Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment of pulmonary arterial hypertension with targeted therapies

Abstract

Pulmonary arterial hypertension (PAH) is a rare disorder characterized by progressive obliteration of the pulmonary microvasculature that results in elevated pulmonary vascular resistance and premature death. Although no cure exists for PAH, improved understanding of the pathobiological mechanisms of this disease has resulted in the development of effective therapies that target specific aberrant pathways. Agents that modulate abnormalities in the prostacyclin, endothelin, and nitric oxide pathways have been shown in randomized, controlled studies to confer improvements in functional status, pulmonary hemodynamics, and possibly even slow disease progression. Several additional pathways believed to play an important role in the pathogenesis of PAH have been identified as potentially useful therapeutic targets and a number of investigative approaches focusing on these targets are in active development. In this Review, we highlight the pharmacological agents currently available for the treatment of PAH and discuss potential novel strategies.

Key Points

  • Pulmonary arterial hypertension is a complex, rapidly progressive, and incurable disease

  • The past decade has witnessed a remarkable increase in the number of available treatments for pulmonary arterial hypertension that can confer meaningful improvements in important clinical end points

  • Currently licensed therapies for pulmonary arterial hypertension target abnormalities in the endothelin, prostacyclin, and nitric oxide signaling pathways

  • Escalation of therapy using combination regimens is recommended for patients with pulmonary arterial hypertension who continue to exhibit evidence of disease progression

  • Progress in basic and clinical research on pulmonary arterial hypertension has led to improved understanding of disease pathogenesis and identification of a host of novel therapeutic targets

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treatment algorithm for pulmonary arterial hypertension.
Figure 2: Current and emerging targets and therapies for pulmonary arterial hypertension.

Similar content being viewed by others

References

  1. Humbert, M. et al. Pulmonary arterial hypertension in France: results from a national registry. Am. J. Respir. Crit. Care Med. 173, 1023–1030 (2006).

    Article  PubMed  Google Scholar 

  2. Peacock, A. J., Murphy, N. F., McMurray, J. J., Caballero, L. & Stewart, S. An epidemiological study of pulmonary arterial hypertension. Eur. Respir. J. 30, 104–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Galiè, N. et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 34, 1219–1263 (2009).

    Article  PubMed  Google Scholar 

  4. Badesch, D. B. et al. Diagnosis and assessment of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 54, S55–S66 (2009).

    Article  PubMed  Google Scholar 

  5. D'Alonzo, G. E. et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann. Intern. Med. 115, 343–349 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Humbert, M. et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation 122, 156–163 (2010).

    Article  PubMed  Google Scholar 

  7. Humbert, M., Sitbon, O. & Simonneau, G. Treatment of pulmonary arterial hypertension. N. Engl. J. Med. 351, 1425–1436 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Galiè, N. et al. A meta-analysis of randomized controlled trials in pulmonary arterial hypertension. Eur. Heart J. 30, 394–403 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Benza, R. L. et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 122, 164–172 (2010).

    Article  PubMed  Google Scholar 

  10. Thenappan, T. et al. Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. Eur. Respir. J. 35, 1079–1087 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Humbert, M. et al. Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension. Eur. Respir. J. 36, 549–555 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Mehta, S. & Shoemaker, G. J. Improving survival in idiopathic pulmonary arterial hypertension: revisiting the “kingdom of the near-dead”. Thorax 60, 981–983 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Christman, B. W. et al. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N. Engl. J. Med. 327, 70–75 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Tuder, R. M. et al. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am. J. Respir. Crit. Care Med. 159, 1925–1932 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Rubin, L. J. et al. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin (epoprostenol). Results of a randomized trial. Ann. Intern. Med. 112, 485–491 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Barst, R. J. et al. Survival in primary pulmonary hypertension with long-term continuous intravenous prostacyclin. Ann. Intern. Med. 121, 409–415 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Barst, R. J. et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N. Engl. J. Med. 334, 296–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Shapiro, S. M. et al. Primary pulmonary hypertension: improved long-term effects and survival with continuous intravenous epoprostenol infusion. J. Am. Coll. Cardiol. 30, 343–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. McLaughlin, V. V., Shillington, A. & Rich, S. Survival in primary pulmonary hypertension: the impact of epoprostenol therapy. Circulation 106, 1477–1482 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Simonneau, G. et al. Continuous subcutaneous infusion of treprostinil, a prostacyclin analog, in patients with pulmonary arterial hypertension: a double-blind, randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 165, 800–804 (2002).

    Article  PubMed  Google Scholar 

  21. Laliberte, K., Arneson, C., Jeffs, R., Hunt, T. & Wade, M. Pharmacokinetics and steady-state bioequivalence of treprostinil sodium (Remodulin) administered by the intravenous and subcutaneous route to normal volunteers. J. Cardiovasc. Pharmacol. 44, 209–214 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Gomberg-Maitland, M. et al. Transition from intravenous epoprostenol to intravenous treprostinil in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 172, 1586–1589 (2005).

    Article  PubMed  Google Scholar 

  23. Kallen, A. J. et al. Bloodstream infections in patients given treatment with intravenous prostanoids. Infect. Control Hosp. Epidemiol. 29, 342–349 (2008).

    Article  PubMed  Google Scholar 

  24. Reisbig, K. A., Coffman, P. A., Floreani, A. A., Bultsma, C. J. & Olsen, K. M. Staggered transition to epoprostenol from treprostinil in pulmonary arterial hypertension. Ann. Pharmacother. 39, 739–743 (2005).

    Article  PubMed  Google Scholar 

  25. Channick, R. N. et al. Safety and efficacy of inhaled treprostinil as add-on therapy to bosentan in pulmonary arterial hypertension. J. Am. Coll. Cardiol. 48, 1433–1437 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. McLaughlin, V. V. et al. Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension: a randomized controlled clinical trial. J. Am. Coll. Cardiol. 55, 1915–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Tapson, V. et al. Results of the FREEDOM-C Study: A Pivotal Study of Oral Treprostinil Used Adjunctively with an ERA and/or PDE5-Inhibitor for the Treatment of PAH [abstract A1040]. Am. J. Respir. Crit. Care Med. 179, A17 (2009).

    Google Scholar 

  28. US NIH. ClinicalTrials.gov. FREEDOM -M: Oral treprostinil as monotherapy for the treatment of pulmonary arterial hypertension (PAH) [online], (2011).

  29. Galiè, N. et al. Effects of beraprost sodium, an oral prostacyclin analog, in patients with pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled trial. J. Am. Coll. Cardiol. 39, 1496–1502 (2002).

    Article  PubMed  Google Scholar 

  30. Barst, R. J. et al. Beraprost therapy for pulmonary arterial hypertension. J. Am. Coll. Cardiol. 41, 2119–2125 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Olschewski, H. et al. Inhaled iloprost for severe pulmonary hypertension. N. Engl. J. Med. 347, 322–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Opitz, C. F. et al. Clinical efficacy and survival with first-line inhaled iloprost therapy in patients with idiopathic pulmonary arterial hypertension. Eur. Heart J. 26, 1895–1902 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Higenbottam, T. W. et al. Treatment of pulmonary hypertension with the continuous infusion of a prostacyclin analog, iloprost. Heart 79, 175–179 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Higenbottam, T., Butt, A. Y., McMahon, A., Westerbeck, R. & Sharples, L. Long-term intravenous prostaglandin (epoprostenol or iloprost) for treatment of severe pulmonary hypertension. Heart 80, 151–155 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Olschewski, H. et al. Pharmacodynamics and pharmacokinetics of inhaled iloprost, aerosolized by three different devices, in severe pulmonary hypertension. Chest 124, 1294–1304 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Opitz, C. F. et al. Assessment of the vasodilator response in primary pulmonary hypertension. Comparing prostacyclin and iloprost administered by either infusion or inhalation. Eur. Heart J. 24, 356–365 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Hoeper, M. M. et al. Long-term outcome with intravenous iloprost in pulmonary arterial hypertension. Eur. Respir. J. 34, 132–137 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Giaid, A. et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 328, 1732–1739 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Seo, B., Oemar, B., Siebenmann, R., von Segesser, L. & Lüscher, T. Both ETA and ETB receptors mediate contraction to endothelin-1 in human blood vessels. Circulation 89, 1203–1208 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Hirata, Y. et al. Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. J. Clin. Invest. 91, 1367–1373 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Channick, R. N. et al. Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet 358, 1119–1123 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Rubin, L. J. et al. Bosentan therapy for pulmonary arterial hypertension. N. Engl. J. Med. 346, 896–903 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Humbert, M. et al. Results of European post-marketing surveillance of bosentan in pulmonary hypertension. Eur. Respir. J. 30, 338–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Sitbon, O. et al. Effects of the dual endothelin receptor antagonist bosentan in patients with pulmonary arterial hypertension: a 1-year follow-up study. Chest 124, 247–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Sitbon, O. et al. Survival in patients with class III idiopathic pulmonary arterial hypertension treated with first line oral bosentan compared with an historical cohort of patients started on intravenous epoprostenol. Thorax 60, 1025–1030 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McLaughlin, V. V. et al. Survival with first-line bosentan in patients with primary pulmonary hypertension. Eur. Respir. J. 25, 244–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Galiè, N. et al. Treatment of patients with mildly symptomatic pulmonary arterial hypertension with bosentan (EARLY study): a double-blind, randomised controlled trial. Lancet 371, 2093–2100 (2008).

    Article  PubMed  Google Scholar 

  48. Galiè, N. et al. Bosentan therapy in patients with Eisenmenger syndrome: a multicenter, double-blind, randomized, placebo-controlled study. Circulation 114, 48–54 (2006).

    Article  PubMed  CAS  Google Scholar 

  49. Rosenzweig, E. et al. Effects of long-term bosentan in children with pulmonary arterial hypertension. J. Am. Coll. Cardiol. 46, 697–704 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Sitbon, O. et al. Bosentan for the treatment of human immunodeficiency virus-associated pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 170, 1212–1217 (2004).

    Article  PubMed  Google Scholar 

  51. Degano, B. et al. Long-term effects of bosentan in patients with HIV-associated pulmonary arterial hypertension. Eur. Respir. J. 33, 92–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Hoeper, M. et al. Bosentan therapy for portopulmonary hypertension. Eur. Respir. J. 25, 502–508 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Hoeper, M. M. et al. Experience with inhaled iloprost and bosentan in portopulmonary hypertension. Eur. Respir. J. 30, 1096–1102 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Opitz, C. F., Ewert, R., Kirch, W. & Pittrow, D. Inhibition of endothelin receptors in the treatment of pulmonary arterial hypertension: does selectivity matter? Eur. Heart J. 29, 1936–1948 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu, C. et al. Discovery of TBC11251, a potent, long acting, orally active endothelin receptor-A selective antagonist. J. Med. Chem. 40, 1690–1697 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Galiè, N. et al. Ambrisentan therapy for pulmonary arterial hypertension. J. Am. Coll. Cardiol. 46, 529–535 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. Galiè, N. et al. Ambrisentan for the treatment of pulmonary arterial hypertension: results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation 117, 3010–3019 (2008).

    Article  PubMed  CAS  Google Scholar 

  58. McGoon, M. D. et al. Ambrisentan therapy in patients with pulmonary arterial hypertension who discontinued bosentan or sitaxsentan due to liver function test abnormalities. Chest 135, 122–129 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Oudiz, R. J. et al. Long-term ambrisentan therapy for the treatment of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 54, 1971–1981 (2009).

    Article  PubMed  Google Scholar 

  60. Barst, R. J. et al. Sitaxsentan therapy for pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 169, 441–447 (2004).

    Article  PubMed  Google Scholar 

  61. Barst, R. J. et al. Treatment of pulmonary arterial hypertension with the selective endothelin-A receptor antagonist sitaxsentan. J. Am. Coll. Cardiol. 47, 2049–2056 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Lavelle, A. et al. Sitaxentan-induced hepatic failure in two patients with pulmonary arterial hypertension. Eur. Respir. J. 34, 770–771 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Lee, W. T. et al. Sitaxentan-related acute liver failure in a patient with pulmonary arterial hypertension. Eur. Respir. J. 37, 472–474 (2011).

    Article  PubMed  Google Scholar 

  64. Iglarz, M. et al. Pharmacology of macitentan, an orally active tissue-targeting dual endothelin receptor antagonist. J. Pharmacol. Exp. Ther. 327, 736–745 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. US NIH. ClinicalTrials.gov. Study of ACT-064992 on morbidity and mortality in patients with symptomatic pulmonary arterial hypertension [online], (2010).

  66. Giaid, A. & Saleh, D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 333, 214–221 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Galiè, N. et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med. 353, 2148–2157 (2005).

    Article  PubMed  Google Scholar 

  68. Rubin, L. J. et al. Long-term treatment with sildenafil citrate in pulmonary arterial hypertension: SUPER-2. Chest doi:10.1378/chest.10-0969.

    Article  CAS  PubMed  Google Scholar 

  69. Galiè, N. et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation 119, 2894–2903 (2009).

    Article  PubMed  CAS  Google Scholar 

  70. Barst, R. J. et al. Tadalafil monotherapy and as add-on to background bosentan in patients with pulmonary arterial hypertension. J. Heart Lung Transplant. 30, 632–643 (2011).

    Article  PubMed  Google Scholar 

  71. O'Callaghan, D. S. & Gaine, S. P. Combination therapy and new types of agents for pulmonary arterial hypertension. Clin. Chest Med. 28, 169–185 (2007).

    Article  PubMed  Google Scholar 

  72. Hoeper, M. M., Markevych, I., Spiekerkoetter, E., Welte, T. & Niedermeyer, J. Goal-oriented treatment and combination therapy for pulmonary arterial hypertension. Eur. Respir. J. 26, 858–863 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Galiè, N., Palazzini, M. & Manes, A. Pulmonary arterial hypertension: from the kingdom of the near-dead to multiple clinical trial meta-analyses. Eur. Heart J. 31, 2080–2086 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. US NIH. ClinicalTrials.gov. A study of first-line ambrisentan and tadalafil combination therapy in subjects with pulmonary arterial hypertension (AMBITION) [online], (2011).

  75. Asaki, T., Hamamoto, T., Sugiyama, Y., Kuwano, K. & Kuwabara, K. Structure-activity studies on diphenylpyrazine derivatives: a novel class of prostacyclin receptor agonists. Bioorganic Med. Chem. 15, 6692–6704 (2007).

    Article  CAS  Google Scholar 

  76. Kuwano, K., Hashino, A., Noda, K., Kosugi, K. & Kuwabara, K. A long-acting and highly selective prostacyclin receptor agonist prodrug, 2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide (NS-304), ameliorates rat pulmonary hypertension with unique relaxant responses of its active form, {4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid (MRE-269), on rat pulmonary artery. J. Pharmacol. Exp. Ther. 326, 691–699 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Kuwano, K. et al. 2-[4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy]-N-(methylsulfonyl)acetamide (NS-304), an orally available and long-acting prostacyclin receptor agonist prodrug. J. Pharmacol. Exp. Ther. 322, 1181–1188 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Simonneau, G. et al. Efficacy, safety and tolerability of ACT-293987, a novel oral, non-prostanoid, prostaglandin I2 (IP) receptor agonist: results from a phase IIa study in pulmonary arterial hypertension (PAH) [abstract A2515]. Am. J. Respir. Crit. Care Med. 181, B16 (2010).

    Google Scholar 

  79. US NIH. ClinicalTrials.gov. ACT-293987 in pulmonary arterial hypertension [online], (2011).

  80. Murthy, K. S., Zhang, K. M., Jin, J. G., Grider, J. R. & Makhlouf, G. M. VIP-mediated G protein-coupled Ca2+ influx activates a constitutive NOS in dispersed gastric muscle cells. Am. J. Physiol. 265, G660–G671 (1993).

    CAS  PubMed  Google Scholar 

  81. Said, S. I. The vasoactive intestinal peptide gene is a key modulator of pulmonary vascular remodeling and inflammation. Ann. N. Y. Acad. Sci. 1144, 148–153 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Said, S. I. et al. Moderate pulmonary arterial hypertension in male mice lacking the vasoactive intestinal peptide gene. Circulation 115, 1260–1268 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Petkov, V. et al. Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J. Clin. Invest. 111, 1339–1346 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Leuchte, H. H. et al. Inhalation of vasoactive intestinal peptide in pulmonary hypertension. Eur. Respir. J. 32, 1289–1294 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Galiè, N. et al. Effects of inhaled aviptadil (vasoactive intestinal peptide) in patients with pulmonary arterial hypertension (PAH) [abstract A2516]. Am. J. Respir. Crit. Care Med. 181, B16 (2010).

    Google Scholar 

  86. Ghofrani, H. A. & Grimminger, F. Soluble guanylate cyclase stimulation: an emerging option in pulmonary hypertension therapy. Eur. Respir. Rev. 18, 35–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Evgenov, O. V. et al. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat. Rev. Drug Discov. 5, 755–768 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schermuly, R. T. et al. Expression and function of soluble guanylate cyclase in pulmonary arterial hypertension. Eur. Respir. J. 32, 881–891 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Ghofrani, H. A. et al. Riociguat for chronic thromboembolic pulmonary hypertension and pulmonary arterial hypertension: a phase II study. Eur. Respir. J. 36, 792–799 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. US NIH. ClinicalTrials.gov. A study to evaluate efficacy and safety of oral BAY63–2521 in patients with pulmonary arterial hypertension (PAH) [online], (2011).

  91. Barst, R. J. PDGF signaling in pulmonary arterial hypertension. J. Clin. Invest. 115, 2691–2694 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Perros, F. et al. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 178, 81–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Schermuly, R. T. et al. Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Invest. 115, 2811–2821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ghofrani, H. A., Seeger, W. & Grimminger, F. Imatinib for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 353, 1412–1413 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Patterson, K. C., Weissmann, A., Ahmadi, T. & Farber, H. W. Imatinib mesylate in the treatment of refractory idiopathic pulmonary arterial hypertension. Ann. Intern. Med. 145, 152–153 (2006).

    Article  PubMed  Google Scholar 

  96. Souza, R., Sitbon, O., Parent, F., Simonneau, G. & Humbert, M. Long-term imatinib treatment in pulmonary arterial hypertension. Thorax 61, 736 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ghofrani, H. A. et al. Imatinib in pulmonary arterial hypertension patients with inadequate response to established therapy. Am. J. Respir. Crit. Care Med. 182, 1171–1177 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. US NIH. ClinicalTrials.gov. Imatinib in pulmonary arterial hypertension (IMPRES) [online], (2010).

  99. Moreno-Vinasco, L. et al. Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol. Genomics 33, 278–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Gomberg-Maitland, M. et al. A dosing/cross-development study of the multikinase inhibitor sorafenib in patients with pulmonary arterial hypertension. Clin. Pharmacol. Ther. 87, 303–310 (2009).

    Article  PubMed  CAS  Google Scholar 

  101. Kerkela, R. et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat. Med. 12, 908–916 (2006).

    Article  PubMed  CAS  Google Scholar 

  102. Chen, M. H., Kerkela, R. & Force, T. Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation 118, 84–95 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. US NIH. ClinicalTrials.gov. Efficacy, safety, tolerability and pharmacokinetics (PK) of nilotinib (AMN107) in pulmonary arterial hypertension [online], (2010).

  104. Abe, K. et al. Tyrosine kinase inhibitors are potent acute pulmonary vasodilators in rats. Am. J. Respir. Cell Mol. Biol. doi:10.1165/rcmb.2010–0371OC.

  105. Dempsie, Y. & MacLean, M. R. Pulmonary hypertension: therapeutic targets within the serotonin system. Br. J. Pharmacol. 155, 455–462 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hervé, P. et al. Increased plasma serotonin in primary pulmonary hypertension. Am. J. Med. 99, 249–254 (1995).

    Article  PubMed  Google Scholar 

  107. Abenhaim, L. et al. Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group. N. Engl. J. Med. 335, 609–616 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Souza, R. et al. Pulmonary arterial hypertension associated with fenfluramine exposure: report of 109 cases. Eur. Respir. J. 31, 343–348 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Dumitrascu, R. et al. Terguride ameliorates monocrotaline-induced pulmonary hypertension in rats. Eur. Respir. J. 37, 1104–1118 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Porvasnik, S. L. et al. PRX-08066, a novel 5-hydroxytryptamine receptor 2B antagonist, reduces monocrotaline-induced pulmonary arterial hypertension and right ventricular hypertrophy in rats. J. Pharmacol. Exp. Ther. 334, 364–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Mouchaers, K. T. et al. Fasudil reduces monocrotaline-induced pulmonary arterial hypertension: comparison with bosentan and sildenafil. Eur. Respir. J. 36, 800–807 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Fujita, H. et al. Acute vasodilator effects of inhaled fasudil, a specific Rho-kinase inhibitor, in patients with pulmonary arterial hypertension. Heart Vessels 25, 144–149 (2010).

    Article  PubMed  Google Scholar 

  113. Fukumoto, Y. et al. Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart 91, 391–392 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Guilluy, C. et al. RhoA and Rho kinase activation in human pulmonary hypertension: role of 5-HT signaling. Am. J. Resp. Crit. Care Med. 179, 1151–1158 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Eddahibi, S. et al. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J. Clin. Invest. 108, 1141–1150 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kato, T., Hashikabe, H., Iwata, C., Akimoto, K. & Hattori, Y. Statin blocks Rho/Rho-kinase signaling and disrupts the actin cytoskeleton: relationship to enhancement of LPS-mediated nitric oxide synthesis in vascular smooth muscle cells. Biochim. Biophys. Acta 1689, 267–272 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Nishimura, T. et al. Simvastatin rescues rats from fatal pulmonary hypertension by inducing apoptosis of neointimal smooth muscle cells. Circulation 108, 1640–1645 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Sun, X. & Ku, D. D. Rosuvastatin provides pleiotropic protection against pulmonary hypertension, right ventricular hypertrophy, and coronary endothelial dysfunction in rats. Am. J. Physiol. Heart Circ. Physiol. 294, H801–H809 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Wilkins, M. R. et al. Simvastatin as a treatment for pulmonary hypertension trial. Am. J. Respir. Crit. Care Med. 181, 1106–1113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kawut, S. M. et al. Randomized clinical trial of aspirin and simvastatin for pulmonary arterial hypertension: ASA-STAT. Circulation 123, 2985–2993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhao, Y. D. et al. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ. Res. 96, 442–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Wang, X. X. et al. Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J. Am. Coll. Cardiol. 49, 1566–1571 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. US NIH. ClinicalTrials.gov. Pulmonary hypertension: assessment of cell therapy (PHACeT) [online], (2010).

  124. Mereles, D. et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation 114, 1482–1489 (2006).

    Article  PubMed  Google Scholar 

  125. Provencher, S. et al. Deleterious effects of beta-blockers on exercise capacity and hemodynamics in patients with portopulmonary hypertension. Gastroenterology 130, 120–126 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Mohr, L. C. Hypoxia during air travel in adults with pulmonary disease. Am. J. Med. Sci. 335, 71–79 (2008).

    Article  PubMed  Google Scholar 

  127. Chaouat, A., Weitzenblum, E. & Higenbottam, T. The role of thrombosis in severe pulmonary hypertension. Eur. Respir. J. 9, 356–363 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Fuster, V. et al. Primary pulmonary hypertension: natural history and the importance of thrombosis. Circulation 70, 580–587 (1984).

    Article  CAS  PubMed  Google Scholar 

  129. Frank, H. et al. The effect of anticoagulant therapy in primary and anorectic drug-induced pulmonary hypertension. Chest 112, 714–721 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Bonnin, M. et al. Severe pulmonary hypertension during pregnancy: mode of delivery and anesthetic management of 15 consecutive cases. Anesthesiology 102, 1133–1137 (2005).

    Article  PubMed  Google Scholar 

  131. Sitbon, O. et al. Long-term response to calcium-channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111, 3105–3111 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Chapelier, A. et al. Comparative outcome of heart-lung and lung transplantation for pulmonary hypertension. J. Thorac. Cardiovasc. Surg. 106, 299–307 (1993).

    Article  CAS  PubMed  Google Scholar 

  133. Kurzyna, M. et al. Atrial septostomy in treatment of end-stage right heart failure in patients with pulmonary hypertension. Chest 131, 977–983 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D. S. O'Callaghan, L. Savale, and M. Humbert researched data for the article. D. S. O'Callaghan, L. Savale, D. Montani, X. Jaïs, G. Simonneau, and M. Humbert contributed to the discussion of content. The article was written by D. S. O'Callaghan. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Marc Humbert.

Ethics declarations

Competing interests

L. Savale has received honoraria from Actelion, Novartis, and Pfizer. D. Montani has received honoraria from Actelion, Bayer–Schering, GlaxoSmithKline, Lilly, Novartis, Pfizer, and United Therapeutics and has received research support from Actelion and Novartis. X. Jaïs has received honoraria from Actelion, GlaxoSmithKline, Lilly, and Pfizer. O. Sitbon has acted as a consultant for and has received honoraria and research support from Actelion, GlaxoSmithKline, Lilly, Pfizer, and United Therapeutics. He has also received honoraria and research support from Bayer–Schering and research support from Novartis. Both G. Simonneau and M. Humbert have acted as consultants for and have received honoraria and research support from Actelion, Bayer–Schering, GlaxoSmithKline, Lilly, Novartis, Pfizer, and United Therapeutics. D. S. O'Callaghan declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Callaghan, D., Savale, L., Montani, D. et al. Treatment of pulmonary arterial hypertension with targeted therapies. Nat Rev Cardiol 8, 526–538 (2011). https://doi.org/10.1038/nrcardio.2011.104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing