Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Beyond pattern recognition: five immune checkpoints for scaling the microbial threat

Abstract

Pattern recognition by the innate immune system enables the detection of microorganisms, but how the level of microbial threat is evaluated — a process that is crucial for eliciting measured antimicrobial responses with minimal inflammatory tissue damage — is less well understood. New evidence has shown that features of microbial viability can be detected by the immune system and thereby induce robust responses that are not warranted for dead microorganisms. Here, we propose five immune checkpoints that, as defined here, collectively determine the gravity of microbial encounters.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation of the microbial threat with inflammatory responses.
Figure 2: Sensing vita-PAMPs.
Figure 3: Detecting features of invasiveness.
Figure 4: The class and context of pattern recognition indicates the microbial threat level and dictates the nature and magnitude of the immune response.

Similar content being viewed by others

References

  1. Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    CAS  PubMed  Google Scholar 

  2. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    CAS  PubMed  Google Scholar 

  4. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Inohara, N., Ogura, Y. & Nunez, G. Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr. Opin. Microbiol. 5, 76–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Philpott, D. J. & Girardin, S. E. Nod-like receptors: sentinels at host membranes. Curr. Opin. Immunol. 22, 428–434 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunol. 5, 730–737 (2004).

    Article  CAS  Google Scholar 

  10. Osorio, F. & Reis, E. S. C. Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 34, 651–664 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Kumar, H., Kawai, T. & Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30, 16–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Kawai, T. & Akira, S. TLR signaling. Semin. Immunol. 19, 24–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Picard, C., Casanova, J. L. & Puel, A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin. Microbiol. Rev. 24, 490–497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Picard, C. et al. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine 89, 403–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Fischer, A. Human primary immunodeficiency diseases. Immunity 27, 835–845 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Bousfiha, A. et al. Primary immunodeficiencies of protective immunity to primary infections. Clin. Immunol. 135, 204–209 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Vance, R. E., Isberg, R. R. & Portnoy, D. A. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6, 10–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. von Koenig, C. H., Finger, H. & Hof, H. Failure of killed Listeria monocytogenes vaccine to produce protective immunity. Nature 297, 233–234 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Lauvau, G. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294, 1735–1739 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Varol, C., Zigmond, E. & Jung, S. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nature Rev. Immunol. 10, 415–426 (2010).

    Article  CAS  Google Scholar 

  22. Goodridge, H. S. et al. Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'. Nature 472, 471–475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. & Lanzavecchia, A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nature Immunol. 6, 769–776 (2005).

    Article  CAS  Google Scholar 

  24. Underhill, D. M. Collaboration between the innate immune receptors dectin-1, TLRs, and Nods. Immunol. Rev. 219, 75–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Kasturi, S. P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Detmer, A. & Glenting, J. Live bacterial vaccines – a review and identification of potential hazards. Microb. Cell Fact. 5, 23 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sander, L. E. et al. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474, 385–389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pulendran, B. & Ahmed, R. Immunological mechanisms of vaccination. Nature Immunol. 12, 509–517 (2011).

    Article  CAS  Google Scholar 

  29. Galan, J. E. Common themes in the design and function of bacterial effectors. Cell Host Microbe 5, 571–579 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Backert, S., Tegtmeyer, N. & Selbach, M. The versatility of Helicobacter pylori CagA effector protein functions: the master key hypothesis. Helicobacter 15, 163–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Viboud, G. I. & Bliska, J. B. Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu. Rev. Microbiol. 59, 69–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Swanson, M. S. & Hammer, B. K. Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu. Rev. Microbiol. 54, 567–613 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunol. 5, 1166–1174 (2004).

    Article  CAS  Google Scholar 

  34. Brodsky, I. E. et al. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 7, 376–387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kofoed, E. M. & Vance, R. E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477, 592–595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Freche, B., Reig, N. & van der Goot, F. G. The role of the inflammasome in cellular responses to toxins and bacterial effectors. Semin. Immunopathol. 29, 249–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. & van der Goot, F. G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126, 1135–1145 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rathinam, V. A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nature Immunol. 11, 395–402 (2010).

    Article  CAS  Google Scholar 

  41. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nature Immunol. 7, 569–575 (2006).

    Article  CAS  Google Scholar 

  42. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Fontana, M. F. et al. Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS Pathog. 7, e1001289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boyer, L. et al. Pathogen-derived effectors trigger protective immunity via activation of the Rac2 enzyme and the IMD or Rip kinase signaling pathway. Immunity 35, 536–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miao, E. A. & Rajan, J. V. Salmonella and caspase-1: a complex interplay of detection and evasion. Front. Microbiol. 2, 85 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745–1755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mylonakis, E. & Calderwood, S. B. Infective endocarditis in adults. N. Engl. J. Med. 345, 1318–1330 (2001).

    CAS  Google Scholar 

  48. Nolan, J. P. The role of intestinal endotoxin in liver injury: a long and evolving history. Hepatology 52, 1829–1835 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Kelsall, B. Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. Mucosal Immunol. 1, 460–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eberl, G. & Boneca, I. G. Bacteria and MAMP-induced morphogenesis of the immune system. Curr. Opin. Immunol. 22, 448–454 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Wen, L. et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455, 1109–1113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aimanianda, V. et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460, 1117–1121 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Hohl, T. M. et al. Aspergillus fumigatus triggers inflammatory responses by stage-specific β-glucan display. PLoS Pathog. 1, e30 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Sudbery, P. E. Growth of Candida albicans hyphae. Nature Rev. Microbiol. 9, 737–748 (2011).

    Article  CAS  Google Scholar 

  55. Moyes, D. L. et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 8, 225–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. d'Ostiani, C. F. et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191, 1661–1674 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheng, S. C. et al. The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J. Leukoc. Biol. 90, 357–366 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gross, O. et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459, 433–436 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Joly, S. et al. Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J. Immunol. 183, 3578–3581 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Lo, H. J. et al. Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Peterson, M. M. et al. Apolipoprotein B is an innate barrier against invasive Staphylococcus aureus infection. Cell Host Microbe 4, 555–566 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Coombes, J. L. & Powrie, F. Dendritic cells in intestinal immune regulation. Nature Rev. Immunol. 8, 435–446 (2008).

    Article  CAS  Google Scholar 

  63. Hu, W., Troutman, T. D., Edukulla, R. & Pasare, C. Priming microenvironments dictate cytokine requirements for T helper 17 cell lineage commitment. Immunity 35, 1010–1022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Torchinsky, M. B., Garaude, J., Martin, A. P. & Blander, J. M. Innate immune recognition of infected apoptotic cells directs TH17 cell differentiation. Nature 458, 78–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Hirotani, T. et al. The nuclear IκB protein IκBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria. J. Immunol. 174, 3650–3657 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Monteleone, I., Platt, A. M., Jaensson, E., Agace, W. W. & Mowat, A. M. IL-10-dependent partial refractoriness to Toll-like receptor stimulation modulates gut mucosal dendritic cell function. Eur. J. Immunol. 38, 1533–1547 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Smythies, L. E. et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 115, 66–75 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Taylor, B. C. et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J. Exp. Med. 206, 655–667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kruis, W. et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53, 1617–1623 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kwon, H. K. et al. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc. Natl Acad. Sci. USA 107, 2159–2164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Livingston, M., Loach, D., Wilson, M., Tannock, G. W. & Baird, M. Gut commensal Lactobacillus reuteri 100-23 stimulates an immunoregulatory response. Immunol. Cell Biol. 88, 99–102 (2010).

    Article  PubMed  Google Scholar 

  72. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sczesnak, A. et al. The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 10, 260–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pamer, E. G. Immune responses to commensal and environmental microbes. Nature Immunol. 8, 1173–1178 (2007).

    Article  CAS  Google Scholar 

  77. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Sato, A. et al. CD11b+ Peyer's patch dendritic cells secrete IL-6 and induce IgA secretion from naive B cells. J. Immunol. 171, 3684–3690 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Benckert, J. et al. The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J. Clin. Invest. 121, 1946–1955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Francis, M. S., Wolf-Watz, H. & Forsberg, A. Regulation of type III secretion systems. Curr. Opin. Microbiol. 5, 166–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature Immunol. 11, 1136–1142 (2010).

    Article  CAS  Google Scholar 

  84. Monack, D. M., Mecsas, J., Bouley, D. & Falkow, S. Yersinia-induced apoptosis in vivo aids in the establishment of a systemic infection of mice. J. Exp. Med. 188, 2127–2137 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Auerbuch, V. & Isberg, R. R. Growth of Yersinia pseudotuberculosis in mice occurs independently of Toll-like receptor 2 expression and induction of interleukin-10. Infect. Immun. 75, 3561–3570 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lemaitre, N., Sebbane, F., Long, D. & Hinnebusch, B. J. Yersinia pestis YopJ suppresses tumor necrosis factor α induction and contributes to apoptosis of immune cells in the lymph node but is not required for virulence in a rat model of bubonic plague. Infect. Immun. 74, 5126–5131 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Netea, M. G. et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1β in monocytes and macrophages. Blood 113, 2324–2335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dinarello, C. A. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur. J. Immunol. 41, 1203–1217 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Green, D. R., Ferguson, T., Zitvogel, L. & Kroemer, G. Immunogenic and tolerogenic cell death. Nature Rev. Immunol. 9, 353–363 (2009).

    Article  CAS  Google Scholar 

  91. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Kufer, T. A. & Sansonetti, P. J. NLR functions beyond pathogen recognition. Nature Immunol. 12, 121–128 (2011).

    Article  CAS  Google Scholar 

  93. Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nature Immunol. 11, 997–1004 (2010).

    Article  CAS  Google Scholar 

  94. Burckstummer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nature Immunol. 10, 266–272 (2009).

    Article  CAS  Google Scholar 

  95. Zhang, Z. et al. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity 34, 866–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dangl, J. L. & Jones, J. D. Plant pathogens and integrated defence responses to infection. Nature 411, 826–833 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Medzhitov for critical reading of the manuscript. J.M.B. is a Burroughs Wellcome Investigator in the pathogenesis of infectious disease, and is also supported by grants from the US National Institute of Allergy and Infectious Diseases, the US National Institute of Diabetes and Digestive and Kidney Diseases, the American Cancer Society and the Hirschl Trust Fund. L.E.S. is supported by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Magarian Blander or Leif E. Sander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

J. Magarian Blander's homepage

Leif E. Sander's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blander, J., Sander, L. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat Rev Immunol 12, 215–225 (2012). https://doi.org/10.1038/nri3167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing