Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technicolour transgenics: imaging tools for functional genomics in the mouse

Key Points

  • The mouse is the premier mammalian model organism and provides an unparalleled platform for modelling mammalian development and disease. Comprehensive functional annotation of the mouse genome relies on an integrative approach, using an array of tools for unravelling the molecular and cellular basis of normal and mutant phenotypes.

  • Optical-imaging technologies provide a way to perform live-cell analyses in an organismal context. Continued improvements in fluorescence-based imaging technologies allow deeper imaging and better spectral separation of fluorescent-protein reporters in living specimens.

  • Genetically-encoded fluorescent proteins that are expressed in normal and mutant mice represent high-resolution high-contrast multicolour vital markers for monitoring gene activity and protein function. They pave the way for the multidimensional multispectral imaging of living specimens and the generation of multidimensional atlases of model organisms.

  • An increasing number of fluorescent-protein reporters are available for use in mice. These fall into four main categories: spectral-variant reporters, subcellularly localized reporters, photo-activatable reporters and reporters that act as biochemical sensors.

  • The development of static in vitro culture systems for mammalian embryos and explanted tissues promotes normal ex vivo growth, which is necessary for vital-imaging experiments.

  • Researchers now possess a powerful toolbox that offers the potential to visualize and quantify biological processes at the cellular and subcellular level, both in vitro and in intact living organisms.

Abstract

Over the past decade, a battery of powerful tools that encompass forward and reverse genetic approaches have been developed to dissect the molecular and cellular processes that regulate development and disease. The advent of genetically-encoded fluorescent proteins that are expressed in wild type and mutant mice, together with advances in imaging technology, make it possible to study these biological processes in many dimensions. Importantly, these technologies allow direct visual access to complex events as they happen in their native environment, which provides greater insights into mammalian biology than ever before.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Combinatorial fluorescent-protein-reporter detection in live chimaeras and double transgenics.
Figure 2: An X-linked fluorescent reporter.
Figure 3: Green fluorescence as a marker of branching morphogenesis in the developing kidney.
Figure 4: Fluorescent fusion proteins as markers of subcellular compartments.
Figure 5: Towards a high-resolution multidimensional atlas of a living mouse.

Similar content being viewed by others

References

  1. Anderson, K. V. & Ingham, P. W. The transformation of the model organism: a decade of developmental genetics. Nature Genet. 33 (Suppl.), 285–293 (2003).

    CAS  PubMed  Google Scholar 

  2. Justice, M. J., Noveroske, J. K., Weber, J. S., Zheng, B. & Bradley, A. Mouse ENU mutagenesis. Hum. Mol. Genet. 8, 1955–1963 (1999).

    CAS  PubMed  Google Scholar 

  3. Anderson, K. V. Finding the genes that direct mammalian development: ENU mutagenesis in the mouse. Trends Genet. 16, 99–102 (2000).

    CAS  PubMed  Google Scholar 

  4. Stanford, W. L., Cohn, J. B. & Cordes, S. P. Gene-trap mutagenesis: past, present and beyond. Nature Rev. Genet. 2, 756–768 (2001).

    CAS  PubMed  Google Scholar 

  5. Nolan, P. M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–443 (2000).

    CAS  PubMed  Google Scholar 

  6. Brown, S. D. & Balling, R. Systematic approaches to mouse mutagenesis. Curr. Opin Genet. Dev. 11, 268–273 (2001).

    CAS  PubMed  Google Scholar 

  7. Hrabe de Angelis, M. H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444–447 (2000).

    CAS  PubMed  Google Scholar 

  8. Nagy, A., Perrimon, N., Sandmeyer, S. & Plasterk, R. Tailoring the genome: the power of genetic approaches. Nature Genet. 33 (Suppl), 276–284 (2003).

    CAS  PubMed  Google Scholar 

  9. Le, Y. & Sauer, B. Conditional gene knockout using Cre recombinase. Mol. Biotechnol. 17, 269–275 (2001).

    CAS  PubMed  Google Scholar 

  10. Yu, Y. & Bradley, A. Engineering chromosomal rearrangements in mice. Nature Rev. Genet. 2, 780–790 (2001).

    CAS  PubMed  Google Scholar 

  11. Lewandoski, M. Conditional control of gene expression in the mouse. Nature Rev. Genet. 2, 743–755 (2001).

    CAS  PubMed  Google Scholar 

  12. Jacinto, A. et al. Dynamic analysis of actin cable function during Drosophila dorsal closure. Curr. Biol. 12, 1245–1250 (2002).

    CAS  PubMed  Google Scholar 

  13. Sepp, K. J. & Auld, V. J. RhoA and Rac1 GTPases mediate the dynamic rearrangement of actin in peripheral glia. Development 130, 1825–1835 (2003).

    CAS  PubMed  Google Scholar 

  14. Koster, R. W. & Fraser, S. E. Direct imaging of in vivo neuronal migration in the developing cerebellum. Curr. Biol. 11, 1858–1863 (2001).

    CAS  PubMed  Google Scholar 

  15. Weinstein, B. Vascular cell biology in vivo: a new piscine paradigm? Trends Cell Biol. 12, 439–445 (2002).

    CAS  PubMed  Google Scholar 

  16. Ritter, D. A., Bhatt, D. H. & Fetcho, J. R. In vivo imaging of zebrafish reveals differences in the spinal networks for escape and swimming movements. J. Neurosci. 21, 8956–8965 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. O'Malley, D. M., Zhou, Q. & Gahtan, E. Probing neural circuits in the zebrafish: a suite of optical techniques. Methods 30, 49–63 (2003).

    CAS  PubMed  Google Scholar 

  18. Goring, D. R., Rossant, J., Clapoff, S., Breitman, M. L. & Tsui, L. C. In situ detection of β-galactosidase in lenses of transgenic mice with a γ-crystallin/lacZ gene. Science 235, 456–458 (1987).

    CAS  PubMed  Google Scholar 

  19. Cui, C., Wani, M. A., Wight, D., Kopchick, J. & Stambrook, P. J. Reporter genes in transgenic mice. Transgenic Res. 3, 182–194 (1994).

    CAS  PubMed  Google Scholar 

  20. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233 (1992). This paper describes the initial cloning and sequencing of wtGFP.

    CAS  PubMed  Google Scholar 

  21. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994). The first report to detail the use of a genetically encoded autofluorescent protein (GFP) in a heterologous system ( Caenorhabditis elegans).

    CAS  PubMed  Google Scholar 

  22. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997). The first report of the successful generation of injection-based transgenic mice engineered to express readily detectable EGFP.

    CAS  PubMed  Google Scholar 

  23. Hadjantonakis, A. K., Gertsenstein, M., Ikawa, M., Okabe, M. & Nagy, A. Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev. 76, 79–90 (1998). The first report of the successful generation of ES-cell-mediated transgenic mice engineered to express readily detectable EGFP.

    CAS  PubMed  Google Scholar 

  24. Gagneten, S., Le, Y., Miller, J. & Sauer, B. Brief expression of a GFP cre fusion gene in embryonic stem cells allows rapid retrieval of site-specific genomic deletions. Nucleic Acids Res. 25, 3326–3331 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Horie, K. et al. Efficient chromosomal transposition of a Tc1/mariner-like transposon Sleeping Beauty in mice. Proc. Natl Acad. Sci. USA 98, 9191–9196 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Zambrowicz, B. P. et al. Disruption of overlapping transcripts in the ROSA β-geo 26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl Acad. Sci. USA 94, 3789–3794 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Novak, A., Guo, C., Yang, W., Nagy, A. & Lobe, C. G. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147–155 (2000).

    CAS  PubMed  Google Scholar 

  29. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kinder, S. J. et al. The orderly allocation of mesodermal cells to the extraembryonic structures. and the anteroposterior axis during gastrulation of the mouse embryo. Development 126, 4691–4701 (1999).

    CAS  PubMed  Google Scholar 

  31. Kinder, S. J. et al. The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm. Development 128, 3623–3634 (2001).

    CAS  PubMed  Google Scholar 

  32. Cambray, N. & Wilson, V. Axial progenitors with extensive potency are localised to the mouse chordoneural hinge. Development 129, 4855–4866 (2002).

    CAS  PubMed  Google Scholar 

  33. Hadjantonakis, A. K. & Nagy, A. FACS for the isolation of individual cells from transgenic mice harboring a fluorescent protein reporter. Genesis 27, 95–98 (2000).

    CAS  PubMed  Google Scholar 

  34. Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).

    CAS  PubMed  Google Scholar 

  35. Faust, N., Varas, F., Kelly, L. M., Heck, S. & Graf, T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96, 719–726 (2000).

    CAS  PubMed  Google Scholar 

  36. Wang, S. et al. Isolation of neuronal precursors by sorting embryonic forebrain transfected with GFP regulated by the T-α1 tubulin promoter. Nature Biotechnol. 16, 196–201 (1998).

    CAS  Google Scholar 

  37. Tropepe, V. et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78 (2001).

    CAS  PubMed  Google Scholar 

  38. Roy, N. S. et al. Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J. Neurosci. Res. 59, 321–331 (2000).

    CAS  PubMed  Google Scholar 

  39. Rossant, J. & Spence, A. Chimeras and mosaics in mouse mutant analysis. Trends Genet. 14, 358–363 (1998).

    CAS  PubMed  Google Scholar 

  40. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    CAS  PubMed  Google Scholar 

  41. Lo, C. W., Coulling, M. & Kirby, C. Tracking of mouse cell lineage using microinjected DNA sequences: analyses using genomic Southern blotting and tissue-section in situ hybridizations. Differentiation 35, 37–44 (1987).

    CAS  PubMed  Google Scholar 

  42. Hadjantonakis, A. K., Macmaster, S. & Nagy, A. Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal. BMC Biotechnol. 2, 11 (2002). This paper describes the generation of transgenic ES cells and mice that express readily detectable ECFP and EYFP, and shows combinatorial reporter visualization in ES cells, embryos and adult organs.

    PubMed  PubMed Central  Google Scholar 

  43. Damert, A., Miquerol, L., Gertsenstein, M., Risau, W. & Nagy, A. Insufficient VEGFA activity in yolk sac endoderm compromises haematopoietic and endothelial differentiation. Development 129, 1881–1892 (2002).

    CAS  PubMed  Google Scholar 

  44. Hadjantonakis, A. K., Gertsenstein, M., Ikawa, M., Okabe, M. & Nagy, A. Non-invasive sexing of preimplantation stage mammalian embryos. Nature Genet. 19, 220–222 (1998).

    CAS  PubMed  Google Scholar 

  45. Hadjantonakis, A. K., Cox, L. L., Tam, P. P. & Nagy, A. An X-linked GFP transgene reveals unexpected paternal X-chromosome activity in trophoblastic giant cells of the mouse placenta. Genesis 29, 133–140 (2001).

    CAS  PubMed  Google Scholar 

  46. Eggan, K. et al. X-chromosome inactivation in cloned mouse embryos. Science 290, 1578–1581 (2000).

    CAS  PubMed  Google Scholar 

  47. Wang, J. et al. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nature Genet. 28, 371–375 (2001).

    CAS  PubMed  Google Scholar 

  48. Bagri, A., Cheng, H. J., Yaron, A., Pleasure, S. J. & Tessier-Lavigne, M. Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113, 285–299 (2003).

    CAS  PubMed  Google Scholar 

  49. Hadjantonakis, A. K. & Papaioannou, V. E. Can mammalian cloning combined with embryonic stem cell technologies be used to treat human diseases? Genome Biol. 3, 1023 (2002).

    Google Scholar 

  50. Yang, X. W., Wynder, C., Doughty, M. L. & Heintz, N. BAC-mediated gene-dosage analysis reveals a role for Zipro1 (Ru49/Zfp38) in progenitor cell proliferation in cerebellum and skin. Nature Genet. 22, 327–335 (1999).

    CAS  PubMed  Google Scholar 

  51. Heintz, N. BAC to the future: the use of bac transgenic mice for neuroscience research. Nature Rev. Neurosci. 2, 861–870 (2001).

    CAS  Google Scholar 

  52. Gong, S., Yang, X. W., Li, C. & Heintz, N. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kγ origin of replication. Genome Res. 12, 1992–1998 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hidaka, K. et al. Chamber-specific differentiation of Nkx2.5-positive cardiac precursor cells from murine embryonic stem cells. FASEB J. 17, 740–742 (2003).

    CAS  PubMed  Google Scholar 

  54. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnol. 20, 87–90 (2002).

    CAS  Google Scholar 

  55. Cormack, B. P., Valdivia, R. H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    CAS  PubMed  Google Scholar 

  56. Sawano, A. & Miyawaki, A. Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res. 28, 78 (2000).

    Google Scholar 

  57. Li, X. et al. Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem. 273, 34970–34975 (1998).

    CAS  PubMed  Google Scholar 

  58. Jho, E. H. et al. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell Biol. 22, 1172–1183 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Anderson, R. et al. Mouse primordial germ cells lacking β1 integrins enter the germline but fail to migrate normally to the gonads. Development 126, 1655–1664 (1999).

    CAS  PubMed  Google Scholar 

  60. Anderson, R., Copeland, T. K., Scholer, H., Heasman, J. & Wylie, C. The onset of germ cell migration in the mouse embryo. Mech. Dev. 91, 61–68 (2000). This is one of the first reports to use time-lapse imaging of EGFP in a live mouse embryo.

    CAS  PubMed  Google Scholar 

  61. Srinivas, S. et al. Expression of green fluorescent protein in the ureteric bud of transgenic mice: a new tool for the analysis of ureteric bud morphogenesis. Dev. Genet. 24, 241–251 (1999). This is one of the first reports to use time-lapse imaging of EGFP in a live organ explant.

    CAS  PubMed  Google Scholar 

  62. Imai, E. et al. Glowing podocytes in living mouse: transgenic mouse carrying a podocyte-specific promoter. Exp. Nephrol. 7, 63–66 (1999).

    CAS  PubMed  Google Scholar 

  63. Batourina, E. et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nature Genet. 27, 74–78 (2001).

    CAS  PubMed  Google Scholar 

  64. Batourina, E. et al. Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nature Genet. 32, 109–115 (2002).

    CAS  PubMed  Google Scholar 

  65. Sadler, T. W. & New, D. A. Culture of mouse embryos during neurulation. J. Embryol. Exp. Morphol. 66, 109–116 (1981).

    CAS  PubMed  Google Scholar 

  66. Sturm, K. A. & Tam, P. P. L. in Methods in Enzymology Vol. 225 164–190 (Academic Press, San Diego, 1993).

    Google Scholar 

  67. Jones, E. A. et al. Dynamic in vivo imaging of postimplantation mammalian embryos using whole embryo culture. Genesis 34, 228–235 (2002). This paper reports the development of a static-culture system for post-implantation mouse embryos that is specifically designed for use on a microscope stage.

    CAS  PubMed  Google Scholar 

  68. Dyer, M. A., Farrington, S. M., Mohn, D., Munday, J. R. & Baron, M. H. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development 128, 1717–1730 (2001).

    CAS  PubMed  Google Scholar 

  69. Turnbull, D. H. Ultrasound backscatter microscopy of mouse embryos. Methods Mol. Biol. 135, 235–243 (2000).

    CAS  PubMed  Google Scholar 

  70. Schenk, J. O. & Brezinski, M. E. Ultrasound induced improvement in optical coherence tomography (OCT) resolution. Proc. Natl Acad. Sci. USA 99, 9761–9764 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000). This paper describes the generation of a series of transgenic mice that express readily detectable ECFP, EGFP, EYFP or DsRed1 under the control of the Thy1 promoter, and also shows combinatorial reporter visualization in the postnatal brain.

    CAS  PubMed  Google Scholar 

  72. Nguyen, Q. T., Sanes, J. R. & Lichtman, J. W. Pre-existing pathways promote precise projection patterns. Nature Neurosci. 5, 861–867 (2002).

    CAS  PubMed  Google Scholar 

  73. Keller-Peck, C. R. et al. Asynchronous synapse elimination in neonatal motor units: studies using GFP transgenic mice. Neuron 31, 381–394 (2001).

    CAS  PubMed  Google Scholar 

  74. Walsh, M. K. & Lichtman, J. W. In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron 37, 67–73 (2003).

    CAS  PubMed  Google Scholar 

  75. Grutzendler, J., Tsai, J. & Gan, W. B. Rapid labeling of neuronal populations by ballistic delivery of fluorescent dyes. Methods 30, 79–85 (2003).

    CAS  PubMed  Google Scholar 

  76. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    CAS  PubMed  Google Scholar 

  77. Helmchen, F. & Denk, W. New developments in multiphoton microscopy. Curr. Opin Neurobiol. 12, 593–601 (2002).

    CAS  PubMed  Google Scholar 

  78. Helmchen, F. Miniaturization of fluorescence microscopes using fibre optics. Exp. Physiol. 87, 737–745 (2002). This review shows the potential of miniature fluorescence microscopes.

    PubMed  Google Scholar 

  79. Jain, R. K., Munn, L. L. & Fukumura, D. Dissecting tumour pathophysiology using intravital microscopy. Nature Rev. Cancer 2, 266–276 (2002).

    CAS  Google Scholar 

  80. Tsien, R. Y. & Miyawaki, A. Seeing the machinery of live cells. Science 280, 1954–1955 (1998).

    CAS  PubMed  Google Scholar 

  81. Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nature Rev. Mol. Cell Biol. 2, 444–456 (2001).

    CAS  Google Scholar 

  82. Rodriguez, I., Feinstein, P. & Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97, 199–208 (1999). This is one of the first reports to use gene targeting to deliver an autofluorescent protein reporter to a locus of interest. It is also one of the first studies to use an autofluorescent protein fusion (microtubule binding protein tau–EGFP) in a mouse.

    CAS  PubMed  Google Scholar 

  83. Pratt, T., Sharp, L., Nichols, J., Price, D. J. & Mason, J. O. Embryonic stem cells and transgenic mice ubiquitously expressing a tau-tagged green fluorescent protein. Dev. Biol. 228, 19–28 (2000).

    CAS  PubMed  Google Scholar 

  84. Potter, S. M. et al. Structure and emergence of specific olfactory glomeruli in the mouse. J. Neurosci. 21, 9713–9723 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kondoh, G. et al. Tissue-inherent fate of GPI revealed by GPI-anchored GFP transgenesis. FEBS Lett. 458, 299–303 (1999).

    CAS  PubMed  Google Scholar 

  86. Zhou, Q. & Anderson, D. J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73 (2002).

    CAS  PubMed  Google Scholar 

  87. Kanda, T., Sullivan, K. F. & Wahl, G. M. Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385 (1998).

    CAS  PubMed  Google Scholar 

  88. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Rogers, E., Bishop, J. D., Waddle, J. A., Schumacher, J. M. & Lin, R. The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J. Cell Biol. 157, 219–229 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Clarkson, M. & Saint, R. A His2AvDGFP fusion gene complements a lethal His2AvD mutant allele and provides an in vivo marker for Drosophila chromosome behavior. DNA Cell Biol. 18, 457–462 (1999).

    CAS  PubMed  Google Scholar 

  91. Savoian, M. S. & Rieder, C. L. Mitosis in primary cultures of Drosophila melanogaster larval neuroblasts. J. Cell Sci. 115, 3061–3072 (2002).

    CAS  PubMed  Google Scholar 

  92. Koster, R. W. & Fraser, S. E. Tracing transgene expression in living zebrafish embryos. Dev. Biol. 233, 329–346 (2001).

    CAS  PubMed  Google Scholar 

  93. Pauls, S., Geldmacher-Voss, B. & Campos-Ortega, J. A. A zebrafish histone variant H2A.F/Z and a transgenic H2A.F/Z:GFP fusion protein for in vivo studies of embryonic development. Dev. Genes Evol. 211, 603–610 (2001).

    CAS  PubMed  Google Scholar 

  94. Helmchen, F., Fee, M. S., Tank, D. W. & Denk, W. A miniature head-mounted two-photon microscope. High-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001).

    CAS  PubMed  Google Scholar 

  95. Patterson, G. H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002).

    CAS  PubMed  Google Scholar 

  96. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl Acad. Sci. USA 99, 12651–12656 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G. & Tsien, R. Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl Acad. Sci. USA 95, 6803–6808 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Nakanishi, T., Ikawa, M., Yamada, S., Toshimori, K. & Okabe, M. Alkalinization of acrosome measured by GFP as a pH indicator and its relation to sperm capacitation. Dev. Biol. 237, 222–231 (2001).

    CAS  PubMed  Google Scholar 

  99. Ting, A. Y., Kain, K. H., Klemke, R. L. & Tsien, R. Y. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc. Natl Acad. Sci. USA 98, 15003–15008 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, J., Ma, Y., Taylor, S. S. & Tsien, R. Y. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc. Natl Acad. Sci. USA 98, 14997–5002 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Janetopoulos, C., Jin, T. & Devreotes, P. Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 291, 2408–2411 (2001).

    CAS  PubMed  Google Scholar 

  102. Brock, C. et al. Roles of Gβγ in membrane recruitment and activation of p110-γ/p101 phosphoinositide 3-kinase-γ. J. Cell Biol. 160, 89–99 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    CAS  PubMed  Google Scholar 

  104. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nature Biotechnol. 19, 137–141 (2001).

    CAS  Google Scholar 

  105. Yu, D., Baird, G. S., Tsien, R. Y. & Davis, R. L. Detection of calcium transients in Drosophila mushroom body neurons with camgaroo reporters. J. Neurosci. 23, 64–72 (2003).

    PubMed  PubMed Central  Google Scholar 

  106. Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    CAS  PubMed  Google Scholar 

  107. Beddington, S. P. An autoradiographic analysis of the potency of embryonic ectoderm in the 8th day postimplantation mouse embryo. J. Embryol. Exp. Morphol. 64, 87–104 (1981).

    CAS  PubMed  Google Scholar 

  108. Thomas, P. & Beddington, R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6, 1487–1496 (1996).

    CAS  PubMed  Google Scholar 

  109. Ormo, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    CAS  PubMed  Google Scholar 

  110. Tsien, R. Y. The green fluorescent protein. Annu Rev. Biochem. 67, 509–544 (1998).

    CAS  PubMed  Google Scholar 

  111. Yu, Y. A. & Szalay, A. A. A Renilla luciferase-Aequorea GFP (ruc-gfp) fusion gene construct permits real-time detection of promoter activation by exogenously administered mifepristone in vivo. Mol. Genet. Genomics 268, 169–178 (2002).

    CAS  PubMed  Google Scholar 

  112. Lippincott-Schwartz, J. & Patterson, G. H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    CAS  PubMed  Google Scholar 

  113. Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. Creating new fluorescent probes for cell biology. Nature Rev. Mol. Cell Biol. 3, 906–918 (2002).

    CAS  Google Scholar 

  114. Matz, M. V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnol. 17, 969–973 (1999). This important reference describes the isolation of coelenterate-derived red fluorescent proteins.

    CAS  Google Scholar 

  115. Terskikh, A. V., Fradkov, A. F., Zaraisky, A. G., Kajava, A. V. & Angres, B. Analysis of DsRed mutants: space around the fluorophore accelerates fluorescence development. J. Biol. Chem. 277, 7633–7636 (2002).

    CAS  PubMed  Google Scholar 

  116. Yarbrough, D., Wachter, R. M., Kallio, K., Matz, M. V. & Remington, S. J. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. Proc. Natl Acad. Sci. USA 98, 462–467 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Campbell, R. E. et al. A monomeric red fluorescent protein. Proc. Natl Acad. Sci. USA 99, 7877–7882 (2002). This report describes the mutagenesis of DsRed into a monomeric form that is expected to be more amenable to use in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Yanushevich, Y. G. et al. A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins. FEBS Lett. 511, 11–14 (2002).

    CAS  PubMed  Google Scholar 

  119. Gurskaya, N. G. et al. GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett. 507, 16–20 (2001).

    CAS  PubMed  Google Scholar 

  120. Heim, R. & Tsien, R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182 (1996).

    CAS  PubMed  Google Scholar 

  121. Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A. & Tsien, R. Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).

    CAS  PubMed  Google Scholar 

  122. Bevis, B. J. & Glick, B. S. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nature Biotechnol. 20, 83–87 (2002).

    CAS  Google Scholar 

  123. Biggers, J. D., Moore, B. D. & Whittingham, D. G. Development of mouse embryos in vivo after cultivation from two-cell ova to blastocysts in vitro. Nature 206, 734–735 (1965).

    CAS  PubMed  Google Scholar 

  124. Biggers, J. D., McGinnis, L. K. & Raffin, M. Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol. Reprod. 63, 281–293 (2000).

    CAS  PubMed  Google Scholar 

  125. Erbach, G. T., Lawitts, J. A., Papaioannou, V. E. & Biggers, J. D. Differential growth of the mouse preimplantation embryo in chemically defined media. Biol. Reprod. 50, 1027–1033 (1994).

    CAS  PubMed  Google Scholar 

  126. Moore-Scott, B. A., Gordon, J., Blackburn, C. C., Condie, B. G. & Manley, N. R. New serum-free in vitro culture technique for midgestation mouse embryos. Genesis 35, 164–168 (2003).

    PubMed  Google Scholar 

  127. Ang, S. L. & Rossant, J. Anterior mesendoderm induces mouse Engrailed genes in explant cultures. Development 118, 139–149 (1993).

    CAS  PubMed  Google Scholar 

  128. Weaver, M., Dunn, N. R. & Hogan, B. L. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 127, 2695–2704 (2000).

    CAS  PubMed  Google Scholar 

  129. Naiche, L. A. & Papaioannou, V. E. Loss of Tbx4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development 130, 2681–2693 (2003).

    CAS  PubMed  Google Scholar 

  130. Dickinson, M. E., Selleck, M. A., McMahon, A. P. & Bronner-Fraser, M. Dorsalization of the neural tube by the non-neural ectoderm. Development 121, 2099–2106 (1995).

    CAS  PubMed  Google Scholar 

  131. Echevarria, D., Vieira, C. & Martinez, S. Mammalian neural tube grafting experiments: an in vitro system for mouse experimental embryology. Int J. Dev. Biol. 45, 895–902 (2001).

    CAS  PubMed  Google Scholar 

  132. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990). One of the first papers to show that multiphoton excitation can be used for fluorescence microscopy.

    CAS  PubMed  Google Scholar 

  133. Sheppard, C. J. & Wilson, T. The theory of the direct-view confocal microscope. J. Microsc. 124, 107–117 (1981).

    CAS  PubMed  Google Scholar 

  134. Denk, W. & Svoboda, K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18, 351–357 (1997).

    CAS  PubMed  Google Scholar 

  135. Piston, D. W. Imaging living cells and tissues by two-photon excitation microscopy. Trends Cell Biol. 9, 66–69 (1999).

    CAS  PubMed  Google Scholar 

  136. Squirrell, J. M., Wokosin, D. L., White, J. G. & Bavister, B. D. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nature Biotechnol. 17, 763–767 (1999).

    CAS  Google Scholar 

  137. Lansford, R., Bearman, G. & Fraser, S. E. Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy. J. Biomed. Opt. 6, 311–318 (2001). One of the first reports to describe the principle and application of emission fingerprinting of spectrally overlapping fluorochromes using laser scanning microscopy.

    CAS  PubMed  Google Scholar 

  138. Dickinson, M. E., Bearman, G., Tilie, S., Lansford, R. & Fraser, S. E. Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques 31, 1272, 1274–1276, 1278 (2001). This paper describes the design and use of a specialized detector for the rapid imaging of λ-stacks for emission fingerprinting.

    CAS  PubMed  Google Scholar 

  139. Dickinson, M. E., Simbuerger, E., Zimmerman, B., Waters, C. W. & Fraser, S. E. Multiphoton excitation spectra in biological samples. J. Biomed. Optics 8, 329–338 (2003). The first report to describe the principle and application of multiphoton-excitation fingerprinting of spectrally overlapping fluorochromes.

    Google Scholar 

  140. Papiannou, V. E. & Hadjantonakis, A. -K. in Cold Spring Harbor 2002 Mouse Molecular Genetics Meeting Abstract Book (Cold Spring Harbor Laboratory, New York, 2002).

    Google Scholar 

  141. Papiannou, V. E. & Johnson, R. in Gene Targeting: A Practical Approach (ed. Joyner, A.) 107–146 (IRL at Oxford Univ. Press, New York, 1993).

    Google Scholar 

Download references

Acknowledgements

We thank F. Costantini, L. Jones and J. Lichtman for generously providing figures. We apologize to the authors of many important findings and strains of mice that are not discussed here owing to space limitations. Our work is supported by grants from the National Institutes of Health, National Science Foundation and Muscular Dystrophy Association. A.-K.H. is a fellow of the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna-Katerina Hadjantonakis.

Supplementary information

Related links

Related links

Databases

LocusLink

Axin2

Nkx2.5

Plxna3

Rara

Rarb

Thy1

Vegfa

Further Information

BD Biosciences Inc.

Bio-Rad Microscience

C. elegans movies

Carl Zeiss Advanced Imaging Microscopy

Coherent Inc.

Drosophila atlases

Drosophila brain atlas

FishScope

Leica Microsystems

Mouse MRI Atlas at the Biological Imaging Center

NCBI mouse genome resources

Scott Fraser's Laboratory

Spectra-Physics

The Edinburgh Mouse Atlas Project (EMAP)

The Jackson Laboratory Induced Mutant Resource

The Jackson Laboratory Mouse Genome Database (MGD)

Virginia Papaioannou's laboratory

Zebrafish vascular anatomy atlas

Glossary

THERMOLABILE

Unstable at moderate or increased temperatures.

CHIMAERA

An animal that is generated from, and comprises, several genetically distinct populations of cells that are derived from more than one individual.

EMBRYONIC-STEM-CELL-MEDIATED TRANSGENESIS

A method in which DNA is introduced into embryonic stem (ES) cells and integrates randomly, or through gene targeting, into the genome. Transgenic ES cells are delivered to the germline through the generation of (ES cell↔embryo) chimaeras.

FATE MAP

A spatial map of the fates of different embryonic cells at a particular stage of development.

CHORDONEURAL HINGE

A region at the posterior end of a vertebrate embryo that gives rise to both neural and mesodermal cells.

TROPHOBLAST

An extraembryonic lineage that is derived from the trophectoderm of the blastocyst, which gives rise to the fetal portion of the placenta.

PLURIPOTENT

Able to give rise to a wide range of, but not all, cell lineages (usually all fetal lineages and a subset of extraembryonic lineages).

HAEMATOPOIETIC

Giving rise to the cellular elements of the blood, such as the white blood cells, red blood cells and platelets.

MOSAIC

An organism that consists of cells of more than one genotype. The strict definition requires that the genotypically different cells all derive from a single zygote. The term mosaic is also used more broadly to describe any organism comprised of cells of different genotypes.

COELENTERATE

Radially symmetrical invertebrates, which include corals, sea anemones and jellyfish.

FLUOROPHORE

The core portion of a molecule that is directly responsible for absorbing photons.

THERMOSTABLE

Able to withstand moderate heat without the loss of characteristic properties, such as fluorescence.

QUANTUM YIELD

The probability of luminescence occurring under given conditions, which is expressed as the ratio of the number of photons emitted to the number absorbed.

EMBRYONIC STEM CELLS

(ES cells). Stem cells have the dual capacity to self-replicate and differentiate into several specialized derivatives. ES cells are pluripotent cells that are derived from pre-implantation stage (usually blastocyst) mammalian embryos. Mouse ES cells can be propagated and manipulated in vitro, yet still retain their pluripotency.

HEMIZYGOTE

An animal with a transgene insertion on one chromosome of a homologous pair, rather than on each of the two homologous chromosomes (homozygote).

PERDURANCE

The ongoing stability and activity of a protein in the cellular environment.

EPIBLAST

An embryonic lineage that is derived from the inner-cell mass of the blastocyst, which gives rise to the body of the fetus.

PHOTOBLEACHING

The irreversible destruction of a fluorophore that is under illumination.

MUSHROOM BODIES

The region of the Drosophila brain that is required for olfactory learning and memory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadjantonakis, AK., Dickinson, M., Fraser, S. et al. Technicolour transgenics: imaging tools for functional genomics in the mouse. Nat Rev Genet 4, 613–625 (2003). https://doi.org/10.1038/nrg1126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing