Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functions of tissue-resident eosinophils

Key Points

  • Eosinophils, as cells of the innate immune system and sources of diverse cytokines, function in diverse tissue sites, some previously unappreciated, in health and disease.

  • At least in human eosinophils, many cytokine proteins are present preformed and stored within eosinophil cytoplasmic granules.

  • Eosinophil secretion of cytokines can occur by regulated transport of granule-derived proteins through the vesicular transport system to enable extracellular release. The relative contributions to eosinophil cytokine secretion of preformed granule stores, de novo transcription and mRNA transcript stabilization remain to be determined.

  • The signalling mechanisms within eosinophils that regulate the selective secretion of specific cytokines remain to be elucidated.

  • Eosinophil-secreted cytokines can contribute to immune and metabolic homeostasis, as well as having roles in tissue regeneration, wound healing and host defence.

Abstract

Eosinophils are a prominent cell type in particular host responses such as the response to helminth infection and allergic disease. Their effector functions have been attributed to their capacity to release cationic proteins stored in cytoplasmic granules by degranulation. However, eosinophils are now being recognized for more varied functions in previously underappreciated diverse tissue sites, based on the ability of eosinophils to release cytokines (often preformed) that mediate a broad range of activities into the local environment. In this Review, we consider evolving insights into the tissue distribution of eosinophils and their functional immunobiology, which enable eosinophils to secrete in a selective manner cytokines and other mediators that have diverse, 'non-effector' functions in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eosinophil-derived mediators and their functions.
Figure 2: Modes of eosinophil secretion.
Figure 3: Ultrastructure of activated human eosinophils and immunolocalization of mobilized MBP1 and IL-4.

Similar content being viewed by others

References

  1. Drissen, R. et al. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. Nat. Immunol. 17, 666–676 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Acharya, K. R. & Ackerman, S. J. Eosinophil granule proteins: form and function. J. Biol. Chem. 289, 17406–17415 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee, J. J. et al. Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red”. J. Allergy Clin. Immunol. 130, 572–584 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang, L. et al. Eosinophil-derived IL-10 supports chronic nematode infection. J. Immunol. 193, 4178–4187 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang, L. & Appleton, J. A. Eosinophils in helminth infection: defenders and dupes. Trends Parasitol. 32, 798–807 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Makepeace, B. L., Martin, C., Turner, J. D. & Specht, S. Granulocytes in helminth infection — who is calling the shots? Curr. Med. Chem. 19, 1567–1586 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang, L. et al. Eosinophils and IL-4 support nematode growth coincident with an innate response to tissue injury. PLoS Pathog. 11, e1005347 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Neves, J. S., Perez, S. A., Spencer, L. A., Melo, R. C. & Weller, P. F. Subcellular fractionation of human eosinophils: isolation of functional specific granules on isoosmotic density gradients. J. Immunol. Methods 344, 64–72 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kato, M. et al. Eosinophil infiltration and degranulation in normal human tissue. Anat. Rec. 252, 418–425 (1998).

    CAS  PubMed  Google Scholar 

  10. Yu, Y. R. et al. A protocol for the comprehensive flow cytometric analysis of immune cells in normal and inflamed murine non-lymphoid tissues. PLoS ONE 11, e0150606 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Diener, K. R., Robertson, S. A., Hayball, J. D. & Lousberg, E. L. Multi-parameter flow cytometric analysis of uterine immune cell fluctuations over the murine estrous cycle. J. Reproductive Immunol. 113, 61–67 (2016).

    CAS  Google Scholar 

  12. Voehringer, D., van Rooijen, N. & Locksley, R. M. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages. J. Leukoc. Biol. 81, 1434–1444 (2007).

    CAS  PubMed  Google Scholar 

  13. Throsby, M., Herbelin, A., Pleau, J. M. & Dardenne, M. CD11c+ eosinophils in the murine thymus: developmental regulation and recruitment upon MHC class I-restricted thymocyte deletion. J. Immunol. 165, 1965–1975 (2000).

    CAS  PubMed  Google Scholar 

  14. Jung, Y. & Rothenberg, M. E. Roles and regulation of gastrointestinal eosinophils in immunity and disease. J. Immunol. 193, 999–1005 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Percopo, C. M. et al. SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. J. Leukoc. Biol. 101, 321–328 (2017).

    CAS  PubMed  Google Scholar 

  16. Le-Carlson, M. et al. Markers of antigen presentation and activation on eosinophils and T cells in the esophageal tissue of patients with eosinophilic esophagitis. J. Pediatr. Gastroenterol. Nutr. 56, 257–262 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Patel, A. J. et al. Increased HLA-DR expression on tissue eosinophils in eosinophilic esophagitis. J. Pediatr. Gastroenterol. Nutr. 51, 290–294 (2010).

    CAS  PubMed  Google Scholar 

  18. Sedgwick, J. B. et al. Comparison of airway and blood eosinophil function after in vivo antigen challenge. J. Immunol. 149, 3710–3718 (1992).

    CAS  PubMed  Google Scholar 

  19. Cagnoni, E. F. et al. Bronchopulmonary lymph nodes and large airway cell trafficking in patients with fatal asthma. J. Allergy Clin. Immunol. 135, 1352–1357.e9 (2015).

    PubMed  Google Scholar 

  20. Mesnil, C. et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J. Clin. Invest. 126, 3279–3295 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Bettigole, S. E. et al. The transcription factor XBP1 is selectively required for eosinophil differentiation. Nat. Immunol. 16, 829–837 (2015). This study implicates IRE1 α –XBP1 signalling, a key component of the unfolded protein response pathway, in the terminal maturation of eosinophil progenitors. These data provide a link between eosinophilopoiesis and physiological endoplasmic reticulum stress in eosinophil-committed precursors.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Matthews, S. P., McMillan, S. J., Colbert, J. D., Lawrence, R. A. & Watts, C. Cystatin F ensures eosinophil survival by regulating granule biogenesis. Immunity 44, 795–806 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Doyle, A. D. et al. Expression of the secondary granule proteins major basic protein 1 (MBP-1) and eosinophil peroxidase (EPX) is required for eosinophilopoiesis in mice. Blood 122, 781–790 (2013). This study shows that concomitant loss of two of the main granule-derived cationic proteins (MBP1 and EPX) results in selective loss of eosinophil lineage-committed progenitors. This provides, for the first time, a link between granule protein expression and eosinophilopoiesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Spencer, L. A. et al. Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. J. Leukoc. Biol. 85, 117–123 (2009). This study shows that blood eosinophils from healthy humans constitutively contain preformed stores of various cytokines that are rapidly and differentially released in response to specific agonists.

    CAS  PubMed  Google Scholar 

  25. Moqbel, R. et al. Identification of messenger RNA for IL-4 in human eosinophils with granule localization and release of the translated product. J. Immunol. 155, 4939–4947 (1995).

    CAS  PubMed  Google Scholar 

  26. Beil, W. J., Weller, P. F., Tzizik, D. M., Galli, S. J. & Dvorak, A. M. Ultrastructural immunogold localization of tumor necrosis factor-alpha to the matrix compartment of eosinophil secondary granules in patients with idiopathic hypereosinophilic syndrome. J. Histochem. Cytochem. 41, 1611–1615 (1993).

    CAS  PubMed  Google Scholar 

  27. Liu, L. Y. et al. Generation of Th1 and Th2 chemokines by human eosinophils: evidence for a critical role of TNF-alpha. J. Immunol. 179, 4840–4848 (2007).

    CAS  PubMed  Google Scholar 

  28. Shen, Z. J., Esnault, S. & Malter, J. S. The peptidyl-prolyl isomerase Pin1 regulates the stability of granulocyte-macrophage colony-stimulating factor mRNA in activated eosinophils. Nat. Immunol. 6, 1280–1287 (2005).

    CAS  PubMed  Google Scholar 

  29. Chu, V. T. & Berek, C. Immunization induces activation of bone marrow eosinophils required for plasma cell survival. Eur. J. Immunol. 42, 130–137 (2012). This study suggests that antigen-dependent activation primes eosinophils to provide pro-survival signals to plasma cells within bone marrow niches.

    CAS  PubMed  Google Scholar 

  30. Rose, C. E. Jr. et al. Murine lung eosinophil activation and chemokine production in allergic airway inflammation. Cell. Mol. Immunol. 7, 361–374 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kanda, A. et al. Th2-activated eosinophils release Th1 cytokines that modulate allergic inflammation. Allergol. Int. 64 (Suppl.), S71–S73 (2015).

    PubMed  Google Scholar 

  32. Gessner, A., Mohrs, K. & Mohrs, M. Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. J. Immunol. 174, 1063–1072 (2005).

    CAS  PubMed  Google Scholar 

  33. Melo, R. C. et al. Human eosinophils secrete preformed, granule-stored interleukin-4 through distinct vesicular compartments. Traffic 6, 1047–1057 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Melo, R. C., Dvorak, A. M. & Weller, P. F. Electron tomography and immunonanogold electron microscopy for investigating intracellular trafficking and secretion in human eosinophils. J. Cell. Mol. Med. 12, 1416–1419 (2008).

    PubMed  PubMed Central  Google Scholar 

  35. Melo, R. C. et al. Vesicle-mediated secretion of human eosinophil granule-derived major basic protein. Lab. Invest. 89, 769–781 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Melo, R. C., Spencer, L. A., Dvorak, A. M. & Weller, P. F. Mechanisms of eosinophil secretion: large vesiculotubular carriers mediate transport and release of granule-derived cytokines and other proteins. J. Leukoc. Biol. 83, 229–236 (2008).

    CAS  PubMed  Google Scholar 

  37. Melo, R. C. & Weller, P. F. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy. Exp. Cell Res. 347, 385–390 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Scepek, S., Moqbel, R. & Lindau, M. Compound exocytosis and cumulative degranulation by eosinophils and their role in parasite killing. Parasitol. Today 10, 276–278 (1994).

    CAS  PubMed  Google Scholar 

  39. Persson, C. & Uller, L. Primary lysis of eosinophils as a major mode of activation of eosinophils in human diseased tissues. Nat. Rev. Immunol. 13, 902 (2013).

    CAS  PubMed  Google Scholar 

  40. Ueki, S. et al. Eosinophil extracellular trap cell death-derived DNA traps: their presence in secretions and functional attributes. J. Allergy Clin. Immunol. 137, 258–267 (2016).

    CAS  PubMed  Google Scholar 

  41. Ueki, S. et al. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood 121, 2074–2083 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Persson, C. G. & Erjefalt, J. S. “Ultimate activation” of eosinophils in vivo: lysis and release of clusters of free eosinophil granules (Cfegs). Thorax 52, 569–574 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Persson, C. G. & Erjefalt, J. S. Eosinophil lysis and free granules: an in vivo paradigm for cell activation and drug development. Trends Pharmacol. Sci. 18, 117–123 (1997).

    CAS  PubMed  Google Scholar 

  44. Persson, C. G. Centennial notions of asthma as an eosinophilic, desquamative, exudative, and steroid-sensitive disease. Lancet 350, 1021–1024 (1997).

    CAS  PubMed  Google Scholar 

  45. Erjefalt, J. S. & Persson, C. G. New aspects of degranulation and fates of airway mucosal eosinophils. Am. J. Respir. Crit. Care Med. 161, 2074–2085 (2000).

    CAS  PubMed  Google Scholar 

  46. Erjefalt, J. S. et al. Allergen-induced eosinophil cytolysis is a primary mechanism for granule protein release in human upper airways. Am. J. Respir. Crit. Care Med. 160, 304–312 (1999).

    CAS  PubMed  Google Scholar 

  47. Watanabe, K., Misu, T., Inoue, S. & Edamatsu, H. Cytolysis of eosinophils in nasal secretions. Ann. Otol. Rhinol. Laryngol. 112, 169–173 (2003).

    PubMed  Google Scholar 

  48. Greiff, L., Erjefalt, J. S., Andersson, M., Svensson, C. & Persson, C. G. Generation of clusters of free eosinophil granules (Cfegs) in seasonal allergic rhinitis. Allergy 53, 200–203 (1998).

    CAS  PubMed  Google Scholar 

  49. Uller, L., Andersson, M., Greiff, L., Persson, C. G. & Erjefalt, J. S. Occurrence of apoptosis, secondary necrosis, and cytolysis in eosinophilic nasal polyps. Am. J. Respir. Crit. Care Med. 170, 742–747 (2004).

    PubMed  Google Scholar 

  50. Gonzalez, E. B., Swedo, J. L., Rajaraman, S., Daniels, J. C. & Grant, J. A. Ultrastructural and immunohistochemical evidence for release of eosinophilic granules in vivo: cytotoxic potential in chronic eosinophilic pneumonia. J. Allergy Clin. Immunol. 79, 755–762 (1987).

    CAS  PubMed  Google Scholar 

  51. Fox, B. & Seed, W. A. Chronic eosinophilic pneumonia. Thorax 35, 570–580 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Grantham, J. G., Meadows, J. A., 3rd & Gleich, G. J. Chronic eosinophilic pneumonia. Evidence for eosinophil degranulation and release of major basic protein. Am. J. Med. 80, 89–94 (1986).

    CAS  PubMed  Google Scholar 

  53. Tajirian, A., Ross, R., Zeikus, P. & Robinson-Bostom, L. Subcutaneous fat necrosis of the newborn with eosinophilic granules. J. Cutan. Pathol. 34, 588–590 (2007).

    PubMed  Google Scholar 

  54. Chikwava, K. R., Savell, V. H. Jr & Boyd, T. K. Fatal cephalosporin-induced acute hypersensitivity myocarditis. Pediatr. Cardiol. 27, 777–780 (2006).

    PubMed  Google Scholar 

  55. Gutierrez-Pena, E. J., Knab, J. & Buttner, D. W. Immunoelectron microscopic evidence for release of eosinophil granule matrix protein onto microfilariae of Onchocerca volvulus in the skin after exposure to amocarzine. Parasitol. Res. 84, 607–615 (1998).

    CAS  PubMed  Google Scholar 

  56. Daneshpouy, M. et al. Activated eosinophils in upper gastrointestinal tract of patients with graft-versus-host disease. Blood 99, 3033–3040 (2002).

    CAS  PubMed  Google Scholar 

  57. Aceves, S. S., Newbury, R. O., Dohil, R., Bastian, J. F. & Broide, D. H. Esophageal remodeling in pediatric eosinophilic esophagitis. J. Allergy Clin. Immunol. 119, 206–212 (2007).

    CAS  PubMed  Google Scholar 

  58. Mueller, S., Aigner, T., Neureiter, D. & Stolte, M. Eosinophil infiltration and degranulation in oesophageal mucosa from adult patients with eosinophilic oesophagitis: a retrospective and comparative study on pathological biopsy. J. Clin. Pathol. 59, 1175–1180 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Saffari, H. et al. Electron microscopy elucidates eosinophil degranulation patterns in patients with eosinophilic esophagitis. J. Allergy Clin. Immunol. 133, 1728–1734.e1 (2014). This electron microscopy study used more than 1,500 images obtained from specimens taken from nine patients with eosinophilic oesophagitis to quantitatively assess degranulation patterns in human eosinophils in vivo . It showed that more than 80% of eosinophils have signs of cytolytic release of free granules.

    CAS  PubMed  Google Scholar 

  60. Shamri, R. et al. CCL11 elicits secretion of RNases from mouse eosinophils and their cell-free granules. FASEB J. 26, 2084–2093 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Boyer, D., Vargas, S. O., Slattery, D., Rivera-Sanchez, Y. M. & Colin, A. A. Churg–Strauss syndrome in children: a clinical and pathologic review. Pediatrics 118, e914–e920 (2006).

    PubMed  Google Scholar 

  62. Neves, J. S. et al. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc. Natl Acad. Sci. USA 105, 18478–18483 (2008).

    CAS  PubMed  Google Scholar 

  63. Neves, J. S., Radke, A. L. & Weller, P. F. Cysteinyl leukotrienes acting via granule membrane expressed receptors elicit secretion from within cell-free human eosinophil granules. J. Allergy Clin. Immunol. 125, 477–482 (2010). This paper provides the first demonstration that extracellular, cell-free eosinophil granules express outwardly oriented, functional cytokine receptors and G protein-coupled receptors, as well as intragranular signal transduction molecules, and are competent to undergo differential, stimulus-induced secretion.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Melo, R. C., Morgan, E., Monahan-Earley, R., Dvorak, A. M. & Weller, P. F. Pre-embedding immunogold labeling to optimize protein localization at subcellular compartments and membrane microdomains of leukocytes. Nat. Protoc. 9, 2382–2394 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Melo, R. C., Perez, S. A., Spencer, L. A., Dvorak, A. M. & Weller, P. F. Intragranular vesiculotubular compartments are involved in piecemeal degranulation by activated human eosinophils. Traffic 6, 866–879 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Melo, R. C., Dvorak, A. M. & Weller, P. F. Contributions of electron microscopy to understand secretion of immune mediators by human eosinophils. Microsc. Microanal. 16, 653–660 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Spencer, L. A. et al. Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proc. Natl Acad. Sci. USA 103, 3333–3338 (2006). This study shows that a granule-derived cytokine can be mobilized into secretory vesicles and chaperoned through the vesicular compartment bound to its cognate receptor during eosinophil PMD.

    CAS  PubMed  Google Scholar 

  68. Bagnasco, D. et al. Targeting interleukin-5 or interleukin-5Ralpha: safety considerations. Drug Saf. 40, 559–570 (2017).

    PubMed  Google Scholar 

  69. Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Diefenbach, A., Colonna, M. & Romagnani, C. The ILC world revisited. Immunity 46, 327–332 (2017).

    CAS  PubMed  Google Scholar 

  71. Jacobsen, E. A., Zellner, K. R., Colbert, D., Lee, N. A. & Lee, J. J. Eosinophils regulate dendritic cells and Th2 pulmonary immune responses following allergen provocation. J. Immunol. 187, 6059–6068 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jacobsen, E. A. et al. Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells. J. Exp. Med. 205, 699–710 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kondo, Y. et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int. Immunol. 20, 791–800 (2008).

    CAS  PubMed  Google Scholar 

  74. Klose, C. S. & Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17, 765–774 (2016).

    CAS  PubMed  Google Scholar 

  75. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. van Rijt, L., von Richthofen, H. & van Ree, R. Type 2 innate lymphoid cells: at the cross-roads in allergic asthma. Semin. Immunopathol. 38, 483–496 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Dhariwal, J. et al. Mucosal type 2 innate lymphoid cells are a key component of the allergic response to aeroallergen. Am. J. Respir. Crit. Care Med. 195, 1586–1596 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Smith, S. G. et al. Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J. Allergy Clin. Immunol. 137, 75–86.e8 (2016).

    CAS  PubMed  Google Scholar 

  79. Rosenberg, H. F., Dyer, K. D. & Foster, P. S. Eosinophils: changing perspectives in health and disease. Nat. Rev. Immunol. 13, 9–22 (2013).

    CAS  PubMed  Google Scholar 

  80. Mitchell, P. D. & O'Byrne, P. M. Epithelial-derived cytokines in asthma. Chest 151, 1338–1344 (2017).

    PubMed  Google Scholar 

  81. Esnault, S. & Kelly, E. A. Essential mechanisms of differential activation of eosinophils by IL-3 compared to GM-CSF and IL-5. Crit. Rev. Immunol. 36, 429–444 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. Egea, L., Hirata, Y. & Kagnoff, M. F. GM-CSF: a role in immune and inflammatory reactions in the intestine. Expert Rev. Gastroenterol. Hepatol. 4, 723–731 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sugawara, R. et al. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist. J. Exp. Med. 213, 555–567 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Munitz, A. & Levi-Schaffer, F. Inhibitory receptors on eosinophils: a direct hit to a possible Achilles heel? J. Allergy Clin. Immunol. 119, 1382–1387 (2007).

    CAS  PubMed  Google Scholar 

  85. Nutku, E., Aizawa, H., Hudson, S. A. & Bochner, B. S. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 101, 5014–5020 (2003).

    CAS  PubMed  Google Scholar 

  86. Ben Baruch-Morgenstern, N. et al. Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5-induced eosinophil development. Nat. Immunol. 15, 36–44 (2014).

    PubMed  Google Scholar 

  87. Tedla, N. et al. Activation of human eosinophils through leukocyte immunoglobulin-like receptor 7. Proc. Natl Acad. Sci. USA 100, 1174–1179 (2003).

    CAS  PubMed  Google Scholar 

  88. Munitz, A. et al. The inhibitory receptor IRp60 (CD300a) suppresses the effects of IL-5, GM-CSF, and eotaxin on human peripheral blood eosinophils. Blood 107, 1996–2003 (2006).

    CAS  PubMed  Google Scholar 

  89. Lee, J. J. & Rosenberg, H. F. (eds) Eosinophils in Health and Disease Ch. 5.6 111–119 (Elsevier, 2013).

    Google Scholar 

  90. Yu, C. et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med. 195, 1387–1395 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee, J. J. et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305, 1773–1776 (2004).

    CAS  PubMed  Google Scholar 

  92. Jacobsen, E. A. et al. Eosinophil activities modulate the immune/inflammatory character of allergic respiratory responses in mice. Allergy 69, 315–327 (2014).

    CAS  PubMed  Google Scholar 

  93. Doyle, A. D. et al. Homologous recombination into the eosinophil peroxidase locus generates a strain of mice expressing Cre recombinase exclusively in eosinophils. J. Leukoc. Biol. 94, 17–24 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Croxford, A. L. & Buch, T. Cytokine reporter mice in immunological research: perspectives and lessons learned. Immunology 132, 1–8 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R. M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).

    CAS  PubMed  Google Scholar 

  96. Voehringer, D., Shinkai, K. & Locksley, R. M. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20, 267–277 (2004).

    CAS  PubMed  Google Scholar 

  97. Mohrs, K., Wakil, A. E., Killeen, N., Locksley, R. M. & Mohrs, M. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity 23, 419–429 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Aupperlee, M. D. et al. Epidermal growth factor receptor (EGFR) signaling is a key mediator of hormone-induced leukocyte infiltration in the pubertal female mammary gland. Endocrinology 155, 2301–2313 (2014).

    PubMed  PubMed Central  Google Scholar 

  99. Gouon-Evans, V., Lin, E. Y. & Pollard, J. W. Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res. 4, 155–164 (2002).

    PubMed  PubMed Central  Google Scholar 

  100. Gouon-Evans, V., Rothenberg, M. E. & Pollard, J. W. Postnatal mammary gland development requires macrophages and eosinophils. Development 127, 2269–2282 (2000).

    CAS  PubMed  Google Scholar 

  101. Gouon-Evans, V. & Pollard, J. W. Eotaxin is required for eosinophil homing into the stroma of the pubertal and cycling uterus. Endocrinology 142, 4515–4521 (2001).

    CAS  PubMed  Google Scholar 

  102. Sferruzzi-Perri, A. N., Robertson, S. A. & Dent, L. A. Interleukin-5 transgene expression and eosinophilia are associated with retarded mammary gland development in mice. Biol. Reprod. 69, 224–233 (2003).

    CAS  PubMed  Google Scholar 

  103. Zhang, J., Lathbury, L. J. & Salamonsen, L. A. Expression of the chemokine eotaxin and its receptor, CCR3, in human endometrium. Biol. Reprod. 62, 404–411 (2000).

    CAS  PubMed  Google Scholar 

  104. Knudsen, U. B., Uldbjerg, N., Rechberger, T. & Fredens, K. Eosinophils in human cervical ripening. Eur. J. Obstetr., Gynecol., Reproductive Biol. 72, 165–168 (1997).

    CAS  Google Scholar 

  105. Timmons, B. C., Fairhurst, A. M. & Mahendroo, M. S. Temporal changes in myeloid cells in the cervix during pregnancy and parturition. J. Immunol. 182, 2700–2707 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Robertson, S. A., Mau, V. J., Young, I. G. & Matthaei, K. I. Uterine eosinophils and reproductive performance in interleukin 5-deficient mice. J. Reprod. Fertil. 120, 423–432 (2000).

    CAS  PubMed  Google Scholar 

  107. Matthews, A. N. et al. Eotaxin is required for the baseline level of tissue eosinophils. Proc. Natl Acad. Sci. USA 95, 6273–6278 (1998).

    CAS  PubMed  Google Scholar 

  108. Hogan, S. P., Mishra, A., Brandt, E. B., Foster, P. S. & Rothenberg, M. E. A critical role for eotaxin in experimental oral antigen-induced eosinophilic gastrointestinal allergy. Proc. Natl Acad. Sci. USA 97, 6681–6686 (2000).

    CAS  PubMed  Google Scholar 

  109. Mishra, A., Hogan, S. P., Lee, J. J., Foster, P. S. & Rothenberg, M. E. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J. Clin. Invest. 103, 1719–1727 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chu, V. T. et al. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 40, 582–593 (2014). One of the first papers to show alterations in intestinal immune homeostasis (including alterations in IgA production, the intestinal T cell compartment and microbiota composition) in the absence of eosinophils.

    CAS  PubMed  Google Scholar 

  111. Jung, Y. et al. IL-1beta in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol. 8, 930–942 (2015). This paper implicates eosinophil-derived IL-1 β in promoting intestinal homeostasis, including the maintenance of intestinal IgA levels and ROR γ -expressing ILCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Goh, Y. P. et al. Eosinophils secrete IL-4 to facilitate liver regeneration. Proc. Natl Acad. Sci. USA 110, 9914–9919 (2013).

    CAS  PubMed  Google Scholar 

  113. Heredia, J. E. et al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153, 376–388 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Joe, A. W. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S. & Tsuchida, K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12, 143–152 (2010).

    CAS  PubMed  Google Scholar 

  116. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011). This study implicates IL-4 and/or IL-13 derived from adipose tissue eosinophils in the maintenance of alternatively activated macrophages, thereby linking eosinophils to metabolic homeostasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Maizels, R. M. & Allen, J. E. Immunology. Eosinophils forestall obesity. Science 332, 186–187 (2011).

    CAS  PubMed  Google Scholar 

  120. Rao, R. R. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Jordan, M. B., Mills, D. M., Kappler, J., Marrack, P. & Cambier, J. C. Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 304, 1808–1810 (2004).

    CAS  PubMed  Google Scholar 

  123. Cambier, J. C., Morrison, D. C., Chien, M. M. & Lehmann, K. R. Modeling of T cell contact-dependent B cell activation. IL-4 and antigen receptor ligation primes quiescent B cells to mobilize calcium in response to Ia cross-linking. J. Immunol. 146, 2075–2082 (1991).

    CAS  PubMed  Google Scholar 

  124. Lang, P. et al. TCR-induced transmembrane signaling by peptide/MHC class II via associated Ig-alpha/beta dimers. Science 291, 1537–1540 (2001).

    CAS  PubMed  Google Scholar 

  125. Tabata, H., Matsuoka, T., Endo, F., Nishimura, Y. & Matsushita, S. Ligation of HLA-DR molecules on B cells induces enhanced expression of IgM heavy chain genes in association with Syk activation. J. Biol. Chem. 275, 34998–35005 (2000).

    CAS  PubMed  Google Scholar 

  126. Lane, P. J., McConnell, F. M., Schieven, G. L., Clark, E. A. & Ledbetter, J. A. The role of class II molecules in human B cell activation. Association with phosphatidyl inositol turnover, protein tyrosine phosphorylation, and proliferation. J. Immunol. 144, 3684–3692 (1990).

    CAS  PubMed  Google Scholar 

  127. Wang, H. B. & Weller, P. F. Pivotal advance: eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production. J. Leukoc. Biol. 83, 817–821 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Berek, C. Eosinophils: important players in humoral immunity. Clin. Exp. Immunol. 183, 57–64 (2016).

    CAS  PubMed  Google Scholar 

  129. Wong, T. W., Doyle, A. D., Lee, J. J. & Jelinek, D. F. Eosinophils regulate peripheral B cell numbers in both mice and humans. J. Immunol. 192, 3548–3558 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Chu, V. T. et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol. 12, 151–159 (2011).

    CAS  PubMed  Google Scholar 

  131. Mantis, N. J., Rol, N. & Corthesy, B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 4, 603–611 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Tulic, M. K. et al. Thymic indoleamine 2,3-dioxygenase-positive eosinophils in young children: potential role in maturation of the naive immune system. Am. J. Pathol. 175, 2043–2052 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Odemuyiwa, S. O. et al. Cutting edge: human eosinophils regulate T cell subset selection through indoleamine 2,3-dioxygenase. J. Immunol. 173, 5909–5913 (2004).

    CAS  PubMed  Google Scholar 

  134. Kim, H. J., Alonzo, E. S., Dorothee, G., Pollard, J. W. & Sant'Angelo, D. B. Selective depletion of eosinophils or neutrophils in mice impacts the efficiency of apoptotic cell clearance in the thymus. PLoS ONE 5, e11439 (2010).

    PubMed  PubMed Central  Google Scholar 

  135. Dajotoy, T. et al. Human eosinophils produce the T cell-attracting chemokines MIG and IP-10 upon stimulation with IFN-gamma. J. Leukoc. Biol. 76, 685–691 (2004).

    CAS  PubMed  Google Scholar 

  136. Yang, D. et al. Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood 102, 3396–3403 (2003).

    CAS  PubMed  Google Scholar 

  137. Kambayashi, T. & Laufer, T. M. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat. Rev. Immunol. 14, 719–730 (2014).

    CAS  PubMed  Google Scholar 

  138. Farhan, R. K. et al. Effective antigen presentation to helper T cells by human eosinophils. Immunology 149, 413–422 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Carretero, R. et al. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8+ T cells. Nat. Immunol. 16, 609–617 (2015).

    CAS  PubMed  Google Scholar 

  140. Noor, Z. et al. Role of eosinophils and tumor necrosis factor alpha in interleukin-25-mediated protection from amebic colitis. MBio 8, e02329–e02316 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Guerra, E. S. et al. Central role of IL-23 and IL-17 producing eosinophils as immunomodulatory effector cells in acute pulmonary aspergillosis and allergic asthma. PLoS Pathog. 13, e1006175 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Ikutani, M. et al. Prolonged activation of IL-5-producing ILC2 causes pulmonary arterial hypertrophy. JCI Insight 2, e90721 (2017).

    PubMed  PubMed Central  Google Scholar 

  143. Withers, S. B. et al. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality. Sci. Rep. 7, 44571 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Luna-Gomes, T., Bozza, P. T. & Bandeira-Melo, C. Eosinophil recruitment and activation: the role of lipid mediators. Front. Pharmacol. 4, 27 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    CAS  PubMed  Google Scholar 

  146. Dyer, K. D., Garcia-Crespo, K. E., Percopo, C. M., Sturm, E. M. & Rosenberg, H. F. Protocols for identifying, enumerating, and assessing mouse eosinophils. Methods Mol. Biol. 1032, 59–77 (2013).

    CAS  PubMed  Google Scholar 

  147. Behzad, A. R. et al. Localization of DNA and RNA in eosinophil secretory granules. Int. Arch. Allergy Immunol. 152, 12–27 (2010).

    CAS  PubMed  Google Scholar 

  148. Wickramasinghe, S. N. & Hughes, M. High resolution autoradiographic studies of RNA, protein and DNA synthesis during human eosinophil granulocytopoiesis: evidence for the presence of RNA on or within eosinophil granules. Br. J. Haematol. 38, 179–183 (1978).

    CAS  PubMed  Google Scholar 

  149. Bandeira-Melo, C., Woods, L. J., Phoofolo, M. & Weller, P. F. Intracrine cysteinyl leukotriene receptor-mediated signaling of eosinophil vesicular transport-mediated interleukin-4 secretion. J. Exp. Med. 196, 841–850 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Carulli, G. et al. Detection of eosinophils in whole blood samples by flow cytometry. Cytometry 34, 272–279 (1998).

    CAS  PubMed  Google Scholar 

  151. Ethier, C., Lacy, P. & Davoine, F. Identification of human eosinophils in whole blood by flow cytometry. Methods Mol. Biol. 1178, 81–92 (2014).

    PubMed  Google Scholar 

  152. Barnig, C. et al. Circulating human eosinophils share a similar transcriptional profile in asthma and other hypereosinophilic disorders. PLoS ONE 10, e0141740 (2015).

    PubMed  PubMed Central  Google Scholar 

  153. Zhang, J. Q., Biedermann, B., Nitschke, L. & Crocker, P. R. The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils. Eur. J. Immunol. 34, 1175–1184 (2004).

    CAS  PubMed  Google Scholar 

  154. de Bruin, A. M. et al. Eosinophil differentiation in the bone marrow is inhibited by T cell-derived IFN-gamma. Blood 116, 2559–2569 (2010).

    CAS  PubMed  Google Scholar 

  155. Dyer, K. D. et al. Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow. J. Immunol. 181, 4004–4009 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Satoh, T. et al. Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature 495, 524–528 (2013).

    CAS  PubMed  Google Scholar 

  157. Carlens, J. et al. Common gamma-chain-dependent signals confer selective survival of eosinophils in the murine small intestine. J. Immunol. 183, 5600–5607 (2009).

    CAS  PubMed  Google Scholar 

  158. Smith, K. M., Rahman, R. S. & Spencer, L. A. Humoral immunity provides resident intestinal eosinophils access to luminal antigen via eosinophil-expressed low-affinity Fcgamma receptors. J. Immunol. 197, 3716–3724 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Cheng, L. E. et al. IgE-activated basophils regulate eosinophil tissue entry by modulating endothelial function. J. Exp. Med. 212, 513–524 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Esnault, S. et al. Semaphorin 7A is expressed on airway eosinophils and upregulated by IL-5 family cytokines. Clin. Immunol. 150, 90–100 (2014).

    CAS  PubMed  Google Scholar 

  161. Stevens, W. W., Kim, T. S., Pujanauski, L. M., Hao, X. & Braciale, T. J. Detection and quantitation of eosinophils in the murine respiratory tract by flow cytometry. J. Immunol. Methods 327, 63–74 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Grimaldi, J. C. et al. Depletion of eosinophils in mice through the use of antibodies specific for C-C chemokine receptor 3 (CCR3). J. Leukoc. Biol. 65, 846–853 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the many investigators who have provided contributions to understanding the immunobiology of eosinophils, and we note that space constraints limited our citations. For electron microscopy studies specifically, the expertise of A. M. Dvorak and R. C. Melo has been crucial in revealing ultrastructure-based insights into eosinophil secretion mechanisms. Our studies have been supported by US National Institutes of Health grants R37AI020241, R01AI022571 and R01HL051645 (to P.F.W.), and R01HL095699 and R01AI121186 (to L.A.S.).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching data for the article, discussion of content, and writing, reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Peter F. Weller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Side scatter (SSC) parameter

In flow cytometry, the SSC parameter is a measurement of light scatter taken at a ninety-degree angle relative to the laser. As cellular components such as granules increase the light refraction, SSC is a useful parameter to distinguish cell populations on the basis of their cellular complexity.

Eosinophil-like cell lines

The cell lines HL-60 clone 15 and EoL-1 were derived from the blood of patients with acute promyelocytic or eosinophilic leukaemia, respectively. When cultured under specific conditions, these cell lines can be differentiated into cells with cytological and functional features of eosinophils.

Type 1 cytokines

Cytokines typically produced by T helper 1 cells, including IL-2, interferon-γ and IL-12.

Type 2 cytokines

Cytokines typically produced by T helper 2 cells, including IL-4, IL-5, IL-6, IL-10 and IL-13.

Intragranular membrano-vesicular network

Intricate network of interconnected vesicular tubules that is evident within eosinophil granules undergoing piecemeal degranulation. These tubules are thought to give rise to granule-derived secretory vesicles.

Eosinophilic oesophagitis

Chronic allergic inflammatory disease characterized by the accumulation of a large number of eosinophils in the oesophagus, an organ that is normally devoid of eosinophils.

Immunonanogold localization

Electron microscopy technique using antibodies conjugated to very small (1.4 nm) gold particles to enable subcellular localization of proteins.

Eosinophil sombrero vesicles

(EoSVs). C-Shaped tubular vesicles that are named in recognition of their similarity in cross-sectional appearance in electron micrographs to a Mexican hat.

Group 2 innate lymphoid cells

(ILC2s). ILCs are innate immune cells that derive from common lymphoid progenitors and are considered part of the lymphoid lineage. ILC2s produce cytokines associated with T helper 2 cells (such as IL-4, IL-5 and IL-13).

4get mice

Bicistronic IL-4 reporter mice were generated by the targeted addition of an internal ribosomal entry site–enhanced green fluorescent protein (IRES–eGFP) to generate IL-4–GFP–enhanced transcript (4get) mice.

Alternatively activated M2 macrophages

Anti-inflammatory cells that function in tissue repair and remodelling. M2 macrophages are characterized by the production of IL-10 and transforming growth factor-β.

Classically activated M1 macrophages

Macrophages that are activated by lipopolysaccharide and interferon-γ to secrete high levels of IL-12 and produce nitric oxide, promoting a pro-inflammatory antimicrobial response.

Mitochondrial brown fat uncoupling protein 1

Also known as thermogenin. This protein spans the inner mitochondrial membrane and functions as a proton transporter, thereby uncoupling the proton gradient that is produced during oxidative phosphorylation from ATP production, causing the chemical energy to instead be dissipated as heat.

Beige adipocytes

Adipocytes that express uncoupling protein 1 and have thermogenic capacity. They are induced in white adipose tissue by cold either directly or indirectly through activation of the β-adrenergic signalling pathway.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weller, P., Spencer, L. Functions of tissue-resident eosinophils. Nat Rev Immunol 17, 746–760 (2017). https://doi.org/10.1038/nri.2017.95

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.95

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing