Adv. Cyclic Nucleotide Res. 5, 1–2 (1975).

    Google Scholar 

  67. Brunton, L. L., Hayes, J. S. & Mayer, S. E. Functional compartmentation of cyclic AMP and protein kinase in heart. Adv. Cyclic Nucleotide Res. 14, 391–397 (1981).

    CAS  PubMed  Google Scholar 

  68. Buxton, I. L. & Brunton, L. L. Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J. Biol. Chem. 258, 10233–10239 (1983).

    CAS  PubMed  Google Scholar 

  69. Steinberg, S. F. & Brunton, L. L. Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu. Rev. Pharmacol. Toxicol. 41, 751–773 (2001).

    CAS  PubMed  Google Scholar 

  70. MacMillan-Crow, L. A. & Lincoln, T. M. High-affinity binding and localization of the cyclic GMP-dependent protein kinase with the intermediate filament protein vimentin. Biochemistry 33, 8035–8043 (1994).

    CAS  PubMed  Google Scholar 

  71. Vaandrager, A. B. et al. Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl channel activation. Proc. Natl Acad. Sci. USA 95, 1466–1471 (1998).

    CAS  PubMed  Google Scholar 

  72. Feron, O. et al. Modulation of the endothelial nitric-oxide synthase-caveolin interaction in cardiac myocytes. Implications for the autonomic regulation of heart rate. J. Biol. Chem. 273, 30249–30254 (1998).

    CAS  PubMed  Google Scholar 

  73. Lucas, K. A. et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol. Rev. 52, 375–413 (2000).

    CAS  PubMed  Google Scholar 

  74. Michel, J. J. C. & Scott, J. D. AKAP mediated signal transduction. Annu. Rev. Pharmacol. Toxicol. 42, 235–257 (2002).

    CAS  PubMed  Google Scholar 

  75. Chen, Q., Lin, R. Y. & Rubin, C. S. Organelle-specific targeting of protein kinase AII (PKAII). Molecular and in situ characterization of murine A kinase anchor proteins that recruit regulatory subunits of PKAII to the cytoplasmic surface of mitochondria. J. Biol. Chem. 272, 15247–15257 (1997).

    CAS  PubMed  Google Scholar 

  76. Dodge, K. L. et al. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J. 20, 1921–1930 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Baillie, G. S. et al. TAPAS-1, a novel microdomain within a unique N-terminal region of PDE4A1 cAMP-specific PDE that allows rapid, Ca2+-triggered membrane association with selectivity for interaction with phosphatidic acid. J. Biol. Chem. 277, 28298–28309 (2002).

    CAS  PubMed  Google Scholar 

  78. Goaillard, J. M., Vincent, P. & Fischmeister, R. Simultaneous measurements of intracellular cAMP and l-type Ca2+ current in single frog ventricular myocytes. J. Physiol. (Lond.) 530, 79–91 (2001).

    CAS  Google Scholar 

  79. Walseth, T. F., Graff, G., Krick, T. P. & Goldberg, N. D. The fate of 18O in guanosine monophosphate during enzymic transformations leading to guanosine 3′,5′-monophosphate generation. J. Biol. Chem. 256, 2176–2179 (1981).

    CAS  PubMed  Google Scholar 

  80. Goldberg, N. D. et al. Cyclic AMP metabolism in intact platelets determined by 18O incorporation into adenine nucleotide α-phosphoryls. Adv. Cyclic Nucleotide Protein Phosphatase Res. 16, 363–379 (1984).

    CAS  Google Scholar 

  81. Ames, A. D. et al. Light-induced increases in cGMP metabolic flux correspond with electrical responses of photoreceptors. J. Biol. Chem. 261, 13034–13042 (1986).

    CAS  PubMed  Google Scholar 

  82. Walseth, T. F., Gander, J. E., Eide, S. J., Krick, T. P. & Goldberg, N. D. 18O labeling of adenine nucleotide α-phosphoryls in platelets. Contribution by phosphodiesterase-catalyzed hydrolysis of cAMP. J. Biol. Chem. 258, 1544–1558 (1983).

    CAS  PubMed  Google Scholar 

  83. Breer, H., Boekhoff, I. & Tareilus, E. Rapid kinetics of second messenger formation in olfactory transduction. Nature 345, 65–68 (1990).

    CAS  PubMed  Google Scholar 

  84. Goldberg, N. D., Ames, A. A. D., Gander, J. E. & Walseth, T. F. Magnitude of increase in retinal cGMP metabolic flux determined by 18O incorporation into nucleotide α-phosphoryls corresponds with intensity of photic stimulation. J. Biol. Chem. 258, 9213–9219 (1983).

    CAS  PubMed  Google Scholar 

  85. Rich, T. C., Tse, T. E., Rohan, J. G., Schaack, J. & Karpen, J. W. In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J. Gen. Physiol. 118, 63–78 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, J., Ma, Y., Taylor, S. S. & Tsien, R. Y. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl Acad. Sci. USA 98, 14997–15002 (2001).

    CAS  PubMed  Google Scholar 

  87. Honda, A. et al. Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc. Natl Acad. Sci. USA 98, 2437–2442 (2001).

    CAS  PubMed  Google Scholar 

  88. Zaccolo, M. et al. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nature Cell Biol 2, 25–29 (2000).

    CAS  PubMed  Google Scholar 

  89. Adams, S. et al. Imaging of cAMP signals and A-kinase translocation in single living cells. Adv Second Messenger Phosphoprotein Res. 28, 167–170 (1993).

    CAS  PubMed  Google Scholar 

  90. Adams, S. R., Harootunian, A. T., Buechler, Y. J., Taylor, S. S. & Tsien, R. Y. Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349, 694–697 (1991).

    CAS  Google Scholar 

  91. Zaccolo, M. & Pozzan, T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295, 1171–1175 (2002).

    Google Scholar 

  92. Hofmann, A., Ammendola, A. & Schlossmann, J. Rising behind NO: cGMP-dependent protein kinases. J. Cell Sci. 113, 1671–1676 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

α-adrenergic receptor

β-adrenergic receptor

guanylyl cyclase

PDE1

PDE2

PDE5

PDE6

PKA

PKC

PKG

Medscape DrugInfo

Viagra

Swiss-Prot

adenylyl cyclase

ANF

angiotensinogen

ATF1

BCL2

casein

CFTR

CREB

CREM

GFP

glucocorticoid receptor

glucose-6-phosphatase

glycogen phosphorylase

insulin

MLCK

NO synthase

PDE4A

phosphoenolpyruvate carboxykinase

phosphoglucomutase

rhodopsin

transducin

tyrosine hydroxylase

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beavo, J., Brunton, L. Cyclic nucleotide research — still expanding after half a century. Nat Rev Mol Cell Biol 3, 710–717 (2002). https://doi.org/10.1038/nrm911

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing