Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Advancing host-directed therapy for tuberculosis

This article has been updated

Abstract

Improved treatments are needed for nearly all forms of Mycobacterium tuberculosis infection. Adjunctive host-directed therapies have the potential to shorten tuberculosis treatment duration, prevent resistance and reduce lung injury by promoting autophagy, antimicrobial peptide production and other macrophage effector mechanisms, as well as by modifying specific mechanisms that cause lung inflammation and matrix destruction. The range of candidates is broad, including several agents approved for other clinical indications that are ready for evaluation in Phase II clinical trials. The promise of new and existing host-directed therapies that could accelerate response and improve tuberculosis treatment outcomes is discussed in this Opinion article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential targets of host-directed therapy against Mycobacterium tuberculosis.
Figure 2: Chest computed X-ray tomography of a patient with life-threatening pulmonary tuberculosis.

Similar content being viewed by others

Change history

  • 17 March 2015

    In the version of this article that was originally published online, some of the information in the acknowledgements section was incorrect. This has been corrected online and was corrected for the print version of the article.

References

  1. Gillespie, S. H. et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N. Engl. J. Med. 371, 1577–1587 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merle, C. S. et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N. Engl. J. Med. 371, 1588–1598 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Jindani, A. et al. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N. Engl. J. Med. 371, 1599–1608 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Churchyard, G. J. et al. A trial of mass isoniazid preventive therapy for tuberculosis control. N. Engl. J. Med. 370, 301–310 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Pasipanodya, J. G. et al. Pulmonary impairment after tuberculosis and its contribution to TB burden. BMC Public Health 10, 259 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alling, D. W. & Bosworth, E. B. The after-history of pulmonary tuberculosis. VI. The first fifteen years following diagnosis. Am. Rev. Respir. Dis. 81, 839–849 (1960).

    CAS  PubMed  Google Scholar 

  7. Mortaz, E. et al. Interaction of pattern recognition receptors with Mycobacterium tuberculosis. J. Clin. Immunol. 35, 1–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Guirado, E., Schlesinger, L. S. & Kaplan, G. Macrophages in tuberculosis: friend or foe. Semin. Immunopathol. 35, 563–583 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tan, B. H. et al. Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens. J. Immunol. 177, 1864–1871 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Gopal, R. et al. S100A8/A9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis. Am. J. Respir. Crit. Care Med. 188, 1137–1146 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma, N. et al. Clinical and epidemiological characteristics of individuals resistant to M. tuberculosis infection in a longitudinal TB household contact study in Kampala, Uganda. BMC Infect. Dis. 14, 352 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Subbian, S. et al. Early innate immunity determines outcome of Mycobacterium tuberculosis pulmonary infection in rabbits. Cell Commun. Signal. 11, 60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kristensen, I. A., Veirum, J. E., Moller, B. K. & Christiansen, M. Novel STAT1 alleles in a patient with impaired resistance to mycobacteria. J. Clin. Immunol. 31, 265–271 (2011).

    Article  PubMed  Google Scholar 

  14. Newport, M. J. et al. A mutation in the interferon-γ-receptor gene and susceptibility to mycobacterial infection. N. Engl. J. Med. 335, 1941–1949 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Tena, G. N. et al. Failure to control growth of mycobacteria in blood from children infected with human immunodeficiency virus, and its relationship to T cell function. J. Infect. Dis. 187, 1544–1551 (2003).

    Article  PubMed  Google Scholar 

  16. Fletcher, H. A. et al. Inhibition of mycobacterial growth in vitro is enhanced following primary BCG vaccination but not BCG revaccination of human subjects. Clin. Vaccine Immunol. 20, 1683–1689 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chao, M. C. & Rubin, E. J. Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu. Rev. Microbiol. 64, 293–311 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Majumdar, S. D. et al. Appropriate DevR (DosR)-mediated signaling determines transcriptional response, hypoxic viability and virulence of Mycobacterium tuberculosis. PLoS ONE 7, e35847 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoger, S., Miller, T., Katz, D., Beavers, S. & Lykens, K. Longevity loss among cured tuberculosis patients and the potential value of prevention. Int. J. Tuberc. Lung Dis. 18, 1347–1352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Banu Rekha, V. V. et al. Assessment of long term status of sputum positive pulmonary TB patients successfully treated with short course chemotherapy. Indian J. Tuberc. 56, 132–140 (2009).

    CAS  PubMed  Google Scholar 

  21. Briken, V., Porcelli, S. A., Besra, G. S. & Kremer, L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol. Microbiol. 53, 391–403 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    Article  CAS  Google Scholar 

  23. Fabri, M., Realegeno, S. E., Jo, E. K. & Modlin, R. L. Role of autophagy in the host response to microbial infection and potential for therapy. Curr. Opin. Immunol. 23, 65–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Watson, R. O., Manzanillo, P. S. & Cox, J. S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Renna, M. et al. Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. J. Clin. Invest. 121, 3554–3563 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet. 36, 585–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Gao, P. et al. Structure–function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154, 748–762 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tijono, S. M. et al. Identification of human-selective analogues of the vascular-disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Br. J. Cancer 108, 1306–1315 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shoji-Kawata, S. et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494, 201–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stanley, S. A. et al. Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth. PLoS Pathog. 10, e1003946 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruns, H. et al. Abelson tyrosine kinase controls phagosomal acidification required for killing of Mycobacterium tuberculosis in human macrophages. J. Immunol. 189, 4069–4078 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Napier, R. J. et al. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 10, 475–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yogalingam, G. & Pendergast, A. M. Abl kinases regulate autophagy by promoting the trafficking and function of lysosomal components. J. Biol. Chem. 283, 35941–35953 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gotta, V. et al. Large-scale imatinib dose–concentration–effect study in CML patients under routine care conditions. Leuk. Res. 38, 764–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Ogolla, P. S. et al. The protein kinase double-stranded RNA-dependent (PKR) enhances protection against disease cause by a non-viral pathogen. PLoS Pathog. 9, e1003557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, K. et al. Improved control of tuberculosis and activation of macrophages in mice lacking protein kinase R. PLoS ONE 7, e30512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martineau, A. R. et al. Reciprocal seasonal variation in vitamin D status and tuberculosis notifications in Cape Town, South Africa. Proc. Natl Acad. Sci. USA 108, 19013–19017 (2011).

    Article  PubMed  Google Scholar 

  38. Liu, P. T. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311, 1770–1773 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Wejse, C. et al. Vitamin D as supplementary treatment for tuberculosis: a double-blind, randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 179, 843–850 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Nursyam, E. W., Amin, Z. & Rumende, C. M. The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med. Indones. 38, 3–5 (2006).

    PubMed  Google Scholar 

  41. Ralph, A. P. et al. L-arginine and vitamin D adjunctive therapies in pulmonary tuberculosis: a randomised, double-blind, placebo-controlled trial. PLoS ONE 8, e70032 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martineau, A. R. et al. High-dose vitamin D3 during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet 377, 242–250 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Coussens, A. K. et al. Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment. Proc. Natl Acad. Sci. USA 109, 15449–15454 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Karyadi, E. et al. A double-blind, placebo-controlled study of vitamin A and zinc supplementation in persons with tuberculosis in Indonesia: effects on clinical response and nutritional status. Am. J. Clin. Nutr. 75, 720–727 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Gondcaille, C. et al. Phenylbutyrate up-regulates the adrenoleukodystrophy-related gene as a nonclassical peroxisome proliferator. J. Cell Biol. 169, 93–104 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steinmann, J., Halldorsson, S., Agerberth, B. & Gudmundsson, G. H. Phenylbutyrate induces antimicrobial peptide expression. Antimicrob. Agents Chemother. 53, 5127–5133 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van der Does, A. M., Kenne, E., Koppelaar, E., Agerberth, B. & Lindbom, L. Vitamin D3 and phenylbutyrate promote development of a human dendritic cell subset displaying enhanced antimicrobial properties. J. Leukoc. Biol. 95, 883–891 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Mily, A. et al. Oral intake of phenylbutyrate with or without vitamin D3 upregulates the cathelicidin LL-37 in human macrophages: a dose finding study for treatment of tuberculosis. BMC Pulm. Med. 13, 23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Raqib, R. et al. Clinical trial of oral phenylbutyrate and vitamin D adjunctive therapy in pulmonary tuberculosis in Bangladesh. Int. J. Tuberc. Lung Dis. 18, S233–S234 (2014).

    Article  Google Scholar 

  50. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Arai, M. et al. Metformin, an antidiabetic agent, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in human monocytes in vitro. J. Pharmacol. Exp. Ther. 334, 206–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Singhal, A. et al. Metformin as adjunct anti-tuberculosis therapy. Sci. Transl Med. 6, 263ra159 (2014).

    Article  CAS  Google Scholar 

  53. Dawson, R. et al. Immunomodulation with recombinant interferon-γ1b in pulmonary tuberculosis. PLoS ONE 4, e6984 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johnson, J. L. et al. Randomized trial of adjunctive interleukin-2 in adults with pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 168, 185–191 (2003).

    Article  PubMed  Google Scholar 

  55. Achkar, J. M. & Casadevall, A. Antibody-mediated immunity against tuberculosis: implications for vaccine development. Cell Host Microbe 13, 250–262 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Roy, E. et al. Therapeutic efficacy of high-dose intravenous immunoglobulin in Mycobacterium tuberculosis infection in mice. Infect. Immun. 73, 6101–6109 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dooley, D. P., Carpenter, J. L. & Rademacher, S. Adjunctive corticosteroid therapy for tuberculosis: a critical reappraisal of the literature. Clin. Infect. Dis. 25, 872–887 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Critchley, J. A., Young, F., Orton, L. & Garner, P. Corticosteroids for prevention of mortality in people with tuberculosis: a systematic review and meta-analysis. Lancet Infect. Dis. 13, 223–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Tobin, D. M. et al. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148, 434–446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wallis, R. S. Corticosteroid effects on sputum culture in pulmonary tuberculosis: a meta-regression analysis. Open Forum Infect. Dis. http://dx.doi.org/10.1093/ofid/ofu020 (2014).

  61. Wallis, R. S., Wang, C., Meyer, D. & Thomas, N. Month 2 culture status and treatment duration as predictors of tuberculosis relapse risk in a meta-regression model. PLoS ONE 8, e71116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Johnson, J. R., Taylor, B. C., Morrissey, J. F., Jenne, J. W. & McDonald, F. M. Corticosteroids in pulmonary tuberculosis. I. Over-all results in Madison–Minneapolis veterans administration hospitals steroid study. Am. Rev. Respir. Dis. 92, 376–391 (1965).

    CAS  PubMed  Google Scholar 

  63. Mayanja-Kizza, H. et al. Immunoadjuvant therapy for HIV-associated tuberculosis with prednisolone: a phase II clinical trial in Uganda. J. Infect. Dis. 191, 856–865 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tripathy, S. P. et al. Study of chemotherapy regimens of 5 and 7 months' duration and the role of corticosteroids in the treatment of sputum-positive patients with pulmonary tuberculosis in South India. Tubercle 64, 73–91 (1983).

    Article  Google Scholar 

  65. Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med. 345, 1098–1104 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Van, A. G., Vermeire, S. & Rutgeerts, P. The potential for disease modification in Crohn's disease. Nature Rev. Gastroenterol. Hepatol. 7, 79–85 (2010).

    Article  Google Scholar 

  67. Keystone, E. C. et al. Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial. Arthritis Rheum. 50, 1400–1411 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Wallis, R. S. et al. A study of the safety, immunology, virology, and microbiology of adjunctive etanercept in HIV-1-associated tuberculosis. AIDS 18, 257–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Sandborn, W. J. et al. Etanercept for active Crohn's disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 121, 1088–1094 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Utz, J. P. et al. Etanercept for the treatment of stage II and III progressive pulmonary sarcoidosis. Chest 124, 177–185 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Wallis, R. S. Mathematical modeling of the cause of tuberculosis during tumor necrosis factor blockade. Arthritis Rheum. 58, 947–952 (2008).

    Article  PubMed  Google Scholar 

  72. Wallis, R. S., Broder, M. S., Wong, J. Y. & Beenhouwer, D. O. Granulomatous infections due to tumor necrosis factor blockade: correction. Clin. Infect. Dis. 39, 1254–1256 (2004).

    Article  PubMed  Google Scholar 

  73. Jick, S. S., Lieberman, E. S., Rahman, M. U. & Choi, H. K. Glucocorticoid use, other associated factors, and the risk of tuberculosis. Arthritis Rheum. 55, 19–26 (2006).

    Article  PubMed  Google Scholar 

  74. Carmona, L. et al. Effectiveness of recommendations to prevent reactivation of latent tuberculosis infection in patients treated with tumor necrosis factor antagonists. Arthritis Rheum. 52, 1766–1772 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Tubach, F. et al. Risk of tuberculosis is higher with anti-tumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: the three-year prospective French Research Axed on Tolerance of Biotherapies registry. Arthritis Rheum. 60, 1884–1894 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Blackmore, T. K., Manning, L., Taylor, W. & Wallis, R. S. Therapeutic use of infliximab in tuberculosis to control severe paradoxical reaction involving the brain, lung, and lymph nodes. Clin. Infect. Dis. 47, e79–e82 (2008).

    Article  CAS  Google Scholar 

  77. Trafford, G. et al. Anti-TNF therapy for severe CNS tuberculosis causing blindness. Eur. Conf. Clin. Micro. Infect. Dis. [online], (2013).

  78. Wallis, R. S., van Vuuren, C. & Potgieter, S. Adalimumab treatment of life-threatening tuberculosis. Clin. Infect. Dis. 48, 1429–1432 (2009).

    Article  PubMed  Google Scholar 

  79. St Clair, E. W. et al. The relationship of serum infliximab concentrations to clinical improvement in rheumatoid arthritis: results from ATTRACT, a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 1451–1459 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Maiga, M. et al. Risk of tuberculosis reactivation with tofacitinib (CP-690550). J. Infect. Dis. 205, 1705–1708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Winthrop, K. L. et al. Tuberculosis and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheum. Abstr. 64 (Suppl. 10), 1278 (2012).

    Google Scholar 

  82. Sheskin, J. Thalidomide in the treatment of lepra reactions. Clin. Pharmacol. Ther. 6, 303–306 (1965).

    Article  CAS  PubMed  Google Scholar 

  83. Sampaio, E. P., Sarno, E. N., Galilly, R., Cohn, Z. A. & Kaplan, G. Thalidomide selectively inhibits tumor necrosis factor α production by stimulated human monocytes. J. Exp. Med. 173, 699–703 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. Schoeman, J. F., Andronikou, S. & Stefan, D. C., Freeman, N., & van Toorn, R. Tuberculous meningitis-related optic neuritis: recovery of vision with thalidomide in 4 consecutive cases. J. Child Neurol. 25, 822–828 (2010).

    Article  PubMed  Google Scholar 

  85. Schoeman, J. F., Fieggen, G., Seller, N., Mendelson, M. & Hartzenberg, B. Intractable intracranial tuberculous infection responsive to thalidomide: report of four cases. J. Child Neurol. 21, 301–308 (2006).

    Article  PubMed  Google Scholar 

  86. Schoeman, J. F. et al. Adjunctive thalidomide therapy for childhood tuberculous meningitis: results of a randomized study. J. Child Neurol. 19, 250–257 (2004).

    Article  PubMed  Google Scholar 

  87. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Mahony, C. et al. Pomalidomide is nonteratogenic in chicken and zebrafish embryos and nonneurotoxic in vitro. Proc. Natl Acad. Sci. USA 110, 12703–12708 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Koo, M. S. et al. Phosphodiesterase 4 inhibition reduces innate immunity and improves isoniazid clearance of Mycobacterium tuberculosis in the lungs of infected mice. PLoS ONE 6, e17091 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Subbian, S. et al. Phosphodiesterase-4 inhibition alters gene expression and improves isoniazid-mediated clearance of Mycobacterium tuberculosis in rabbit lungs. PLoS Pathog. 7, e1002262 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maiga, M. et al. Adjuvant host-directed therapy with types 3 and 5 but not type 4 phosphodiesterase inhibitors shortens the duration of tuberculosis treatment. J. Infect. Dis. 208, 512–519 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Maiga, M. et al. Successful shortening of tuberculosis treatment using adjuvant host-directed therapy with FDA-approved phosphodiesterase inhibitors in the mouse model. PLoS ONE 7, e30749 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Turner, J., Frank, A. A., Brooks, J. V., Marietta, P. M. & Orme, I. M. Pentoxifylline treatment of mice with chronic pulmonary tuberculosis accelerates the development of destructive pathology. Immunology 102, 248–253 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wallis, R. S. et al. Pentoxifylline in human immunodeficiency virus-seropositive tuberculosis: a randomized, controlled trial. J. Infect. Dis. 174, 727–733 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Wallis, R. S. et al. Pentoxifylline in human immunodeficiency virus–positive tuberculosis: safety at 4 years. J. Infect. Dis. 178, 1861 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Mayer-Barber, K. D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511, 99–103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Law, K. et al. Increased release of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha by bronchoalveolar cells lavaged from involved sites in pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 153, 799–804 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Fujiwara, H., Kleinhenz, M. E., Wallis, R. S. & Ellner, J. J. Increased interleukin-1 production and monocyte suppressor cell activity associated with human tuberculosis. Am. Rev. Respir. Dis. 133, 73–77 (1986).

    Article  CAS  PubMed  Google Scholar 

  100. Katti, M. K. Assessment of serum IL-1, IL-2 and IFN-γ levels in untreated pulmonary tuberculosis patients: role in pathogenesis. Arch. Med. Res. 42, 199–201 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Byrne, S. T., Denkin, S. M. & Zhang, Y. Aspirin and ibuprofen enhance pyrazinamide treatment of murine tuberculosis. J. Antimicrob. Chemother. 59, 313–316 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Vilaplana, C. et al. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J. Infect. Dis. 208, 199–202 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Lin, H. I., Chu, S. J., Wang, D. & Feng, N. H. Pharmacological modulation of TNF production in macrophages. J. Microbiol. Immunol. Infect. 37, 8–15 (2004).

    CAS  PubMed  Google Scholar 

  104. Ma, S. & Ma, C. C. Recent development in pleiotropic effects of statins on cardiovascular disease through regulation of transforming growth factor-beta superfamily. Cytokine Growth Factor Rev. 22, 167–175 (2011).

    PubMed  Google Scholar 

  105. Parihar, S. P. et al. Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J. Infect. Dis. 209, 754–763 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Skerry, C. et al. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen. J. Antimicrob. Chemother. 69, 2453–2457 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kang, Y. A. et al. The effects of statin use on the development of tuberculosis among patients with diabetes mellitus. Int. J. Tuberc. Lung Dis. 18, 717–724 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Rajaram, M. V. et al. Mycobacterium tuberculosis activates human macrophage peroxisome proliferator-activated receptor γ linking mannose receptor recognition to regulation of immune responses. J. Immunol. 185, 929–942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Makitalo, L., Rintamaki, H., Tervahartiala, T., Sorsa, T. & Kolho, K. L. Serum MMPs 7–9 and their inhibitors during glucocorticoid and anti-TNF-α therapy in pediatric inflammatory bowel disease. Scand. J. Gastroenterol. 47, 785–794 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Caton, J. & Ryan, M. E. Clinical studies on the management of periodontal diseases utilizing subantimicrobial dose doxycycline (SDD). Pharmacol. Res. 63, 114–120 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Walker, N. F. et al. Doxycycline and HIV infection suppress tuberculosis-induced matrix metalloproteinases. Am. J. Respir. Crit. Care Med. 185, 989–997 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Skrahin, A. et al. Autologous mesenchymal stromal cell infusion as adjunct treatment in patients with multidrug and extensively drug-resistant tuberculosis: an open-label phase 1 safety trial. Lancet Respir. Med. 2, 108–122 (2014).

    Article  PubMed  Google Scholar 

  113. Coleman, M. T. et al. PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Sci. Transl Med. 6, 265ra167 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen, R. Y. et al. PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Sci. Transl Med. 6, 265ra166 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wallis, R. S. et al. Whole blood bactericidal activity during treatment of pulmonary tuberculosis. J. Infect. Dis. 187, 270–278 (2003).

    Article  PubMed  Google Scholar 

  116. Willcox, P. A. & Ferguson, A. D. Chronic obstructive airways disease following treated pulmonary tuberculosis. Respir. Med. 83, 195–198 (1989).

    Article  CAS  PubMed  Google Scholar 

  117. Jones, B. E. et al. Relationship of the manifestations of tuberculosis to CD4 cell counts in patients with human immunodeficiency virus infection. Am. Rev. Respir. Dis. 148, 1292–1297 (1993).

    Article  CAS  PubMed  Google Scholar 

  118. Sonnenberg, P. et al. HIV-1 and recurrence, relapse, and reinfection of tuberculosis after cure: a cohort study in South African mineworkers. Lancet 358, 1687–1693 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Crampin, A. C. et al. Recurrent TB: relapse or reinfection? The effect of HIV in a general population cohort in Malawi. AIDS 24, 417–426 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Badri, M., Wilson, D. & Wood, R. Effect of highly active antiretroviral therapy on incidence of tuberculosis in South Africa: a cohort study. Lancet 359, 2059–2064 (2002).

    Article  PubMed  Google Scholar 

  121. Whalen, C. et al. Accelerated course of human immunodeficiency virus infection after tuberculosis. Am. J. Respir. Crit. Care Med. 151, 129–135 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Abdool Karim, S. S. et al. Timing of initiation of antiretroviral drugs during tuberculosis therapy. N. Engl. J. Med. 362, 697–706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank workshop participants for providing summaries of their presentations and the session chairs for their assistance in reviewing earlier versions of this document: L. S. Schlesinger (Ohio State University, USA), T. R. Hawn (University of Washington, USA), W. H. Boom (Case Western Reserve University, Ohio, USA), H. Kornfeld (University of Massachusetts, USA), G. Churchyard (Aurum Institute, South Africa), J. Ellner (Boston University, Massachusetts, USA) and G. Kaplan (Bill and Melinda Gates Foundation). They also acknowledge the editorial and administrative assistance of D. Johnson and S. Williams (Division of AIDS, US National Institute of Allergy and Infectious Disease (NIAID)). This publication and workshop have been funded in whole or in part with Federal funds from the Division of AIDS, NIAID, US National Institutes of Health, Department of Health and Human Services, under contract number HHSN272201200009C, entitled NIAID HIV and Other Infectious Diseases Clinical Research Support Services (CRSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Wallis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Autophagy

A cellular process that delivers potentially harmful cytosolic macromolecules and organelles to lysosomes for degradation. In macro-autophagy, an isolation membrane fuses with itself to enclose the pathogen to form an autophagosome, which can then fuse with lysosomes.

C3HeB/FeJ mice

A strain of mice (also known as Kramnik mice) that develops granulomatous lesions with central necrosis and hypoxia following Mycobacterium tuberculosis infection. By contrast, lesions in BALB/c mice are non-necrotic and lack hypoxia.

Granulomas

Organized collections of tightly apposed epithelioid macrophages, lymphocytes and fibroblasts, with or without necrotic centres.

Immune reconstitution inflammatory syndrome

(IRIS). Paradoxical reactions that occur during combined antimicrobial and antiretroviral treatment in individuals with tuberculosis and AIDS.

Inflammasome

A molecular complex of several proteins that cleaves pro-interleukin-1 (IL-1) and pro-IL-18 following assembly, thereby producing active IL-1 and IL-18.

Latent M. tuberculosis infection

(LTBI). A clinical state in which there is evidence of T cell sensitization to Mycobacterium tuberculosis antigens (by tuberculin skin test or interferon-release assay) but no evidence of disease (by chest radiography and sputum culture). Individuals with LTBI are at risk of developing active tuberculosis if immunosuppressed by medical therapies or other infections.

Mammalian target of rapamycin

(mTOR). A conserved serine/threonine protein kinase that regulates cell growth and metabolism, as well as the expression of cytokines and growth factors, in response to environmental cues. mTOR receives stimulatory signals from RAS and phosphatidylinositol-3-OH kinase downstream of growth factors, as well as nutrients, such as amino acids, glucose and oxygen.

Paradoxical reactions

Exacerbation of clinical disease (worsened fever and increased lymph node and lung involvement) despite microbiological improvement (conversion of sputum cultures to negative) that occurs after antimicrobial treatment has commenced and is attributed to activation of inflammatory mechanisms.

Phagolysosome

A cytoplasmic body that is formed by the fusion of a phagosome (containing ingested particles at a neutral pH) and a lysosome (containing hydrolytic and other enzymes at an acidic pH). Fusion of the phagolysosome is inhibited by Mycobacterium tuberculosis as a mechanism for its intracellular survival.

S100 proteins

A family of low-molecular-weight proteins that participate in the inflammatory response by promoting leukocyte migration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallis, R., Hafner, R. Advancing host-directed therapy for tuberculosis. Nat Rev Immunol 15, 255–263 (2015). https://doi.org/10.1038/nri3813

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3813

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing