Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The blood peptidome: a higher dimension of information content for cancer biomarker discovery

Abstract

The low-molecular-weight range of the circulatory proteome is termed the 'peptidome', and could be a rich source of cancer-specific diagnostic information because it is a 'recording' of the cellular and extracellular enzymatic events that take place at the level of the cancer-tissue microenvironment. This new information archive seems to mainly exist in vivo, bound to high-abundance proteins such as albumin.Measuring panels of peptidome markers might be more sensitive and specific than conventional biomarker approaches. We discuss the advantages and disadvantages of various methods for studying the peptidome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The peptidome hypothesis.
Figure 2: Peptidome biomarkers are defined by cleavage domains.
Figure 3: Immuno-mass spectrometry for biomarker fragments.

Similar content being viewed by others

References

  1. Diamandis, E. P. Point: proteomic patterns in biological fluids: do they represent the future of cancer diagnostics? Clin. Chem. 49 1272–1275 (2003).

    Article  CAS  Google Scholar 

  2. Diamandis, E. P. Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. J. Natl Cancer. Inst. 96, 353–356 (2004).

    Article  Google Scholar 

  3. Petricoin, E. F. et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577 (2002).

    Article  CAS  Google Scholar 

  4. Petricoin, E. F. et al. Serum proteomic patterns for detection of prostate cancer. J. Natl Cancer Inst. 94, 1576–1578 (2002).

    Article  CAS  Google Scholar 

  5. Petricoin, E. F., Fishman, D. A., Conrads, T. P., Veenstra, T. D. & Liotta, L. A. Lessons from Kitty Hawk: from feasibility to routine clinical use for the field of proteomic pattern diagnostics. Proteomics 4, 2357–2360 (2004).

    Article  CAS  Google Scholar 

  6. Liotta, L. A., Ferrari, M. & Petricoin E. F. Clinical proteomics: written in blood. Nature 425, 905 (2005).

    Article  Google Scholar 

  7. Tirumalai, R. S. et al. Characterization of the low molecular weight human serum proteome. Mol. Cell Proteomics 2, 1096–1103 (2003).

    Article  CAS  Google Scholar 

  8. Lowenthal, M. S. et al. Analysis of albumin-associated peptides and proteins from ovarian cancer patients. Clin. Chem. 51, 1933–1945 (2005).

    Article  CAS  Google Scholar 

  9. Zhou, M. et al. An investigation into the human serum 'interactome'. Electrophoresis 25, 1289–1298 (2004).

    Article  CAS  Google Scholar 

  10. Lopez, M. F. et al. High-resolution serum proteomic profiling of Alzheimer disease samples reveals disease-specific, carrier-protein-bound mass signatures. Clin. Chem. 51, 1946–1954 (2005).

    Article  CAS  Google Scholar 

  11. Brouwers, F. M. et al. Low molecular weight proteomic information distinguishes metastatic from benign pheochromocytoma. Endocr. Relat. Cancer 12, 263–272 (2005).

    Article  CAS  Google Scholar 

  12. Ornstein, D. K. et al. Serum proteomic profiling can discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 ng/ml. J. Urol. 172, 1302–1305 (2004).

    Article  CAS  Google Scholar 

  13. Villanueva, J. et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J. Clin. Invest. 116, 271–284 (2006).

    Article  CAS  Google Scholar 

  14. Adam, B. L. et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distin-guishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 62, 3609–3614 (2002).

    CAS  PubMed  Google Scholar 

  15. Li, J., Zhang, Z., Rosenzweig, J., Wang, Y. Y. & Chan, D. W. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin. Chem. 48, 1296–1304 (2002).

    CAS  PubMed  Google Scholar 

  16. Zhukov, T. A., Johanson, R. A., Cantor, A. B., Clark, R. A. & Tockman, M. S. Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry. Lung Cancer 40. 267–279 (2003).

    Article  Google Scholar 

  17. Ebert, M. P. et al. Identification of gastric cancer patients by serum protein profiling. J. Proteome Res. 3, 1261–1266 (2004).

    Article  CAS  Google Scholar 

  18. Villanueva, J. et al. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal. Chem. 76, 1560–1570 (2004).

    Article  CAS  Google Scholar 

  19. Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 4, 437–450 (2003).

    Article  CAS  Google Scholar 

  20. Stone, J. H. et al. Wegener's Granulomatosis Etanercept Trial Research Group. A serum proteomic approach to gauging the state of remission in Wegener's granuloma-tosis. Arthritis Rheum. 52, 902–910 (2005).

    Article  Google Scholar 

  21. Zhang, Z. et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res. 64, 5882–5890 (2004).

    Article  CAS  Google Scholar 

  22. Traub, F. et al. Peptidomic analysis of breast cancer reveals a putative surrogate marker for estrogen receptor-negative carcinomas. Lab Invest. 86, 246–253 (2006).

    Article  CAS  Google Scholar 

  23. Schulz-Knappe, P., Schrader, M. & Zucht, H. D. The peptidomics concept. Comb. Chem. High Throughput Screen 8, 697–704 (2005).

    Article  CAS  Google Scholar 

  24. Diamandis, E. P. Peptidomics for cancer diagnosis: present and future. J. Proteome Res. 9, 2079–2082 (2006).

    Article  Google Scholar 

  25. Liotta, L. A. & Kohn E. D., The microenvironment of the tumour-host interface. Nature 411, 375–379 (2001).

    Article  CAS  Google Scholar 

  26. Culp, W. D. et al. Proteomic analysis of tumor establish-ment and growth in the B16-F10 mouse melanoma model. J. Proteome Res. 2, 1332–1343 (2006).

    Article  Google Scholar 

  27. Jodele, S., Blavier, L., Yoon, J. M. & Declerck, Y. A. Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev. 25, 35–43 (2006).

    Article  CAS  Google Scholar 

  28. Hagendoorn, J. et al. Onset of abnormal blood and lymphatic vessel function and interstitial hypertension in early stages of carcinogenesis. Cancer Res. 66, 3360–3364 (2006).

    Article  CAS  Google Scholar 

  29. Skates, S. J. et al. Preoperative sensitivity and specificity for early-stage ovarian cancer when combining cancer antigen CA-125II, CA 15–3, CA 72–4, and macrophage colony-stimulating factor using mixtures of multivariate normal distributions. J. Clin. Oncol. 22, 4059–4066 (2004).

    Article  Google Scholar 

  30. Mehta, A. I. et al. Biomarker amplification by serum carrier protein binding. Dis. Markers 19, 1–10 (2003–2004).

    Article  CAS  Google Scholar 

  31. Liotta, L. A. & Petricoin, E. F. Serum peptidome for cancer detection: spinning biologic trash into diagnostic gold. J. Clin. Invest. 116, 26–30 (2006).

    Article  CAS  Google Scholar 

  32. Zheng, X., Baker, H. & Hancock, W. S. Analysis of the low molecular weight serum peptidome using ultra-filtration and a hybrid ion trap-Fourier transform mass spectrometer. J. Chromatogr. A. 1120, 173–184 (2006).

    Article  CAS  Google Scholar 

  33. Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell Proteomics 1, 845–867 (2002).

    Article  CAS  Google Scholar 

  34. Deutsch, E. W. et al. Human plasma peptideatlas. Proteomics. 5, 3497–3500 (2005).

    Article  CAS  Google Scholar 

  35. Rai, A. J. et al. Analysis of Human Proteome Organization Plasma Proteome Project (HUPO PPP) reference specimens using surface enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry: multi-institution correlation of spectra and identification of biomarkers. Proteomics 5, 3467–3474 (2005).

    Article  CAS  Google Scholar 

  36. Hortin, G. L. The MALDI TOF mass spectrometric view of the plasma proteome and peptidome. Clin. Chem. 52, 1223–1237 (2006).

    Article  CAS  Google Scholar 

  37. Omenn, G. S. et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5, 3226–3245 (2005).

    Article  CAS  Google Scholar 

  38. Shen, Y. et al. Characterization of the human blood plasma proteome. Proteomics 5, 4034–4045 (2005).

    Article  CAS  Google Scholar 

  39. Wasinger, V. C. et al. Two-dimensional liquid chromatography/tandem mass spectrometry analysis of Gradiflow fractionated native human plasma. Proteomics 5, 3397–3401 (2005).

    Article  CAS  Google Scholar 

  40. Yang, Z., Hancock, W. S., Chew, T. R. & Bonilla, L. A study of glycoproteins in human serum and plasma reference standards (HUPO) using multilectin affinity chromatography coupled with RPLC-MS/MS. Proteomics 5, 3353–3366 (2005).

    Article  CAS  Google Scholar 

  41. Drake, R. R. et al. Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Mol. Cell Proteomics 5, 1957–1967 (2006).

    Article  CAS  Google Scholar 

  42. Paweletz, C. P. et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989 (2001).

    Article  CAS  Google Scholar 

  43. Miller, J. C. et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3, 56–63 (2003).

    Article  CAS  Google Scholar 

  44. Gorelik, E. et al. Multiplexed immunobead-based cytokine profiling for early detection of ovarian cancer. Cancer Epidemiol. Biomarkers Prev. 14, 981–987 (2005).

    Article  CAS  Google Scholar 

  45. Nedelkov, D. & Nelson, R. W. Surface plasmon resonance mass spectrometry: recent progress and outlooks. Trends Biotechnol. 21, 301–305 (2003).

    Article  CAS  Google Scholar 

  46. Clinical and Laboratory Standards Institute. Standards development. Clinical and Laboratory Standards Institute [online]

  47. Chen, W. et al. Insulin-like growth factor (IGF)-I/IGF-binding protein-3 complex: therapeutic efficacy and mechanism of protection against type 1 diabetes. Endocrinology 145, 627–638 (2004).

    Article  CAS  Google Scholar 

  48. Napoli, J. L., Posch, K. P., Fiorella, P. D. & Boerman, M. H. Physiological occurrence, biosynthesis and metabolism of retinoic acid: evidence for roles of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) in the pathway of retinoic acid homeostasis. Biomed. Pharmacother. 45, 131–143 (1991).

    Article  CAS  Google Scholar 

  49. Gaspari, M. et al. Nanoporous surfaces as harvesting agents for mass spectrometric analysis of peptides in human plasma. J. Proteome Res. 5, 1261–1266 (2006).

    Article  CAS  Google Scholar 

  50. Terracciano, R. et al. Selective binding and enrichment for low-molecular weight biomarker molecules in human plasma after exposure to nanoporous silica particles. Proteomics 6, 3243–3250 (2006).

    Article  CAS  Google Scholar 

  51. Govorukhina, N. I. et al. Analysis of human serum by liquid chromatography-mass spectrometry: Improved sample preparation and data analysis. J. Chromatogr. A. 1120, 142–150 (2006).

    Article  CAS  Google Scholar 

  52. Yocum, A. K., Yu, K., Oe, T. & Blair, I. A. Effect of immunoaffinity depletion of human serum during proteomic investigations. J. Proteome Res. 4, 1722–1731 (2005).

    Article  CAS  Google Scholar 

  53. Martosella, J., Zolotarjova, N., Liu, H., Nicol, G. & Boyes, B. E. Reversed-phase high-performance liquid chromatographic prefractionation of immunodepleted human serum proteins to enhance mass spectrometry identification of lower-abundant proteins. J. Proteome Res. 4, 1522–1537 (2005).

    Article  CAS  Google Scholar 

  54. Echan, L. A., Tang, H. Y., Ali-Khan, N., Lee, K. & Speicher, D. W. Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics 5, 3292–3303 (2005)

    Article  CAS  Google Scholar 

  55. Bloomston, M. et al. Fibrinogen gamma overexpression in pancreatic cancer identified by large-scale proteomic analysis of serum samples. Cancer Res. 66, 2592–2599 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the significant and ongoing support of George Mason University, Fairfax, Virginia USA, and the Instituto Superiore di Sanità in Rome, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel F. Petricoin.

Ethics declarations

Competing interests

E.F.P. and L.A.L. are co-inventors on US government and University-assigned patents that cover technologies and discoveries related to the work herein. As inventors, they are entitled to receive royalties under United States law.

Related links

Related links

DATABASES

National Cancer Institute

bladder cancer

breast cancer

ovarian cancer

prostate cancer

FURTHER INFORMATION

Emanuel Petricoin's and Lance Liotta's homepage

College of American Pathologists

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petricoin, E., Belluco, C., Araujo, R. et al. The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat Rev Cancer 6, 961–967 (2006). https://doi.org/10.1038/nrc2011

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2011

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing