Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of immunological homeostasis in the respiratory tract

Key Points

  • The central theme of this Review is how the respiratory immune system maintains a strong defence against incoming pathogens, while avoiding the pathogenic consequences of inappropriate responses to much more frequent exposures to airborne non-pathogenic antigens.

  • The effects of the anatomical organization of the immune system at different levels of the respiratory tract emphasizes the defining immunological features of individual tissue compartments within the conducting airways versus the lung parenchyma.

  • The induction of the immune response in the lungs involves complicated cellular dynamics, in particular involving the control of tissue-specific homing via mechanisms related to the functioning of the common mucosal immune system.

  • Pattern-recognition receptors, including Toll-like receptors, have a central role in local immune surveillance.

  • Individual cell types have specialized roles in maintaining local immunological homeostasis, so it is important to elucidate their nature and function(s). The key players are lung macrophage populations, airway epithelial cells, and in particular dendritic cell (DC) subpopulations and regulatory T cells; natural-killer-cell populations and mast cells are also important.

  • There is an emerging role(s) for T helper 17 (TH17) cells, and 'inflammatory' TH2 cells, for which differentiation is driven via epithelial-cell-derived thymic stromal lymphopoietin signals that act together with DCs.

  • Aspects of the pathogenesis of atopic asthma are an exemplary model of how these overlapping regulatory systems interact to maintain local homeostasis. A classic example is the complex interplay among airway mucosal DCs, adjacent macrophages, incoming recirculating memory TH cells and subsequently recruited regulatory T cells in controlling the intensity and duration of local recall responses to inhaled allergen.

Abstract

The respiratory tract has an approximate surface area of 70 m2 in adult humans, which is in virtually direct contact with the outside environment. It contains a uniquely rich vascular bed containing a large pool of marginated T cells, and harbours a layer of single-cell-thick epithelial tissue through which re-oxygenation of blood must occur uninterrupted for survival. It is therefore not surprising that the respiratory tract is never more than a short step away from disaster. We have only a partial understanding of how immunological homeostasis is maintained in these tissues, but it is becoming clear that the immune system has evolved a range of specific mechanisms to deal with the unique problems encountered in this specialized microenvironment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antigen uptake and migratory patterns for immune induction in the lungs.
Figure 2: A model for antigen sampling at mucosal sites.
Figure 3: Distribution of DCs and T cells in the tracheal mucosa.
Figure 4: Trafficking of lymphoid cells mediated by specific adhesion molecules and chemokine receptors.

Similar content being viewed by others

References

  1. Nelson, D. J., McMenamin, C., McWilliam, A. S., Brenan, M. & Holt, P. G. Development of the airway intraepithelial dendritic cell network in the rat from class II major histocompatibility (Ia)-negative precursors: differential regulation of Ia expression at different levels of the respiratory tract. J. Exp. Med. 179, 203–212 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Jahnsen, F. L. et al. Rapid dendritic cell recruitment to the bronchial mucosa of patients with atopic asthma in response to local allergen challenge. Thorax 56, 823–826 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stumbles, P. A. et al. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Th1 immunity. J. Exp. Med. 188, 2019–2031 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jahnsen, F. L. et al. Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus. J. Immunol. 177, 5861–5867 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  6. Lund, F. E. et al. B cells are required for generation of protective effector and memory CD4 cells in response to pneumocystis lung infection. J. Immunol. 176, 6147–6154 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Moyron-Quiroz, J. E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nature Med. 10, 927–934 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Strickland, D. H., Kees, U. R. & Holt, P. G. Regulation of T-cell activation in the lung: isolated lung T-cells exhibit surface phenotypic characteristics of recent activation including downmodulated TcR, but are locked into G0/G1 phase of the cell cycle. Immunology 87, 242–249 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holt, P. G. & Sedgwick, J. D. Suppression of IgE responses following antigen inhalation: a natural homeostatic mechanism which limits sensitization to aeroallergens. Immunol. Today 8, 14–15 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Umetsu, D. T. & DeKruyff, R. H. The regulation of allergy and asthma. Immunol. Rev. 212, 238–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Weiner, H. L. et al. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu. Rev. Immunol. 12, 809–837 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. de Heer, H. J. et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med. 200, 89–98 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hintzen, G. et al. Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node. J. Immunol. 177, 7346–7354 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Strickland, D. H. et al. Reversal of airway hyperresponsiveness by induction of airway mucosal CD4+CD25+ regulatory T cells. J. Exp. Med. 203, 2649–2660 (2006). This study demonstrates how interactions between airway mucosal DCs and T Reg cells control the intensity and duration of T H -cell memory responses in the airways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bilyk, N. & Holt, P. G. Inhibition of the immunosuppressive activity of resident pulmonary alveolar macrophages by granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 177, 1773–1777 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Eriksson, U. et al. Human bronchial epithelium controls TH2 responses by TH1-induced, nitric oxide-mediated STAT5 dephosphorylation: implications for the pathogenesis of asthma. J. Immunol. 175, 2715–2720 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Lambrecht, B. N. Alveolar macrophage in the driver's seat. Immunity 24, 366–368 (2006). A comprehensive review of the multifaceted immunomodulatory and effector roles of alveolar macrophages.

    Article  CAS  PubMed  Google Scholar 

  18. Thepen, T., Van Rooijen, N. & Kraal, G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J. Exp. Med. 170, 499–509 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Eisenbarth, S. C. et al. Lipopolysaccharide-enhanced, Toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med. 196, 1645–1651 (2002). A landmark study demonstrating the role of environmental LPS in facilitating the recognition of, and host responses to, inhaled protein antigens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gereda, J. E. et al. Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma. Lancet 355, 1680–1683 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Agace, W. W. Tissue-tropic effector T cells: generation and targeting opportunities. Nature Rev. Immunol. 6, 682–692 (2006).

    Article  CAS  Google Scholar 

  22. Cose, S., Brammer, C., Khanna, K. M., Masopust, D. & Lefrancois, L. Evidence that a significant number of naive T cells enter non-lymphoid organs as part of a normal migratory pathway. Eur. J. Immunol. 36, 1423–1433 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kunkel, E. J. & Butcher, E. C. Plasma-cell homing. Nature Rev. Immunol. 3, 822–829 (2003).

    Article  CAS  Google Scholar 

  25. Campbell, J. J. et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 400, 776–780 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Homey, B. et al. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nature Med. 8, 157–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Sigmundsdottir, H. et al. DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27. Nature Immunol. 8, 285–293 (2007).

    Article  CAS  Google Scholar 

  28. Mora, J. R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Kohlmeier, J. E. & Woodland, D. L. Memory T cell recruitment to the lung airways. Curr. Opin. Immunol. 18, 357–362 (2006). A review of control of the recruitment of recirculating memory T H cells in lung tissues.

    Article  CAS  PubMed  Google Scholar 

  30. Campbell, J. J. et al. Expression of chemokine receptors by lung T cells from normal and asthmatic subjects. J. Immunol. 166, 2842–2848 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Galkina, E. et al. Preferential migration of effector CD8+ T cells into the interstitium of the normal lung. J. Clin. Invest. 115, 3473–3483 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kallinich, T. et al. Chemokine-receptor expression on T cells in lung compartments of challenged asthmatic patients. Clin. Exp. Allergy. 35, 26–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Morgan, A. J. et al. Expression of CXCR6 and its ligand CXCL16 in the lung in health and disease. Clin. Exp. Allergy. 35, 1572–1580 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Ray, S. J. et al. The collagen binding α1β1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20, 167–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Ely, K. H., Cookenham, T., Roberts, A. D. & Woodland, D. L. Memory T cell populations in the lung airways are maintained by continual recruitment. J. Immunol. 176, 537–543 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. von Garnier, C. et al. Anatomical location determines the distribution and function of dendritic cells and other APCs in the respiratory tract. J. Immunol. 175, 1609–1618 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Lambrecht, B. N., Salomon, B., Klatzmann, D. & Pauwels, R. A. Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice. J. Immunol. 160, 4090–4097 (1998). The first study to provide direct evidence for the central role of airway mucosal DCs in triggering T H -cell memory responses to inhaled allergen.

    CAS  PubMed  Google Scholar 

  38. Demedts, I. K., Brusselle, G. G., Vermaelen, K. Y. & Pauwels, R. A. Identification and characterization of human pulmonary dendritic cells. Am. J. Respir. Cell Mol. Biol. 32, 177–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Schlecht, G. et al. Murine plasmacytoid dendritic cells induce effector/memory CD8+ T-cell responses in vivo after viral stimulation. Blood 104, 1808–1815 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Wikstrom, M. E. & Stumbles, P. A. Mouse respiratory tract dendritic cell subsets and the immunological fate of inhaled antigens. Immunol. Cell Biol. 85, 182–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Holt, P. G., Haining, S., Nelson, D. J. & Sedgwick, J. D. Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways. J. Immunol. 153, 256–261 (1994).

    CAS  PubMed  Google Scholar 

  42. McWilliam, A. S., Nelson, D., Thomas, J. A. & Holt, P. G. Rapid dendritic cell recruitment is a hallmark of the acute inflammatory response at mucosal surfaces. J. Exp. Med. 179, 1331–1336 (1994). A milestone study demonstrating that rapid recruitment of immature DCs into the airway mucosa represents the 'default' response to local challenge with virtually all classes of airborne environmental stimuli.

    Article  CAS  PubMed  Google Scholar 

  43. Stumbles, P. A. et al. Regulation of dendritic cell recruitment into resting and inflamed airway epithelium: use of alternative chemokine receptors as a function of inducing stimulus. J. Immunol. 167, 228–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Robays, L. J. et al. Chemokine receptor CCR2 but not CCR5 or CCR6 mediates the increase in pulmonary dendritic cells during allergic airway inflammation. J. Immunol. 178, 5305–5311 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Demedts, I. K., Bracke, K. R., Maes, T., Joos, G. F. & Brusselle, G. G. Different roles for human lung dendritic cell subsets in pulmonary immune defense mechanisms. Am. J. Respir. Cell Mol. Biol. 35, 387–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Masten, B. J. et al. Characterization of myeloid and plasmacytoid dendritic cells in human lung. J. Immunol. 177, 7784–7793 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Krug, A. et al. Interferon-producing cells fail to induce proliferation of naive T cells but can promote expansion and T helper 1 differentiation of antigen-experienced unpolarized T cells. J. Exp. Med. 197, 899–906 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fonteneau, J.-F. et al. Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood 101, 3520–3526 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Sapoznikov, A. et al. Organ-dependent in vivo priming of naive CD4+, but not CD8+, T cells by plasmacytoid dendritic cells. J. Exp. Med. 204, 1923–1933 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Howarth, P. H. et al. Epithelially derived endothelin and nitric oxide in asthma. Int. Arch. Allergy Immunol. 107, 228–230 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Mayer, A. K. et al. Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells. J. Immunol. 178, 3134–3142 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Pichavant, M. et al. Impact of bronchial epithelium on dendritic cell migration and function: modulation by the bacterial motif KpOmpA. J. Immunol. 177, 5912–5919 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Contoli, M. et al. Role of deficient type III interferon-λ production in asthma exacerbations. Nature Med. 12, 1023–1026 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Wark, P. A. B. et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J. Exp. Med. 201, 937–947 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cox, G., Gauldie, J. & Jordana, M. Bronchial epithelial cell-derived cytokines (G-CSF and GM-CSF) promote the survival of peripheral blood neutrophils in vitro. Am. J. Respir. Cell Mol. Biol. 7, 507–513 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Bleck, B., Tse, D. B., Jaspers, I., Curotto de Lafaille, M. A. & Reibman, J. Diesel exhaust particle-exposed human bronchial epithelial cells induce dendritic cell maturation. J. Immunol. 176, 7431–7437 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Kato, A., Truong-Tran, A. Q., Scott, A. L., Matsumoto, K. & Schleimer, R. P. Airway epithelial cells produce B cell-activating factor of TNF family by an IFN-β-dependent mechanism. J. Immunol. 177, 7164–7172 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. MacLean, J. A. et al. Sequestration of inhaled particulate antigens by lung phagocytes. A mechanism for the effective inhibition of pulmonary cell-mediated immunity. Am. J. Pathol. 148, 657–666 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jakubzick, C., Tacke, F., Llodra, J., van Rooijen, N. & Randolph, G. J. Modulation of dendritic cell trafficking to and from the airways. J. Immunol. 176, 3578–3584 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Holt, P. G. et al. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J. Exp. Med. 177, 397–407 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Munger, J. S. et al. The integrin αvβ6 binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Takabayashi, K. et al. Induction of a homeostatic circuit in lung tissue by microbial compounds. Immunity 24, 475–487 (2006).

    Article  CAS  Google Scholar 

  63. Morris, D. G. et al. Loss of integrin αvβ6-mediated TGF-β activation causes Mmp12-dependent emphysema. Nature 422, 169–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Gwinn, M. R. & Vallyathan, V. Respiratory burst: role in signal transduction in alveolar macrophages. J. Toxicol. Environ. Health B Crit. Rev. 9, 27–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Underhill, D. M. & Ozinsky, A. Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20, 825–852 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Winter, C. et al. Lung-specific overexpression of CC chemokine ligand (CCL) 2 enhances the host defense to Streptococcus pneumoniae infection in mice: role of the CCL2–CCR2 axis. J. Immunol. 178, 5828–5838 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Bilyk, N. & Holt, P. G. Cytokine modulation of the immunosuppressive phenotype of pulmonary alveolar macrophages via regulation of nitric oxide production. Immunology 86, 231–237 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Landsman, L., Varol, C. & Jung, S. Distinct differentiation potential of blood monocyte subsets in the lung. J. Immunol. 178, 2000–2007 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Banham, A. H., Powrie, F. M. & Suri-Payer, E. FOXP3+ regulatory T cells: current controversies and future perspectives. Eur. J. Immunol. 36, 2832–2836 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Chen, C., Lee, W. H., Zhong, L. & Liu, C. P. Regulatory T cells can mediate their function through the stimulation of APCs to produce immunosuppressive nitric oxide. J. Immunol. 176, 3449–3460 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Huh, J. C. et al. Bidirectional interactions between antigen-bearing respiratory tract dendritic cells (DCs) and T cells precede the late phase reaction in experimental asthma: DC activation occurs in the airway mucosa but not in the lung parenchyma. J. Exp. Med. 198, 19–30 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Busse, W. W. & Lemanske, R. F. Asthma. N. Engl. J. Med. 344, 350–362 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Hartl, D. et al. Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells in pediatric asthma. J. Allergy Clin. Immunol. 119, 1258–1266 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M. & Murphy, K. M. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24, 677–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Chen, Z. & O'Shea, J. J. Regulation of IL-17 production in human lymphocytes. Cytokine 2 November 2007 (doi:10.1016/j.cyto.2007.09.009).

  77. Johnston, S. L. et al. The relationship between upper respiratory infections and hospital admissions for asthma: a time-trend analysis. Am. J. Respir. Crit. Care Med. 154, 654–660 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nature Immunol. 8, 942–949 (2007).

    Article  CAS  Google Scholar 

  79. Steinman, L. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nature Med. 13, 139–145 (2007). A recent review on the evolving T H 17-cell story, which is highly relevant to the pathogenesis of respiratory inflammatory diseases.

    Article  CAS  PubMed  Google Scholar 

  80. Liu, Y.-J. et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu. Rev. Immunol. 25, 193–219 (2007). A definitive review on the role of epithelial-cell-derived thymic stromal lymphopoietin in programming DCs to drive the differentiation of specific subphenotype(s) of T H cells, in particular 'inflammatory' T H 2 cells.

    Article  CAS  PubMed  Google Scholar 

  81. Angkasekwinai, P. et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204, 1509–1517 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bosco, A. et al. Identification of novel Th2-associated genes in T memory responses to allergens. J. Immunol. 176, 4766–4777 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Holt, P. G. et al. Drug development strategies for asthma: in search of a new paradigm. Nature Immunol. 5, 695–698 (2004).

    Article  CAS  Google Scholar 

  84. Holt, P. G., Upham, J. W. & Sly, P. D. Contemporaneous maturation of immunological and respiratory functions during early childhood: Implications for development of asthma prevention strategies. J. Allergy Clin. Immunol. 116, 16–24 (2005).

    Article  PubMed  Google Scholar 

  85. Galli, S. J. et al. Mast Cells as “tunable” effector and immunoregulatory cells: recent advances. Annu. Rev. Immunol. 23, 749–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Galli, S. J., Nakae, S. & Tsai, M. Mast cells in the development of adaptive immune responses. Nature Immunol. 6, 135–142 (2005).

    Article  CAS  Google Scholar 

  87. Malaviya, R., Ikeda, T., Ross, E. & Abraham, S. N. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature 381, 77–80 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Nakae, S. et al. Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J. Immunol. 176, 2238–2248 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Lu, L. F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442, 997–1002 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Suto, H. et al. Mast cell-associated TNF promotes dendritic cell migration. J. Immunol. 176, 4102–4112 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Byrne, P., McGuirk, P., Todryk, S. & Mills, K. H. G. Depletion of NK cells results in disseminating lethal infection with Bordetella pertussis associated with a reduction of antigen-specific Th1 and enhancement of Th2, but not Tr1 cells. Eur. J. Immunol. 34, 2579–2588 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Junqueira-Kipnis, A. P. et al. NK cells respond to pulmonary Infection with Mycobacterium tuberculosis, but play a minimal role in protection. J. Immunol. 171, 6039–6045 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Gazit, R. et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nature Immunol. 7, 517–523 (2006).

    Article  CAS  Google Scholar 

  94. Haynes, L. M. et al. Involvement of Toll-like receptor 4 in innate immunity to respiratory syncytial virus. J. Virol. 75, 10730–10737 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Godfrey, D. I. & Kronenberg, M. Going both ways: Immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114, 1379–1388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tupin, E., Kinjo, Y. & Kronenberg, M. The unique role of natural killer T cells in the response to microorganisms. Nature Rev. Microbiol. 5, 405–417 (2007).

    Article  CAS  Google Scholar 

  98. Meyer, E. H. et al. Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells. Proc. Natl Acad. Sci. USA 103, 2782–2787 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Akbari, O. et al. CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N. Engl. J. Med. 354, 1117–1129 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Vijayanand, P. et al. Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N. Engl. J. Med. 356, 1410–1422 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Mulugeta, S. & Beers, M. F. Surfactant protein C: its unique properties and emerging immunomodulatory role in the lung. Microbes Infect. 8, 2317–2323 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Wright, J. R. Immunoregulatory functions of surfactant proteins. Nature Rev. Immunol. 5, 58–68 (2005).

    Article  CAS  Google Scholar 

  103. Hawlisch, H. & Kohl, J. Complement and Toll-like receptors: key regulators of adaptive immune responses. Mol. Immunol. 43, 13–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Blasi, F., Tarsia, P. & Aliberti, S. Strategic targets of essential host-pathogen interactions. Respiration 72, 9–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.G.H. is supported by the National Health and Medical Research Foundation of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick G. Holt.

Glossary

Epithelial cells

Cells that line all tissues and act to protect them by regulating or resisting the passage of exogenous matter.

Secretory goblet cells

Mucus-secreting cells within the airway epithelium.

Plasmacytoid dendritic cells

(pDCs). A population of cells with a plasma-cell-like morphology that produce high levels of type I interferons after exposure to viruses. Human pDCs express high levels of CD123, the interleukin-3 receptor α-chain, and depend on interleukin-3 as a growth factor.

Lamina propria

Loose connective tissue that is located immediately under the airway epithelium.

Mast cells

A leukocyte population that secretes histamine and other inflammatory mediators on antibody crosslinking of its IgE receptors, and that is largely responsible for acute manifestations of the allergic response.

Plasma cells

Antibody-secreting cells that are generated from antigen-specific B cells.

Anergized cell

A cell that is characterized by its weak response to normal stimuli. An anergized T cell is unable to produce large amounts of interleukin-2 or proliferate vigorously when stimulated via CD3 or its T-cell receptor.

Mucociliary elevator

Upward transport of mucus stream from the lungs by ciliated epithelial cells.

Pattern-recognition receptors

(PRRs). Host receptors (such as Toll-like receptors) that are able to sense pathogen-associated molecular patterns and initiate signalling cascades (involving activation of nuclear factor-κB) that lead to an innate immune response.

Epidermotropism

Movement towards the epidermis.

Protein-recall antigens

Antigens to which individuals or experimental animals have been previously sensitized.

Inhalation tolerance

The development of immunological tolerance to repeatedly inhaled antigen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holt, P., Strickland, D., Wikström, M. et al. Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol 8, 142–152 (2008). https://doi.org/10.1038/nri2236

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing