Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Validating survivin as a cancer therapeutic target

Key Points

  • In mammalian cells, apoptosis is modulated by two protein families — the BCL2 and inhibitor of apoptosis (IAP) families.

  • Survivin is a unique member of the IAP family. It is associated with several subcellular compartments and its expression is regulated by many signalling pathways.

  • The survivin pathway interfaces with both the cell-death machinery and mechanisms of cell-cycle progression and microtubule stability.

  • Survivin expression is undetectable in most normal adult tissues, but is overexpressed in virtually every human tumour that has been studied. Several mechanisms have been proposed to account for this overexpression, one of which is loss of wild-type p53.

  • Is survivin a rational target for cancer therapy? Using molecular antagonists of survivin is one approach for enhancing cell death — specifically of tumours — and could be used in combination with conventional chemotherapy- or radiation-based treatments.

Abstract

Acquisition of the ability to evade cellular suicide, or apoptosis, is one of the master switches that contributes to cellular transformation and, ultimately, to invasive cancer. Much has been learned about the molecular organization of apoptotic pathways and their regulators, but the identification and validation of translational targets for apoptosis-based cancer therapy has posed a great challenge. Survivin is an attractive candidate for cancer therapy, so what is its potential applicability in the clinic?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Apoptotic pathways and their regulators.
Figure 2: Structure–function of survivin proteins generated by alternative splicing.
Figure 3: Differential regulation of survivin expression in cell-cycle-dependent and -independent pathways.
Figure 4: Expression of survivin in tumours is independent of the mitotic index.
Figure 5: Current approaches for survivin targeting in cancer therapy.

Similar content being viewed by others

References

  1. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Meier, P., Finch, A. & Evan, G. I. Apoptosis in development. Nature 407, 796–801 (2000).

    CAS  PubMed  Google Scholar 

  3. Goyal, L. Cell death inhibition: keeping caspases in check. Cell 104, 805–808 (2001).

    CAS  PubMed  Google Scholar 

  4. Krammer, P. H. CD95's deadly mission in the immune system. Nature 407, 789–795 (2000).

    CAS  PubMed  Google Scholar 

  5. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933 (2001).

    CAS  PubMed  Google Scholar 

  6. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    CAS  PubMed  Google Scholar 

  7. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    CAS  PubMed  Google Scholar 

  8. Cory, S. & Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nature Rev. Cancer 2, 647–656 (2002).

    CAS  Google Scholar 

  9. Zong, W. X., Lindsten, T., Ross, A. J., MacGregor, G. R. & Thompson, C. B. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 15, 1481–1486 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Salvesen, G. S. & Duckett, C. S. IAP proteins: blocking the road to death's door. Nature Rev. Mol. Cell Biol. 3, 401–410 (2002).

    CAS  Google Scholar 

  11. Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459–470 (2002).

    CAS  PubMed  Google Scholar 

  12. Birkey Reffey, S., Wurthner, J. U., Parks, W. T., Roberts, A. B. & Duckett, C. S. X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-β signaling. J. Biol. Chem. 276, 26542–26549 (2001).

    CAS  PubMed  Google Scholar 

  13. Sanna, M. G. et al. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol. Cell. Biol. 22, 1754–1766 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Uren, A. G. et al. Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proc. Natl Acad. Sci. USA 96, 10170–10175 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, F., Flanary, P. L., Altieri, D. C. & Dohlman, H. G. Cell division regulation by BIR1, a member of the inhibitor of apoptosis family in yeast. J. Biol. Chem. 275, 6707–6711 (2000).

    CAS  PubMed  Google Scholar 

  16. Morishita, J. et al. Bir1/Cut17 moving from chromosome to spindle upon the loss of cohesion is required for condensation, spindle elongation and repair. Genes Cells 6, 743–763 (2001).

    CAS  PubMed  Google Scholar 

  17. Speliotes, E. K., Uren, A., Vaux, D. & Horvitz, H. R. The survivin-like C. elegans BIR-1 protein acts with the Aurora-like kinase AIR-2 to affect chromosomes and the spindle midzone. Mol. Cell 6, 211–223 (2000).

    CAS  PubMed  Google Scholar 

  18. Fraser, A. G., James, C., Evan, G. I. & Hengartner, M. O. Caenorhabditis elegans inhibitor of apoptosis protein (IAP) homologue BIR-1 plays a conserved role in cytokinesis. Curr. Biol. 9, 292–301 (1999). First demonstration that ablation of an IAP gene in the nematode results in lethal defects of cell division without affecting programmed cell death.

    CAS  PubMed  Google Scholar 

  19. Harlin, H., Reffey, S. B., Duckett, C. S., Lindsten, T. & Thompson, C. B. Characterization of XIAP-deficient mice. Mol. Cell. Biol. 21, 3604–3608 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, H. et al. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J. Biol. Chem. 275, 26661–26664 (2000).

    CAS  PubMed  Google Scholar 

  21. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).

    CAS  PubMed  Google Scholar 

  22. Martin, S. J. Destabilizing influences in apoptosis: sowing the seeds of IAP destruction. Cell 109, 807–809 (2002).

    Google Scholar 

  23. Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl Acad. Sci. USA 98, 8662–8667 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ambrosini, G., Adida, C. & Altieri, D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med. 3, 917–921 (1997).

    CAS  PubMed  Google Scholar 

  25. Li, F. et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580–584 (1998). Demonstration that survivin interfaces between the microtubule control of cell division and the preservation of an anti-apoptotic environment in dividing cells.

    CAS  PubMed  Google Scholar 

  26. Li, F. & Altieri, D. C. The cancer antiapoptosis mouse survivin gene: characterization of locus and transcriptional requirements of basal and cell cycle-dependent expression. Cancer Res. 59, 3143–3151 (1999).

    CAS  PubMed  Google Scholar 

  27. Mahotka, C., Wenzel, M., Springer, E., Gabbert, H. E. & Gerharz, C. D. Survivin-ΔEx3 and survivin-2B: two novel splice variants of the apoptosis inhibitor survivin with different antiapoptotic properties. Cancer Res. 59, 6097–6102 (1999). Identification of two alternatively spliced forms of survivin that are potentially divergent from the wild-type protein for subcellular localization and the ability to counteract apoptosis.

    CAS  PubMed  Google Scholar 

  28. Rodriguez, J. A., Span, S. W., Ferreira, C. G., Kruyt, F. A. & Giaccone, G. CRM1-mediated nuclear export determines the cytoplasmic localization of the antiapoptotic protein Survivin. Exp. Cell Res. 275, 44–53 (2002).

    CAS  PubMed  Google Scholar 

  29. Wang, H. W., Sharp, T. V., Koumi, A., Koentges, G. & Boshoff, C. Characterization of an anti-apoptotic glycoprotein encoded by Kaposi's sarcoma-associated herpesvirus which resembles a spliced variant of human survivin. EMBO J. 21, 2602–2615 (2002). A new twist in the survivin cytoprotection pathway: localization of a herpes simplex virus homologue of alternatively spliced survivin-ΔEx3 to mitochondria and physical interaction with caspase-3.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Verdecia, M. A. et al. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nature Struct. Biol. 7, 602–608 (2000).

    CAS  PubMed  Google Scholar 

  31. Chantalat, L. et al. Crystal structure of human survivin reveals a bow tie-shaped dimer with two unusual alpha-helical extensions. Mol. Cell 6, 183–189 (2000).

    CAS  PubMed  Google Scholar 

  32. Muchmore, S. W. et al. Crystal structure and mutagenic analysis of the inhibitor-of-apoptosis protein survivin. Mol. Cell 6, 173–182 (2000).

    CAS  PubMed  Google Scholar 

  33. Badie, C., Itzhaki, J. E., Sullivan, M. J., Carpenter, A. J. & Porter, A. C. Repression of CDK1 and other genes with CDE and CHR promoter elements during DNA damage-induced G(2)/M arrest in human cells. Mol. Cell. Biol. 20, 2358–2366 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kobayashi, K., Hatano, M., Otaki, M., Ogasawara, T. & Tokuhisa, T. Expression of a murine homologue of the inhibitor of apoptosis protein is related to cell proliferation. Proc. Natl Acad. Sci. USA 96, 1457–1462 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, F. & Altieri, D. C. Transcriptional analysis of human survivin gene expression. Biochem. J. 344, 305–311 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao, J., Tenev, T., Martins, L. M., Downward, J. & Lemoine, N. R. The ubiquitin-proteasome pathway regulates survivin degradation in a cell cycle-dependent manner. J. Cell Sci. 113, 4363–4371 (2000).

    CAS  PubMed  Google Scholar 

  37. O'Connor, D. S., Wall, N. R., Porter, A. C. & Altieri, D. C. A p34(cdc2) survival checkpoint in cancer. Cancer Cell 2, 43–54 (2002). Rational targeting of survivin to maximize the antitumour effect of taxane-based chemotherapy in cancer treatment.

    CAS  PubMed  Google Scholar 

  38. Li, F. et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nature Cell Biol. 1, 461–466 (1999).

    CAS  PubMed  Google Scholar 

  39. Jiang, X. et al. Participation of Survivin in mitotic and apoptotic activities of normal and tumor-derived cells. J. Cell Biochem. 83, 342–354 (2001).

    CAS  PubMed  Google Scholar 

  40. Skoufias, D. A., Mollinari, C., Lacroix, F. B. & Margolis, R. L. Human survivin is a kinetochore-associated passenger protein. J. Cell Biol. 151, 1575–1582 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fortugno, P. et al. Survivin exists in immunochemically distinct subcellular pools and is involved in spindle microtubule function. J. Cell Sci. 115, 575–585 (2002). Reconciles earlier discrepant findings on the subcellular localization of survivin to multiple compartments of the mitotic apparatus.

    CAS  PubMed  Google Scholar 

  42. Wheatley, S. P., Carvalho, A., Vagnarelli, P. & Earnshaw, W. C. INCENP is required for proper targeting of Survivin to the centromeres and the anaphase spindle during mitosis. Curr. Biol. 11, 886–890 (2001).

    CAS  PubMed  Google Scholar 

  43. Uren, A. G. et al. Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr. Biol. 10, 1319–1328 (2000).

    CAS  PubMed  Google Scholar 

  44. Fukuda, S. & Pelus, L. M. Regulation of the inhibitor-of-apoptosis family member survivin in normal cord blood and bone marrow CD34(+) cells by hematopoietic growth factors: implication of survivin expression in normal hematopoiesis. Blood 98, 2091–2100 (2001).

    CAS  PubMed  Google Scholar 

  45. Fukuda, S., Foster, R. G., Porter, S. B. & Pelus, L. M. The antiapoptosis protein survivin is associated with cell cycle entry of normal cord blood CD34(+) cells and modulates cell cycle and proliferation of mouse hematopoietic progenitor cells. Blood 100, 2463–2471 (2002). Demonstration that survivin gene expression can occur independently of mitotic progression in interphase bone-marrow progenitor cells.

    CAS  PubMed  Google Scholar 

  46. Mahboubi, K. et al. Interleukin-11 up-regulates survivin expression in endothelial cells through a signal transducer and activator of transcription-3 pathway. Lab. Invest. 81, 327–334 (2001).

    CAS  PubMed  Google Scholar 

  47. Papapetropoulos, A. et al. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J. Biol. Chem. 275, 9102–9105 (2000).

    CAS  PubMed  Google Scholar 

  48. Aoki, Y., Feldman, G. M. & Tosato, G. Inhibition of STAT3 signaling induces apoptosis and decreases Survivin expression in primary effusion lymphoma. Blood 3 Oct 2002 [epub ahead of print].

  49. Silke, J. & Vaux, D. L. Two kinds of BIR-containing protein-inhibitors of apoptosis, or required for mitosis. J. Cell Sci. 114, 1821–1827 (2001).

    CAS  PubMed  Google Scholar 

  50. Adams, R. R., Carmena, M. & Earnshaw, W. C. Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol. 11, 49–54 (2001).

    CAS  PubMed  Google Scholar 

  51. Tamm, I. et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 58, 5315–5320 (1998).

    CAS  PubMed  Google Scholar 

  52. Suzuki, A. et al. Survivin initiates procaspase 3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death. Oncogene 19, 1346–1353 (2000).

    CAS  PubMed  Google Scholar 

  53. Islam, A. et al. High expression of Survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene 19, 617–623 (2000).

    CAS  PubMed  Google Scholar 

  54. Kasof, G. M. & Gomes, B. C. Livin, a novel inhibitor-of-apoptosis (IAP) family member. J. Biol. Chem. 276, 3238–3246 (2000).

    PubMed  Google Scholar 

  55. Mirza, A. et al. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene 21, 2613–2622 (2002).

    CAS  PubMed  Google Scholar 

  56. Hoffman, W. H., Biade, S., Zilfou, J. T., Chen, J. & Murphy, M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J. Biol. Chem. 277, 3247–3257 (2001). A potential molecular basis for the widespread differential expression of survivin in embryologically disparate tumours following loss of wild-type p53.

    PubMed  Google Scholar 

  57. Zaffaroni, N. et al. Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cell Mol. Life Sci. 59, 1406–1412 (2002).

    CAS  PubMed  Google Scholar 

  58. Grossman, D. et al. Transgenic expression of survivin in keratinocytes counteracts UVB-induced apoptosis and cooperates with loss of p53. J. Clin. Invest. 108, 991–999 (2001). A functional link between survivin and loss of p53 in ablating apoptosis in a transgenic mouse model.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Conway, E. M. et al. Deficiency of survivin in transgenic mice exacerbates Fas-induced apoptosis via mitochondrial pathways. Gastroenterology 123, 619–631 (2002).

    CAS  PubMed  Google Scholar 

  60. Hikita, S. et al. Overexpression of TIAP/m–survivin in thymocytes enhances cell proliferation. Mol. Immunol. 39, 289–298 (2002).

    CAS  PubMed  Google Scholar 

  61. Ambrosini, G., Adida, C., Sirugo, G. & Altieri, D. C. Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J. Biol. Chem. 273, 11177–11182 (1998).

    CAS  PubMed  Google Scholar 

  62. Grossman, D., McNiff, J. M., Li, F. & Altieri, D. C. Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J. Invest. Dermatol. 113, 1076–1081 (1999).

    CAS  PubMed  Google Scholar 

  63. Chen, J. et al. Down-regulation of survivin by antisense oligonucleotides increases apoptosis, inhibits cytokinesis and anchorage-independent growth. Neoplasia 2, 235–241 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Olie, R. A. et al. A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res. 60, 2805–2809 (2000).

    CAS  PubMed  Google Scholar 

  65. Shankar, S. L. et al. Survivin inhibition induces human neural tumor cell death through caspase-independent and -dependent pathways. J. Neurochem. 79, 426–436 (2001).

    CAS  PubMed  Google Scholar 

  66. Kanwar, J. R., Shen, W. P., Kanwar, R. K., Berg, R. W. & Krissansen, G. W. Effects of survivin antagonists on growth of established tumors and b7-1 immunogene therapy. J. Natl Cancer Inst. 93, 1541–1552 (2001). Establishes proof of concept that targeting survivin in vivo cooperates with anticancer regimens and facilitates tumour eradication.

    CAS  PubMed  Google Scholar 

  67. Pennati, M. et al. Ribozyme-mediated attenuation of survivin expression sensitizes human melanoma cells to cisplatin-induced apoptosis. J. Clin. Invest. 109, 285–286 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou, M. et al. DNA damage induces a novel p53-survivin signaling pathway regulating cell cycle and apoptosis in acute lymphoblastic leukemia cells. J. Pharmacol. Exp. Ther. 303, 124–131 (2002).

    CAS  PubMed  Google Scholar 

  69. Jones, G., Jones, D., Zhou, L., Steller, H. & Chu, Y. Deterin, a new inhibitor of apoptosis from Drosophila melanogaster. J. Biol. Chem. 275, 22157–22165 (2000).

    CAS  PubMed  Google Scholar 

  70. Conway, E. M. et al. Three differentially expressed survivin cDNA variants encode proteins with distinct antiapoptotic functions. Blood 95, 1435–1442 (2000).

    CAS  PubMed  Google Scholar 

  71. Shin, S. et al. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and-7. Biochemistry 40, 1117–1123 (2001).

    CAS  PubMed  Google Scholar 

  72. O'Connor, D. S. et al. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc. Natl Acad. Sci. USA 97, 13103–13107 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mesri, M., Wall, N. R., Li, J., Kim, R. W. & Altieri, D. C. Cancer gene therapy using a survivin mutant adenovirus. J. Clin. Invest. 108, 981–990 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kallio, M. J., Nieminen, M. & Eriksson, J. E. Human inhibitor of apoptosis protein (IAP) survivin participates in regulation of chromosome segregation and mitotic exit. FASEB J. 15, 2721–2723 (2001).

    CAS  PubMed  Google Scholar 

  75. Bolton, M. A. et al. Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation. Mol. Biol. Cell 13, 3064–3077 (2002). A survivin homologue in Xenopus laevis controls the enzymatic activity of Aurora kinase, a multifunctional regulator of mitosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Giodini, A. et al. Regulation of microtubule stability and mitotic progression by survivin. Cancer Res. 62, 2462–2467 (2002).

    CAS  PubMed  Google Scholar 

  77. Tran, J. et al. A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc. Natl Acad. Sci. USA 99, 4349–4354 (2002). Demonstration that survivin can reduce the effectiveness of anti-angiogenic therapy in cancer treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Adida, C. et al. Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am. J. Pathol. 152, 43–49 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Carter, B. Z., Milella, M., Altieri, D. C. & Andreeff, M. Cytokine-regulated expression of survivin in myeloid leukemia. Blood 97, 2784–2790 (2001).

    CAS  PubMed  Google Scholar 

  80. Gianani, R. et al. Expression of survivin in normal, hyperplastic, and neoplastic colonic mucosa. Hum. Pathol. 32, 119–125 (2001).

    CAS  PubMed  Google Scholar 

  81. Zhang, T. et al. Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res. 61, 8664–8667 (2001).

    CAS  PubMed  Google Scholar 

  82. Monzo, M. et al. A novel anti-apoptosis gene: re-expression of survivin messenger RNA as a prognosis marker in non-small-cell lung cancers. J. Clin. Oncol. 17, 2100–2104 (1999).

    CAS  PubMed  Google Scholar 

  83. Tanaka, K. et al. Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin. Cancer Res. 6, 127–134 (2000).

    CAS  PubMed  Google Scholar 

  84. Kawasaki, H. et al. Inhibition of apoptosis by survivin predicts shorter survival rates in colorectal cancer. Cancer Res. 58, 5071–5074 (1998).

    CAS  PubMed  Google Scholar 

  85. Lu, C. D., Altieri, D. C. & Tanigawa, N. Expression of a novel antiapoptosis gene, survivin, correlated with tumor cell apoptosis and p53 accumulation in gastric carcinomas. Cancer Res. 58, 1808–1812 (1998).

    CAS  PubMed  Google Scholar 

  86. Kato, J. et al. Expression of survivin in esophageal cancer: correlation with the prognosis and response to chemotherapy. Int. J. Cancer 95, 92–95 (2001).

    CAS  PubMed  Google Scholar 

  87. Satoh, K. et al. Expression of survivin is correlated with cancer cell apoptosis and is involved in the development of human pancreatic duct cell tumors. Cancer 92, 271–278 (2001).

    CAS  PubMed  Google Scholar 

  88. Ikeguchi, M., Ueta, T., Yamane, Y., Hirooka, Y. & Kaibara, N. Inducible nitric oxide synthase and survivin messenger RNA expression in hepatocellular carcinoma. Clin. Cancer Res. 8, 3131–3136 (2002).

    CAS  PubMed  Google Scholar 

  89. Saitoh, Y., Yaginuma, Y. & Ishikawa, M. Analysis of Bcl-2, Bax and Survivin genes in uterine cancer. Int. J. Oncol. 15, 137–141 (1999).

    CAS  PubMed  Google Scholar 

  90. Yoshida, H., Ishiko, O., Sumi, T., Matsumoto, Y. & Ogita, S. Survivin, Bcl-2 and matrix metalloproteinase-2 enhance progression of clear cell- and serous-type ovarian carcinomas. Int. J. Oncol. 19, 537–542 (2001).

    CAS  PubMed  Google Scholar 

  91. Garcia, J. F. et al. Hodgkin's and Reed-Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue-microarrays. Blood 12 Sept 2002 [epub ahead of print].

  92. Adida, C. et al. Prognostic significance of survivin expression in diffuse large B-cell lymphomas. Blood 96, 1921–1925 (2000).

    CAS  PubMed  Google Scholar 

  93. Kuttler, F. et al. Relationship between expression of genes involved in cell cycle control and apoptosis in diffuse large B cell lymphoma: a preferential survivin–cyclin B link. Leukemia 16, 726–735 (2002).

    CAS  PubMed  Google Scholar 

  94. Adida, C. et al. Expression and prognostic significance of survivin in de novo acute myeloid leukaemia. Br. J. Haematol. 111, 196–203 (2000).

    CAS  PubMed  Google Scholar 

  95. Kamihira, S. et al. Aberrant expression of caspase cascade regulatory genes in adult T-cell leukaemia: survivin is an important determinant for prognosis. Br. J. Haematol. 114, 63–69 (2001).

    CAS  PubMed  Google Scholar 

  96. Adida, C., Berrebi, D., Peuchmaur, M., Reyes-Mugica, M. & Altieri, D. C. Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet 351, 882–883 (1998).

    CAS  PubMed  Google Scholar 

  97. Koch, C. A. et al. Survivin: a novel neuroendocrine marker for pheochromocytoma. Eur. J. Endocrinol. 146, 381–388 (2002).

    CAS  PubMed  Google Scholar 

  98. Wurl, P. et al. Co-expression of survivin and TERT and risk of tumour-related death in patients with soft-tissue sarcoma. Lancet 359, 943–945 (2002).

    CAS  PubMed  Google Scholar 

  99. Chakravarti, A. et al. Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J. Clin. Oncol. 20, 1063–1068 (2002).

    CAS  PubMed  Google Scholar 

  100. Hirohashi, Y. et al. An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survivin. Clin. Cancer Res. 8, 1731–1739 (2002).

    CAS  PubMed  Google Scholar 

  101. Bao, R. et al. Activation of cancer-specific gene expression by the survivin promoter. J. Natl Cancer Inst. 94, 522–528 (2002). Strong evidence that the differential expression of survivin in cancer versus normal tissues is largely controlled at the level of gene transcription.

    CAS  PubMed  Google Scholar 

  102. Hattori, M., Sakamoto, H., Satoh, K. & Yamamoto, T. DNA demethylase is expressed in ovarian cancers and the expression correlates with demethylation of CpG sites in the promoter region of c-erbB-2 and survivin genes. Cancer Lett. 169, 155–164 (2001).

    CAS  PubMed  Google Scholar 

  103. Kappler, M. et al. Increased survivin transcript levels: an independent negative predictor of survival in soft tissue sarcoma patients. Int. J. Cancer 95, 360–363 (2001).

    CAS  PubMed  Google Scholar 

  104. Sarela, A. I., Macadam, R. C., Farmery, S. M., Markham, A. F. & Guillou, P. J. Expression of the antiapoptosis gene, survivin, predicts death from recurrent colorectal carcinoma. Gut 46, 645–650 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ikeguchi, M. & Kaibara, N. Survivin messenger RNA expression is a good prognostic biomarker for oesophageal carcinoma. Br. J. Cancer 87, 883–887 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Swana, H. S., Grossman, D., Anthony, J. N., Weiss, R. M. & Altieri, D. C. Tumor content of the antiapoptosis molecule survivin and recurrence of bladder cancer. N. Engl. J. Med. 341, 452–453 (1999).

    CAS  PubMed  Google Scholar 

  107. Andersen, M. H. & thor, S. P. Survivin: a universal tumor antigen. Histol. Histopathol. 17, 669–675 (2002).

    CAS  PubMed  Google Scholar 

  108. Rohayem, J. et al. Antibody response to the tumor-associated inhibitor of apoptosis protein survivin in cancer patients. Cancer Res. 60, 1815–1817 (2000).

    CAS  PubMed  Google Scholar 

  109. Yagihashi, A. et al. Detection of anti-survivin antibody in gastrointestinal cancer patients. Clin. Chem. 47, 1729–1731 (2001).

    CAS  PubMed  Google Scholar 

  110. Schmitz, M. et al. Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res. 60, 4845–4849 (2000). First demonstration that survivin can elicit a tumour-specific immune response of potential therapeutic significance for cancer vaccination strategies.

    CAS  PubMed  Google Scholar 

  111. Andersen, M. H., Pedersen, L. O., Becker, J. C. & Straten, P. T. Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res. 61, 869–872 (2001).

    CAS  PubMed  Google Scholar 

  112. Yamamoto, T., Manome, Y., Nakamura, M. & Tanigawa, N. Downregulation of survivin expression by induction of the effector cell protease receptor-1 reduces tumor growth potential and results in an increased sensitivity to anticancer agents in human colon cancer. Eur. J. Cancer 38, 2316–2324 (2002).

    CAS  PubMed  Google Scholar 

  113. Grossman, D., Kim, P. J., Schechner, J. S. & Altieri, D. C. Inhibition of melanoma tumor growth in vivo by survivin targeting. Proc. Natl Acad. Sci. USA 98, 635–640 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sausville, E. A. Complexities in the development of cyclin-dependent kinase inhibitor drugs. Trends Mol. Med. 8, S32–S37 (2002).

    CAS  PubMed  Google Scholar 

  115. Schwartz, G. K. et al. Phase I study of the cyclin-dependent kinase inhibitor flavopiridol in combination with paclitaxel in patients with advanced solid tumors. J. Clin. Oncol. 20, 2157–2170 (2002).

    CAS  PubMed  Google Scholar 

  116. Tao, W. et al. Human homologue of the Drosophila melanogaster lats tumour suppressor modulates CDC2 activity. Nature Genet. 21, 177–181 (1999).

    CAS  PubMed  Google Scholar 

  117. Theile, M. et al. A defined chromosome 6q fragment (at D6S310) harbors a putative tumor suppressor gene for breast cancer. Oncogene 13, 677–685 (1996).

    CAS  PubMed  Google Scholar 

  118. Xia, H. et al. LATS1 tumor suppressor regulates G2/M transition and apoptosis. Oncogene 21, 1233–1241 (2002).

    CAS  PubMed  Google Scholar 

  119. Itzhaki, J. E., Gilbert, C. S. & Porter, A. C. G. Construction by gene targeting in human cells of a 'conditional' CDC2 mutant that rereplicates its DNA. Nature Genet. 15, 258–265 (1997).

    CAS  PubMed  Google Scholar 

  120. Ongkeko, W., Ferguson, D. J. P., Harris, A. L. & Norbury, C. Inactivation of Cdc2 increases the level of apoptosis induced by DNA damage. J. Cell Sci. 108, 2897–2904 (1995).

    CAS  PubMed  Google Scholar 

  121. Gray, N. S. et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281, 533–538 (1998).

    CAS  PubMed  Google Scholar 

  122. Yu, D. et al. Overexpression of ErbB2 blocks taxol-induced apoptosis by upregulation of p21Cip1, which inhibits p34Cdc2 kinase. Mol. Cell 2, 581–591 (1998).

    CAS  PubMed  Google Scholar 

  123. O'Connor, D. S. et al. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am. J. Pathol. 156, 393–398 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Tran, J. et al. Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem. Biophys. Res. Commun. 264, 781–788 (1999).

    CAS  PubMed  Google Scholar 

  125. Mesri, M. et al. Suppression of vascular endothelial growth factor-mediated endothelial cell protection by survivin targeting. Am. J. Pathol. 158, 1757–1765 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Nicholson, D. W. From bench to clinic with apoptosis-based therapeutic agents. Nature 407, 810–816 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health grants. The expert editorial assistance of K. Lougie is greatly appreciated.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

BAD

BAK

BAX

BCL2

BCL-XL

BID

β-catenin

CDC2

cyclin B1

cyclin D

DIAP1

FAS

c-IAP1

c-IAP2

LATS1

OMI

p53

SMAC

STAT3

survivin

TNF-α

VEGF

WAF1

XIAP

Glossary

RING FINGER

A protein domain that consists of two loops held together at their base by cysteine and histidine residues that complex two zinc ions. Many ring fingers function in protein degradation by facilitating protein ubiquitylation.

TGF-β

A ligand that activates members of a superfamily of cell-surface receptors that include the bone morphogenic protein (BMP) receptors; after ligand activation, the signal is transduced, mainly through the SMAD family of transcription factors and co-activators.

JNK

(c-JUN amino-terminal kinase). A stress-induced protein kinase that has been implicated in cell death or cell viability, depending on the cellular context, and is activated by XIAP.

Ki67

A monoclonal antibody that marks the late S phase of the cell cycle. This is frequently used to mark proliferating cells in tissues or cell suspensions.

PI3K/AKT PATHWAY

The phosphatidylinositol 3-kinase (PI3K) family of enzymes are activated in response to a wide variety of stimuli and catalyse the phophorylation of inositol lipids at the D-3 position of the inositol ring. These phosphoinositides act as second messengers; a primary target is the serine/threonine kinase AKT (protein kinase B). Activated AKT phosphorylates several cellular targets, including proteins that are involved in cell survival, proliferation and migration.

STAT3

A member of the STAT (signal transducer and activator of transcription) family of transcription factors. STATs are activated through phosphorylation by Janus kinases and have an important role in cytokine-receptor signalling.

ANTISENSE TECHNOLOGY

This uses an oligonucleotide that is complementary to a portion of mRNA. It binds to the mRNA and arrests translation by physical blockade of ribosomal machinery and/or by activation of endogenous RNases.

RIBOZYMES

RNA molecules that function like enzymes and exert a catalytic activity. Ribozymes can be designed to cleave specific mRNAs and thereby inhibit protein synthesis.

DOMINANT-NEGATIVE MUTANTS

A non-functional mutant protein that competes with the normal, non-mutated protein, thereby blocking its activity.

TRANSCRIPTOME

mRNA transcripts identified by serial analysis of gene expression (SAGE) that are selectively expressed in human tumours but undetectable or found at very low levels in normal tissues that are isolated from the same organs.

WNT–β-CATENIN SIGNALLING PATHWAY

A developmental pathway of key importance for patterning and specification of body axes in embryogenesis via activation of genes that are mediated by the T-cell factor (TCF) group of transcription factors. Deregulated signalling through Wnt/TCF/β-catenin has been implicated in a variety of human tumours, most notably colon cancer, potentially by deregulating the balance between cell proliferation/cell differentiation in stem-cell compartments.

APC

Germ-line mutations of the adenomatous polyposis coli (APC) tumour-suppressor gene cause familial adenomatous polyposis — a genetic disorder that is characterized by an increased predisposition to colorectal cancer.

CYTOLYTIC RESPONSE

Destruction of cellular targets by T lymphocytes via a perforin–granzyme mechanism or FAS–FAS-ligand interaction, leading to the dissolution of membrane integrity.

HLA CLASS I-RESTRICTED CYTOLYTIC T CELLS

Antigen-specific T cells recognizing peptides presented through the HLA class I major histocompatibility complex are capable of lysing compatible target cells. These cells might belong to the CD4 or CD8 subset and are believed to act in immune surveillance against tumours.

LOSS OF HETEROZYGOSITY

(LOH). In cells that carry a mutated allele of a tumour-suppressor gene, the gene becomes fully inactivated when the cell loses a large part of the chromosome carrying the wild-type allele. Regions with high frequency of LOH are believed to harbour tumour-suppressor genes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altieri, D. Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3, 46–54 (2003). https://doi.org/10.1038/nrc968

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc968

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing