Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hyaluronan: from extracellular glue to pericellular cue

Key Points

  • Hyaluronan is a large, negatively charged polysaccharide that participates in defining the properties of pericellular matrices and in transducing signals in proliferating and migrating cells.

  • Hyaluronan and hyaluronidase are overproduced in many types of human tumour.

  • Experimentally increased hyaluronan production stimulates tumour growth and metastasis in xenograft models, whereas antagonists of hyaluronan synthesis or of the interactions between hyaluranon and its receptors suppress these phenomena.

  • Interactions between hyaluronan and tumour cell-surface receptors influence many intracellular signalling pathways, notably ERBB2 activity and anti-apoptotic pathways.

  • Increased production of hyaluronan induces drug resistance, whereas hyaluronan antagonists suppress multidrug resistance.

  • Hyaluronan promotes cell invasiveness and epithelial–mesenchymal transition.

  • Breakdown products of hyaluronan stimulate angiogenesis.

Abstract

Hyaluronan is an extracellular and cell-surface-associated polysaccharide that is traditionally regarded as a biological 'goo' that participates in lubricating joints or holding together gel-like connective tissues. Although these are common physiological roles of hyaluronan in adult organisms, hyaluronan also functions as a microenvironmental cue that co-regulates cell behaviour during embryonic development, healing processes, inflammation and tumour development. Recent work highlights a key role for interactions between hyaluronan and tumour cells in several aspects of malignancy and indicates the possibility of new therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hyaluronan interactions with the cell surface.
Figure 2: Perturbation of hyaluronan function.
Figure 3: Cooperative signalling by hyaluronan receptors and ERBB2.
Figure 4: Hyaluronan and drug resistance.

Similar content being viewed by others

References

  1. Weigel, P. H., Hascall, V. C. & Tammi, M. Hyaluronan synthases. J. Biol. Chem. 272, 13997–40000 (1997).

    CAS  PubMed  Google Scholar 

  2. Tammi, M. I., Day, A. J. & Turley, E. A. Hyaluronan and homeostasis: a balancing act. J. Biol. Chem. 277, 4581–4584 (2002).

    CAS  PubMed  Google Scholar 

  3. Csoka, A. B., Frost, G. I. & Stern, R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 20, 499–508 (2001).

    CAS  PubMed  Google Scholar 

  4. Balazs, E. A. & Denlinger, J. L. Clinical uses of hyaluronan. Ciba Found. Symp. 143, 265–280 (1989).

    CAS  PubMed  Google Scholar 

  5. Toole, B. P. Hyaluronan in morphogenesis. Semin. Cell. Dev. Biol. 12, 79–87 (2001).

    CAS  PubMed  Google Scholar 

  6. Kinzler, K. W. & Vogelstein, B. Landscaping the cancer terrain. Science 280, 1036–1037 (1998).

    CAS  PubMed  Google Scholar 

  7. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  8. Turley, E. A., Noble, P. W. & Bourguignon, L. Y. Signaling properties of hyaluronan receptors. J. Biol. Chem. 277, 4589–4592 (2002).

    CAS  PubMed  Google Scholar 

  9. Bissell, M. J. & Radisky, D. Putting tumours in context. Nature Rev. Cancer 1, 46–54 (2001).

    CAS  Google Scholar 

  10. Weaver, V. M. & Gilbert, P. Watch thy neighbor: cancer is a communal affair. J. Cell Sci. 117, 1287–1290 (2004).

    CAS  PubMed  Google Scholar 

  11. Knudson, W., Biswas, C., Li, X. Q., Nemec, R. E. & Toole, B. P. The role and regulation of tumour-associated hyaluronan. Ciba Found. Symp. 143, 150–159 (1989).

    CAS  PubMed  Google Scholar 

  12. Toole, B. P., Biswas, C. & Gross, J. Hyaluronate and invasiveness of the rabbit V2 carcinoma. Proc. Natl Acad. Sci. USA 76, 6299–6303 (1979). One of the earliest papers to show a relation between hyaluronan and invasive tumour growth. This and later papers (see also references 13–15) highlighted the stromal localization of hyaluronan and the effect of tumour–stroma interactions on hyaluronan production.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bertrand, P. et al. Hyaluronan (hyaluronic acid) and hyaluronectin in the extracellular matrix of human breast carcinomas: comparison between invasive and non-invasive areas. Int. J. Cancer 52, 1–6 (1992).

    CAS  PubMed  Google Scholar 

  14. Knudson, W., Biswas, C. & Toole, B. P. Interactions between human tumor cells and fibroblasts stimulate hyaluronate synthesis. Proc. Natl Acad. Sci. USA 81, 6767–6771 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Asplund, T., Versnel, M. A., Laurent, T. C. & Heldin, P. Human mesothelioma cells produce factors that stimulate the production of hyaluronan by mesothelial cells and fibroblasts. Cancer Res. 53, 388–392 (1993).

    CAS  PubMed  Google Scholar 

  16. Kimata, K. et al. Increased synthesis of hyaluronic acid by mouse mammary carcinoma cell variants with high metastatic potential. Cancer Res. 43, 1347–1354 (1983).

    CAS  PubMed  Google Scholar 

  17. Zhang, L., Underhill, C. B. & Chen, L. Hyaluronan on the surface of tumor cells is correlated with metastatic behavior. Cancer Res. 55, 428–433 (1995).

    CAS  PubMed  Google Scholar 

  18. Calabro, A., Oken, M. M., Hascall, V. C. & Masellis, A. M. Characterization of hyaluronan synthase expression and hyaluronan synthesis in bone marrow mesenchymal progenitor cells: predominant expression of HAS1 mRNA and up-regulated hyaluronan synthesis in bone marrow cells derived from multiple myeloma patients. Blood 100, 2578–2585 (2002).

    CAS  PubMed  Google Scholar 

  19. Toole, B. P., Wight, T. N. & Tammi, M. Hyaluronan–cell interactions in cancer and vascular disease. J. Biol. Chem. 277, 4593–4596 (2002).

    CAS  PubMed  Google Scholar 

  20. Anttila, M. A. et al. High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer Res. 60, 150–155 (2000).

    CAS  PubMed  Google Scholar 

  21. Auvinen, P. et al. Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading andpredicts survival. Am. J. Pathol. 156, 529–536 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Vignal, P., Meslet, M. R., Romeo, J. M. & Feuilhade, F. Sonographic morphology of infiltrating breast carcinoma: relationship with the shape of the hyaluronan extracellular matrix. J. Ultrasound Med. 21, 532–538 (2002).

    PubMed  Google Scholar 

  23. Pirinen, R. et al. Prognostic value of hyaluronan expression in non-small-cell lung cancer: increased stromal expression indicates unfavorable outcome in patients with adenocarcinoma. Int. J. Cancer 95, 12–17 (2001).

    CAS  PubMed  Google Scholar 

  24. Posey, J. T. et al. Evaluation of the prognostic potential of hyaluronic acid and hyaluronidase (HYAL1) for prostate cancer. Cancer Res. 63, 2638–2644 (2003).

    CAS  PubMed  Google Scholar 

  25. Lipponen, P. et al. High stromal hyaluronan level is associated with poor differentiation and metastasis in prostate cancer. Eur. J. Cancer 37, 849–856 (2001).

    CAS  PubMed  Google Scholar 

  26. Lokeshwar, V. B. et al. Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer. J. Biol. Chem. 276, 11922–11932 (2001).

    CAS  PubMed  Google Scholar 

  27. Ropponen, K. et al. Tumor cell-associated hyaluronan as an unfavorable prognostic factor in colorectal cancer. Cancer Res. 58, 342–347 (1998).

    CAS  PubMed  Google Scholar 

  28. Setala, L. P. et al. Hyaluronan expression in gastric cancer cells is associated with local and nodal spread and reduced survival rate. Br. J. Cancer 79, 1133–1138 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Masellis-Smith, A., Belch, A. R., Mant, M. J., Turley, E. A. & Pilarski, L. M. Hyaluronan-dependent motility of B cells and leukemic plasma cells in blood, but not of bone marrow plasma cells, in multiple myeloma: alternate use of receptor for hyaluronan-mediated motility (RHAMM) and CD44. Blood 87, 1891–1899 (1996).

    CAS  PubMed  Google Scholar 

  30. Crainie, M., Belch, A. R., Mant, M. J. & Pilarski, L. M. Overexpression of the receptor for hyaluronan-mediated motility (RHAMM) characterizes the malignant clone in multiple myeloma: identification of three distinct RHAMM variants. Blood 93, 1684–1696 (1999).

    CAS  PubMed  Google Scholar 

  31. Aziz, K. A., Till, K. J., Zuzel, M. & Cawley, J. C. Involvement of CD44–hyaluronan interaction in malignant cell homing and fibronectin synthesis in hairy cell leukemia. Blood 96, 3161–3167 (2000).

    CAS  PubMed  Google Scholar 

  32. Lokeshwar, V. B. et al. Bladder tumor markers for monitoring recurrence and screening comparison of hyaluronic acid-hyaluronidase and BTA-Stat tests. Cancer 95, 61–72 (2002).

    PubMed  Google Scholar 

  33. Delpech, B. et al. Serum hyaluronan (hyaluronic acid) in breast cancer patients. Int. J. Cancer 46, 388–390 (1990).

    CAS  PubMed  Google Scholar 

  34. Franzmann, E. J. et al. Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors. Int. J. Cancer 106, 438–445 (2003).

    CAS  PubMed  Google Scholar 

  35. Karjalainen, J. M. et al. Reduced level of CD44 and hyaluronan associated with unfavorable prognosis in clinical stage I cutaneous melanoma. Am. J. Pathol. 157, 957–965 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Karvinen, S., Kosma, V. M., Tammi, M. I. & Tammi, R. Hyaluronan, CD44 and versican in epidermal keratinocyte tumours. Br. J. Dermatol. 148, 86–94 (2003).

    CAS  PubMed  Google Scholar 

  37. Kosaki, R., Watanabe, K. & Yamaguchi, Y. Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity. Cancer Res. 59, 1141–1145 (1999). The first study showing that molecular manipulation of hyaluronan production affects tumour progression in an animal model. This study was followed by several important papers showing that upregulation of hyaluronan synthesis stimulates — and down-regulation inhibits — tumour progression (see also references 38–42).

    CAS  PubMed  Google Scholar 

  38. Itano, N., Sawai, T., Miyaishi, O. & Kimata, K. Relationship between hyaluronan production and metastatic potential of mouse mammary carcinoma cells. Cancer Res. 59, 2499–2504 (1999).

    CAS  PubMed  Google Scholar 

  39. Liu, N. et al. Hyaluronan synthase 3 overexpression promotes the growth of TSU prostate cancer cells. Cancer Res. 61, 5207–5214 (2001).

    CAS  PubMed  Google Scholar 

  40. Jacobson, A., Rahmanian, M., Rubin, K. & Heldin, P. Expression of hyaluronan synthase 2 or hyaluronidase 1 differentially affect the growth rate of transplantable colon carcinoma cell tumors. Int. J. Cancer 102, 212–219 (2002).

    CAS  PubMed  Google Scholar 

  41. Simpson, M. A., Wilson, C. M. & McCarthy, J. B. Inhibition of prostate tumor cell hyaluronan synthesis impairs subcutaneous growth and vascularization in immunocompromised mice. Am. J. Pathol. 161, 849–857 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Itano, N. et al. Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J. Biol. Chem. 279, 18679–18687 (2004).

    CAS  PubMed  Google Scholar 

  43. Shuster, S., Frost, G. I., Csoka, A. B., Formby, B. & Stern, R. Hyaluronidase reduces human breast cancer xenografts in SCID mice. Int. J. Cancer 102, 192–197 (2002).

    CAS  PubMed  Google Scholar 

  44. Frost, G. I. et al. HYAL1LUCA-1, a candidate tumor suppressor gene on chromosome 3p21. 3, is inactivated in head and neck squamous cell carcinomas by aberrant splicing of pre-mRNA. Oncogene 19, 870–877 (2000).

    CAS  PubMed  Google Scholar 

  45. Novak, U., Stylli, S. S., Kaye, A. H. & Lepperdinger, G. Hyaluronidase-2 overexpression accelerates intracerebral but not subcutaneous tumor formation of murine astrocytoma cells. Cancer Res. 59, 6246–6250 (1999).

    CAS  PubMed  Google Scholar 

  46. Patel, S. et al. Hyaluronidase gene profiling and role of hyal-1 overexpression in an orthotopic model of prostate cancer. Int. J. Cancer 97, 416–424 (2002).

    CAS  PubMed  Google Scholar 

  47. Enegd, B. et al. Overexpression of hyaluronan synthase-2 reduces the tumorigenic potential of glioma cells lacking hyaluronidase activity. Neurosurgery 50, 1311–1318 (2002).

    PubMed  Google Scholar 

  48. Hautmann, S. H. et al. Elevated tissue expression of hyaluronic acid and hyaluronidase validates the HA-HAase urine test for bladder cancer. J. Urol. 165, 2068–2074 (2001).

    CAS  PubMed  Google Scholar 

  49. Liu, D. et al. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proc. Natl Acad. Sci. USA 93, 7832–7837 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Delpech, B., Laquerriere, A., Maingonnat, C., Bertrand, P. & Freger, P. Hyaluronidase is more elevated in human brain metastases than in primary brain tumours. Anticancer Res. 22, 2423–2427 (2002).

    PubMed  Google Scholar 

  51. Day, A. J. & Prestwich, G. D. Hyaluronan-binding proteins: tying up the giant. J. Biol. Chem. 277, 4585–4588 (2002).

    CAS  PubMed  Google Scholar 

  52. Stamenkovic, I., Amiot, M., Pesando, J. M. & Seed, B. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell 56, 1057–1062 (1989).

    CAS  PubMed  Google Scholar 

  53. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B. & Seed, B. CD44 is the principal cell surface receptor for hyaluronate. Cell 61, 1303–1313 (1990). Brings together past research on cell-surface receptors for hyaluronan and lymphocyte homing factors, identifying CD44 as an important hyaluronan receptor and part of the 'link module' family of hyaladherins.

    CAS  PubMed  Google Scholar 

  54. Ponta, H., Sherman, L. & Herrlich, P. CD44: from adhesion molecules to signalling regulators. Nature Rev. Mol. Cell Biol. 4, 33–45 (2003).

    CAS  Google Scholar 

  55. Bourguignon, L. Y. CD44-mediated oncogenic signaling and cytoskeleton activation during mammary tumor progression. J. Mammary Gland Biol. Neoplasia 6, 287–297 (2001).

    CAS  PubMed  Google Scholar 

  56. Thorne, R. F., Legg, J. W. & Isacke, C. M. The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events. J. Cell Sci. 117, 373–380 (2004).

    CAS  PubMed  Google Scholar 

  57. Kaya, G., Rodriguez, I., Jorcano, J. L., Vassalli, P. & Stamenkovic, I. Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation. Genes Dev. 11, 996–1007 (1997).

    CAS  PubMed  Google Scholar 

  58. Teder, P. et al. Resolution of lung inflammation by CD44. Science 296, 155–158 (2002).

    CAS  PubMed  Google Scholar 

  59. Yang, B., Yang, B. L., Savani, R. C. & Turley, E. A. Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein. EMBO J. 13, 286–296 (1994). The first identification of the hyaluronan-binding motif B(X 7 )B. This group was the first to clone and identify a major hyaluronan receptor, namely RHAMM.

    PubMed  PubMed Central  Google Scholar 

  60. Hall, C. L., Lange, L. A., Prober, D. A., Zhang, S. & Turley, E. A. pp60c-src is required for cell locomotion regulated by the hyaluronan receptor RHAMM. Oncogene 13, 2213–2224 (1996).

    CAS  PubMed  Google Scholar 

  61. Zhang, S. et al. The hyaluronan receptor RHAMM regulates extracellular-regulated kinase. J. Biol. Chem. 273, 11342–11348 (1998).

    CAS  PubMed  Google Scholar 

  62. Frisch, S. M. & Screaton, R. A. Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555–562 (2001).

    CAS  PubMed  Google Scholar 

  63. Li, Y. & Heldin, P. Hyaluronan production increases the malignant properties of mesothelioma cells. Br. J. Cancer 85, 600–607 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zoltan-Jones, A., Huang, L., Ghatak, S. & Toole, B. P. Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J. Biol. Chem. 278, 45801–45810 (2003).

    CAS  PubMed  Google Scholar 

  65. Peterson, R. M., Yu, Q., Stamenkovic, I. & Toole, B. P. Perturbation of hyaluronan interactions by soluble CD44 inhibits growth of murine mammary carcinoma cells in ascites. Am. J. Pathol. 156, 2159–2167 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ghatak, S., Misra, S. & Toole, B. P. Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. J. Biol. Chem. 277, 38013–38020 (2002).

    CAS  PubMed  Google Scholar 

  67. Sohara, Y. et al. Hyaluronan activates cell motility of v-Src-transformed cells via Ras- mitogen-activated protein kinase and phosphoinositide 3-kinase-Akt in a tumor-specific manner. Mol. Biol. Cell 12, 1859–1868 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Itano, N. et al. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc. Natl Acad. Sci. USA 99, 3609–3614 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Misra, S., Ghatak, S., Zoltan-Jones, A. & Toole, B. P. Regulation of multi-drug resistance in cancer cells by hyaluronan. J. Biol. Chem. 278, 25285–25288 (2003). The first demonstration that hyaluronan and EMMPRIN are important for multidrug resistance.

    CAS  PubMed  Google Scholar 

  70. Hall, C. L., Wang, C., Lange, L. A. & Turley, E. A. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity. J. Cell Biol. 126, 575–588 (1994). One of a series of papers that show the importance of hyaluronan–RHAMM interactions in cell signalling (see also references 60, 61 and 79).

    CAS  PubMed  Google Scholar 

  71. Fujita, Y. et al. CD44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett. 528, 101–108 (2002).

    CAS  PubMed  Google Scholar 

  72. Bourguignon, L. Y., Singleton, P. A., Zhu, H. & Diedrich, F. Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes Grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression. J. Biol. Chem. 278, 29420–29434 (2003).

    CAS  PubMed  Google Scholar 

  73. Mabuchi, S. et al. Inhibition of phosphorylation of BAD and Raf-1 by Akt sensitizes human ovarian cancer cells to paclitaxel. J. Biol. Chem. 277, 33490–33500 (2002).

    CAS  PubMed  Google Scholar 

  74. Lesley, J., Hascall, V. C., Tammi, M. & Hyman, R. Hyaluronan binding by cell surface CD44. J. Biol. Chem. 275, 26967–26975 (2000).

    CAS  PubMed  Google Scholar 

  75. Bartolazzi, A., Peach, R., Aruffo, A. & Stamenkovic, I. Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J. Exp. Med. 180, 53–66 (1994). One of the first papers in a series showing that soluble hyaluronan-binding decoys inhibit several aspects of tumour progression. Together, these papers convincingly showed the importance of hyaluronan–tumour-cell interactions in tumour progression (see also references 65, 76–81, 139 and 140)

    CAS  PubMed  Google Scholar 

  76. Yu, Q., Toole, B. P. & Stamenkovic, I. Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function. J. Exp. Med. 186, 1985–1996 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ahrens, T. et al. Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid. Oncogene 20, 3399–3408 (2001).

    CAS  PubMed  Google Scholar 

  78. Liu, N. et al. Metastatin: a hyaluronan-binding complex from cartilage that inhibits tumor growth. Cancer Res. 61, 1022–1028 (2001).

    CAS  PubMed  Google Scholar 

  79. Mohapatra, S., Yang, X., Wright, J. A., Turley, E. A. & Greenberg, A. H. Soluble hyaluronan receptor RHAMM induces mitotic arrest by suppressing Cdc2 and cyclin B1 expression. J. Exp. Med. 183, 1663–1668 (1996).

    CAS  PubMed  Google Scholar 

  80. Ward, J. A., Huang, L., Guo, H., Ghatak, S. & Toole, B. P. Perturbation of hyaluronan interactions inhibits malignant properties of glioma cells. Am. J. Pathol. 162, 1403–1409 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, N. et al. Hyaluronan-binding peptide can inhibit tumor growth by interacting with Bcl-2. Int. J. Cancer 109, 49–57 (2004).

    CAS  PubMed  Google Scholar 

  82. Evanko, S. P. & Wight, T. N. Intracellular localization of hyaluronan in proliferating cells. J. Histochem. Cytochem. 47, 1331–1342 (1999).

    CAS  PubMed  Google Scholar 

  83. Collis, L. et al. Rapid hyaluronan uptake is associated with enhanced motility: implications for an intracellular mode of action. FEBS Lett. 440, 444–449 (1998).

    CAS  PubMed  Google Scholar 

  84. Assmann, V., Jenkinson, D., Marshall, J. F. & Hart, I. R. The intracellular hyaluronan receptor RHAMM/IHABP interacts with microtubules and actin filaments. J. Cell. Sci. 112, 3943–3954 (1999).

    CAS  PubMed  Google Scholar 

  85. Maxwell, C. A. et al. RHAMM is a centrosomal protein that interacts with dynein and maintains spindle pole stability. Mol. Biol. Cell 14, 2262–2276 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Grammatikakis, N. et al. A novel glycosaminoglycan-binding protein is the vertebrate homologue of the cell cycle control protein, Cdc37. J. Biol. Chem. 270, 16198–16205 (1995).

    CAS  PubMed  Google Scholar 

  87. Pratt, W. B., Silverstein, A. M. & Galigniana, M. D. A model for the cytoplasmic trafficking of signalling proteins involving the hsp90-binding immunophilins and p50cdc37. Cell Signal. 11, 839–351 (1999).

    CAS  PubMed  Google Scholar 

  88. Blagosklonny, M. V. Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 16, 455–462 (2002).

    CAS  PubMed  Google Scholar 

  89. Huang, L., Grammatikakis, N., Yoneda, M., Banerjee, S. D. & Toole, B. P. Molecular characterization of a novel intracellular hyaluronan-binding protein. J. Biol. Chem. 275, 29829–29839 (2000).

    CAS  PubMed  Google Scholar 

  90. Meenakshi, J., Anupama, Goswami, S. K. & Datta, K. Constitutive expression of hyaluronan binding protein 1 (HABP1/p32/gC1qR) in normal fibroblast cells perturbs its growth characteristics and induces apoptosis. Biochem. Biophys. Res. Commun. 300, 686–693 (2003).

    CAS  PubMed  Google Scholar 

  91. Citri, A., Skaria, K. B. & Yarden, Y. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp. Cell Res. 284, 54–65 (2003).

    CAS  PubMed  Google Scholar 

  92. Arteaga, C. L., Moulder, S. L. & Yakes, F. M. HER (erbB) tyrosine kinase inhibitors in the treatment of breast cancer. Semin. Oncol. 29, 4–10 (2002).

    CAS  PubMed  Google Scholar 

  93. Camenisch, T. D. et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Invest. 106, 349–360 (2000). Analysis of the Has2 –null mouse, showing that hyaluronan is essential for EMT during endocardial-cushion development. This and reference 94 also showed that hyaluronan is required for ERBB2/ERBB3 and RAS signalling during this transition.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Camenisch, T. D., Schroeder, J. A., Bradley, J., Klewer, S. E. & McDonald, J. A. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nature Med. 8, 850–855 (2002).

    CAS  PubMed  Google Scholar 

  95. Bourguignon, L. Y. et al. Hyaluronan promotes CD44v3–Vav2 interaction with Grb2–p185HER2 and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth. J. Biol. Chem. 276, 48679–48692 (2001). Showed that the hyaluronan–CD44 interaction promotes ERBB2 signalling. One of a series of papers from this laboratory showing the importance of this interaction in signal transduction (see also references 72, 98, 126, 144 and 181).

    CAS  PubMed  Google Scholar 

  96. Wobus, M. et al. CD44 associates with EGFR and erbB2 in metastasizing mammary carcinoma cells. Appl. Immunohistochem. Mol. Morphol. 10, 34–39 (2002).

    CAS  PubMed  Google Scholar 

  97. Tsatas, D., Kanagasundaram, V., Kaye, A. & Novak, U. EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines. J. Clin. Neurosci. 9, 282–288 (2002).

    CAS  PubMed  Google Scholar 

  98. Bourguignon, L. Y., Singleton, P. A., Zhu, H. & Zhou, B. Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor-β receptor I in metastatic breast tumor cells. J. Biol. Chem. 277, 39703–39712 (2002).

    CAS  PubMed  Google Scholar 

  99. Orian-Rousseau, V., Chen, L., Sleeman, J. P., Herrlich, P. & Ponta, H. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev. 16, 3074–3086 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kamikura, D. M., Khoury, H., Maroun, C., Naujokas, M. A. & Park, M. Enhanced transformation by a plasma membrane-associated met oncoprotein: activation of a phosphoinositide 3′-kinase-dependent autocrine loop involving hyaluronic acid and CD44. Mol. Cell. Biol. 20, 3482–3496 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer 2, 48–58 (2002).

    CAS  Google Scholar 

  102. Makin, G. & Dive, C. Apoptosis and cancer chemotherapy. Trends Cell Biol. 11, S22–S26 (2001).

    CAS  PubMed  Google Scholar 

  103. O'Gorman, D. M. & Cotter, T. G. Molecular signals in anti-apoptotic survival pathways. Leukemia 15, 21–34 (2001).

    CAS  PubMed  Google Scholar 

  104. Baumgartner, G., Gomar-Hoss, C., Sakr, L., Ulsperger, E. & Wogritsch, C. The impact of extracellular matrix on the chemoresistance of solid tumors — experimental and clinical results of hyaluronidase as additive to cytostatic chemotherapy. Cancer Lett. 131, 85–99 (1998).

    CAS  PubMed  Google Scholar 

  105. St. Croix, B. et al. Reversal by hyaluronidase of adhesion-dependent multicellular drug resistance in mammary carcinoma cells. J. Natl Cancer Inst. 88, 1285–1296 (1996).

    CAS  Google Scholar 

  106. St. Croix, B., Man, S. & Kerbel, R. S. Reversal of intrinsic and acquired forms of drug resistance by hyaluronidase treatment of solid tumors. Cancer Lett. 131, 35–44 (1998).

    CAS  PubMed  Google Scholar 

  107. Desoize, B. & Jardillier, J. Multicellular resistance: a paradigm for clinical resistance? Crit. Rev. Oncol. Hematol. 36, 193–207 (2000).

    CAS  PubMed  Google Scholar 

  108. Vincent, T., Molina, L., Espert, L. & Mechti, N. Hyaluronan, a major non-protein glycosaminoglycan component of the extracellular matrix in human bone marrow, mediates dexamethasone resistance in multiple myeloma. Br. J. Haematol. 121, 259–269 (2003).

    CAS  PubMed  Google Scholar 

  109. Underhill, C. B. & Toole, B. P. Receptors for hyaluronate on the surface of parent and virus- transformed cell lines: binding and aggregation studies. Exp. Cell Res. 131, 419–423 (1981).

    CAS  PubMed  Google Scholar 

  110. Misra, S., Ujhazy, P., Varticovski, L. & Arias, I. M. Phosphoinositide 3-kinase lipid products regulate ATP-dependent transport by sister of P-glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles. Proc. Natl Acad. Sci. USA 96, 5814–5819 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Prehm, P. & Schumacher, U. Inhibition of hyaluronan export from human fibroblasts by inhibitors of multidrug resistance transporters. Biochem. Pharmacol. (in the press).

  112. Biswas, C. et al. The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res. 55, 434–439 (1995).

    CAS  PubMed  Google Scholar 

  113. Marieb, E. et al. Emmprin promotes anchorage-independent growth in human mammary carcinoma cells by stimulating hyaluronan production. Cancer Res. 64, 1229–1232 (2004).

    CAS  PubMed  Google Scholar 

  114. Toole, B. P. Emmprin (CD147), a cell surface regulator of matrix metalloproteinase production and function. Curr. Top. Dev. Biol. 54, 371–389 (2003).

    CAS  PubMed  Google Scholar 

  115. Yang, J. M. et al. Overexpression of extracellular matrix metalloproteinase inducer in multidrug resistant cancer cells. Mol. Cancer Res. 1, 420–427 (2003).

    CAS  PubMed  Google Scholar 

  116. Zucker, S. et al. Tumorigenic potential of extracellular matrix metalloproteinase inducer (EMMPRIN). Am. J. Path. 158, 1921–1928 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Klein, C. A. et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nature Biotechnol. 20, 387–392 (2002).

    CAS  Google Scholar 

  118. Harada, N. et al. Introduction of antisense CD44S cDNA down-regulates expression of overall CD44 isoforms and inhibits tumor growth and metastasis in highly metastatic colon carcinoma cells. Int. J. Cancer 91, 67–75 (2001).

    CAS  PubMed  Google Scholar 

  119. Weber, G. F. et al. Absence of the CD44 gene prevents sarcoma metastasis. Cancer Res. 62, 2281–2286 (2002).

    CAS  PubMed  Google Scholar 

  120. Sleeman, J. P. et al. Hyaluronate-independent metastatic behavior of CD44 variant-expressing pancreatic carcinoma cells. Cancer Res. 56, 3134–3141 (1996).

    CAS  PubMed  Google Scholar 

  121. Gao, A. C., Lou, W., Sleeman, J. P. & Isaacs, J. T. Metastasis suppression by the standard CD44 isoform does not require the binding of prostate cancer cells to hyaluronate. Cancer Res. 58, 2350–2352 (1998).

    CAS  PubMed  Google Scholar 

  122. Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).

    CAS  Google Scholar 

  123. Simpson, M. A. et al. Manipulation of hyaluronan synthase expression in prostate adenocarcinoma cells alters pericellular matrix retention and adhesion to bone marrow endothelial cells. J. Biol. Chem. 277, 10050–10057 (2002).

    CAS  PubMed  Google Scholar 

  124. Lokeshwar, V. B. & Selzer, M. G. Differences in hyaluronic acid-mediated functions and signaling in arterial, microvessel, and vein-derived human endothelial cells. J. Biol. Chem. 275, 27641–27649 (2000).

    CAS  PubMed  Google Scholar 

  125. Savani, R. C. et al. Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J. Biol. Chem. 276, 36770–36778 (2001).

    CAS  PubMed  Google Scholar 

  126. Singleton, P. A. & Bourguignon, L. Y. CD44v10 interaction with Rho-kinase (ROK) activates inositol 1,4,5-triphosphate (IP3) receptor-mediated Ca2+ signaling during hyaluronan (HA)-induced endothelial cell migration. Cell Motil. Cytoskeleton 53, 293–316 (2002).

    CAS  PubMed  Google Scholar 

  127. Williams, C. S. et al. Absence of lymphangiogenesis and intratumoural lymph vessels in human metastatic breast cancer. J. Pathol. 200, 195–206 (2003).

    CAS  PubMed  Google Scholar 

  128. Evanko, S. P., Angello, J. C. & Wight, T. N. Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 19, 1004–1013 (1999).

    CAS  PubMed  Google Scholar 

  129. Hayen, W., Goebeler, M., Kumar, S., Riessen, R. & Nehls, V. Hyaluronan stimulates tumor cell migration by modulating the fibrin fiber architecture. J. Cell Sci. 112, 2241–2251 (1999).

    CAS  PubMed  Google Scholar 

  130. Koochekpour, S., Pilkington, G. J. & Merzak, A. Hyaluronic acid/CD44H interaction induces cell detachment and stimulates migration and invasion of human glioma cells in vitro. Int. J. Cancer 63, 450–454 (1995).

    CAS  PubMed  Google Scholar 

  131. Okada, H., Yoshida, J., Sokabe, M., Wakabayashi, T. & Hagiwara, M. Suppression of CD44 expression decreases migration and invasion of human glioma cells. Int. J. Cancer 66, 255–260 (1996).

    CAS  PubMed  Google Scholar 

  132. Monaghan, M. et al. Epidermal growth factor up-regulates CD44-dependent astrocytoma invasion in vitro. J. Pathol. 192, 519–525 (2000).

    CAS  PubMed  Google Scholar 

  133. Akiyama, Y. et al. Hyaluronate receptors mediating glioma cell migration and proliferation. J. Neurooncol. 53, 115–127 (2001).

    CAS  PubMed  Google Scholar 

  134. Chambers, A. F. & Matrisian, L. M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl Cancer Inst. 89, 1260–1270 (1997).

    CAS  PubMed  Google Scholar 

  135. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 161–174 (2002).

    CAS  Google Scholar 

  136. Park, M. J. et al. PTEN suppresses hyaluronic acid-induced matrix metalloproteinase-9 expression in U87MG glioblastoma cells through focal adhesion kinase dephosphorylation. Cancer Res. 62, 6318–6322 (2002).

    CAS  PubMed  Google Scholar 

  137. Zhang, Y. et al. Hyaluronan–CD44s signaling regulates matrix metalloproteinase-2 secretion in a human lung carcinoma cell line QG90. Cancer Res. 62, 3962–3965 (2002).

    CAS  PubMed  Google Scholar 

  138. Bourguignon, L. Y. et al. CD44v(3,8-10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J. Cell Physiol. 176, 206–215 (1998).

    CAS  PubMed  Google Scholar 

  139. Yu, Q. & Stamenkovic, I. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 13, 35–48 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 14, 163–176 (2000).

    PubMed  PubMed Central  Google Scholar 

  141. Mori, H. et al. CD44 directs membrane-type 1 matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. EMBO J. 21, 3949–3959 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Okamoto, I. et al. CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in tumor cell migration. Oncogene 18, 1435–1446 (1999).

    CAS  PubMed  Google Scholar 

  143. Kajita, M. et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J. Cell Biol. 153, 893–904 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Bourguignon, L. Y., Singleton, P. A., Diedrich, F., Stern, R. & Gilad, E. CD44 interaction with Na+–H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J. Biol. Chem. 16 April 2004 (doi:10.1074/jbc.m311838200).

  145. Zhu, D. & Bourguignon, L. Y. Interaction between CD44 and the repeat domain of ankyrin promotes hyaluronic acid-mediated ovarian tumor cell migration. J. Cell Physiol. 183, 182–195 (2000).

    CAS  PubMed  Google Scholar 

  146. Legg, J. W., Lewis, C. A., Parsons, M., Ng, T. & Isacke, C. M. A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nature Cell Biol. 4, 399–407 (2002). One of a series of papers showing the importance of ezrin–CD44 interactions in cell motility.

    CAS  PubMed  Google Scholar 

  147. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    CAS  Google Scholar 

  148. Xu, Y. & Yu, Q. E-cadherin negatively regulates CD44–hyaluronan interaction and CD44-mediated tumor invasion and branching morphogenesis. J. Biol. Chem. 278, 8661–8668 (2003).

    CAS  PubMed  Google Scholar 

  149. Nelson, W. J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Tolg, C., Poon, R., Fodde, R., Turley, E. A. & Alman, B. A. Genetic deletion of receptor for hyaluronan-mediated motility (Rhamm) attenuates the formation of aggressive fibromatosis (desmoid tumor). Oncogene 22, 6873–6882 (2003).

    CAS  PubMed  Google Scholar 

  151. West, D. C. & Kumar, S. Hyaluronan and angiogenesis. Ciba Found. Symp. 143, 187–201 (1989).

    CAS  PubMed  Google Scholar 

  152. Delpech, B. et al. Hyaluronan digestion and synthesis in an experimental model of metastatic tumour. Histochem. J. 33, 553–558 (2001).

    CAS  PubMed  Google Scholar 

  153. Deguine, V. et al. Free radical depolymerization of hyaluronan by Maillard reaction products: role in liquefaction of aging vitreous. Int. J. Biol. Macromol. 22, 17–22 (1998).

    CAS  PubMed  Google Scholar 

  154. Yamazaki, K. et al. Reactive oxygen species depolymerize hyaluronan: involvement of the hydroxyl radical. Pathophysiology 9, 215–220 (2003).

    CAS  PubMed  Google Scholar 

  155. West, D. C., Hampson, I. N., Arnold, F. & Kumar, S. Angiogenesis induced by degradation products of hyaluronic acid. Science 228, 1324–1326 (1985). The first of a series of papers showing that hyaluronan breakdown products stimulate angiogenesis (see also references 156–162).

    CAS  PubMed  Google Scholar 

  156. West, D. C. & Kumar, S. The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp. Cell Res. 183, 179–196 (1989).

    CAS  PubMed  Google Scholar 

  157. Sattar, A. et al. Application of angiogenic oligosaccharides of hyaluronan increases blood vessel numbers in rat skin. J. Invest. Dermatol. 103, 576–579 (1994).

    CAS  PubMed  Google Scholar 

  158. Lees, V. C., Fan, T. P. & West, D. C. Angiogenesis in a delayed revascularization model is accelerated by angiogenic oligosaccharides of hyaluronan. Lab. Invest. 73, 259–266 (1995).

    CAS  PubMed  Google Scholar 

  159. Montesano, R., Kumar, S., Orci, L. & Pepper, M. S. Synergistic effect of hyaluronan oligosaccharides and vascular endothelial growth factor on angiogenesis in vitro. Lab. Invest. 75, 249–262 (1996).

    CAS  PubMed  Google Scholar 

  160. Rahmanian, M. & Heldin, P. Testicular hyaluronidase induces tubular structures of endothelial cells grown in three-dimensional collagen gel through a CD44-mediated mechanism. Int. J. Cancer 97, 601–607 (2002).

    CAS  PubMed  Google Scholar 

  161. Slevin, M., Kumar, S. & Gaffney, J. Angiogenic oligosaccharides of hyaluronan induce multiple signaling pathways affecting vascular endothelial cell mitogenic and wound healing responses. J. Biol. Chem. 277, 41046–41059 (2002).

    CAS  PubMed  Google Scholar 

  162. Trochon, V. et al. Evidence of involvement of CD44 in endothelial cell proliferation, migration and angiogenesis in vitro. Int. J. Cancer 66, 664–668 (1996).

    CAS  PubMed  Google Scholar 

  163. Murai, T. et al. Engagement of CD44 promotes Rac activation and CD44 cleavage during tumor cell migration. J. Biol. Chem. 279, 4541–4550 (2004).

    CAS  PubMed  Google Scholar 

  164. Zeng, C., Toole, B. P., Kinney, S. D., Kuo, J. W. & Stamenkovic, I. Inhibition of tumor growth in vivo by hyaluronan oligomers. Int. J. Cancer 77, 396–401 (1998).

    CAS  PubMed  Google Scholar 

  165. Radisky, D. C. & Bissell, M. J. Respect thy neighbor! Science 303, 775–777 (2004).

    CAS  PubMed  Google Scholar 

  166. Liu, D., Aguirre-Ghiso, J., Estrada, Y. & Ossowski, L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1, 445–457 (2002).

    CAS  PubMed  Google Scholar 

  167. Hollingsworth, M. A. & Swanson, B. J. Mucins in cancer: protection and control of the cell surface. Nature Rev. Cancer 4, 45–60 (2004).

    CAS  Google Scholar 

  168. Pilarski, L. M. et al. Potential role for hyaluronan and the hyaluronan receptor RHAMM in mobilization and trafficking of hematopoietic progenitor cells. Blood 93, 2918–2927 (1999).

    CAS  PubMed  Google Scholar 

  169. Nilsson, S. K. et al. Hyaluronan is synthesized by primitive hemopoietic cells, participates in their lodgment at the endosteum following transplantation, and is involved in the regulation of their proliferation and differentiation in vitro. Blood 101, 856–862 (2003).

    CAS  PubMed  Google Scholar 

  170. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Toole, B. P. & Trelstad, R. L. Hyaluronate production and removal during corneal development in the chick. Dev. Biol. 26, 28–35 (1971).

    CAS  PubMed  Google Scholar 

  172. Guo, H., Zucker, S., Gordon, M. K., Toole, B. P. & Biswas, C. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J. Biol. Chem. 272, 24–27 (1997).

    CAS  PubMed  Google Scholar 

  173. Caudroy, S. et al. Emmprin-mediated MMP regulation in tumor and endothelial cells. Clin. Exp. Metastasis 19, 697–702 (2002).

    CAS  PubMed  Google Scholar 

  174. Sun, J. & Hemler, M. E. Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res. 61, 2276–2281 (2001).

    CAS  PubMed  Google Scholar 

  175. Tang, Y., Kesavan, P., Nakada, M. T. & Yan, L. Tumor–stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Mol. Cancer Res. 2, 73–80 (2004).

    CAS  PubMed  Google Scholar 

  176. Knudson, W., Bartnik, E. & Knudson, C. B. Assembly of pericellular matrices by COS-7 cells transfected with CD44 lymphocyte-homing receptor genes. Proc. Natl Acad. Sci. USA 90, 4003–4007 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Lee, G. M., Johnstone, B., Jacobson, K. & Caterson, B. The dynamic structure of the pericellular matrix on living cells. J. Cell Biol. 123, 1899–1907 (1993).

    CAS  PubMed  Google Scholar 

  178. Heldin, P. & Pertoft, H. Synthesis and assembly of the hyaluronan-containing coats around normal human mesothelial cells. Exp. Cell Res. 208, 422–429 (1993).

    CAS  PubMed  Google Scholar 

  179. Spicer, A. P. & McDonald, J. A. Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family. J. Biol. Chem. 273, 1923–1932 (1998).

    CAS  PubMed  Google Scholar 

  180. Munster, P. N., Marchion, D. C., Basso, A. D. & Rosen, N. Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3′- kinase-AKT-dependent pathway. Cancer Res. 62, 3132–3137 (2002).

    CAS  PubMed  Google Scholar 

  181. Singleton, P. A. & Bourguignon, L. Y. CD44 interaction with ankyrin and IP3 receptor in lipid rafts promotes hyaluronan-mediated Ca2+ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation. Exp. Cell Res. 295, 102–118 (2004).

    CAS  PubMed  Google Scholar 

  182. Nakamura, N. et al. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol. Cell. Biol. 20, 8969–8982 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Yamada, K. M. & Araki, M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J. Cell Sci. 114, 2375–2382 (2001).

    CAS  PubMed  Google Scholar 

  184. Menashi, S. et al. Regulation of extracellular matrix metalloproteinase inducer and matrix metalloproteinase expression by amphiregulin in transformed human breast epithelial cells. Cancer Res. 63, 7575–7580 (2003).

    CAS  PubMed  Google Scholar 

  185. Hascall, V. C. & Laurent, T. Hyaluronan: structure and physical properties. Science of hyaluronan today [online] <http://www.glycoforum.gr.jp/science/hyaluronan/HA01/HA01E.html> (1997).

  186. Toole, B. P. in Proteoglycans: Structure, Biology and Molecular Interactions (ed. Iozzo, R.) 61–92 (Marcel Dekker, New York, 2000).

    Google Scholar 

  187. Toole, B. P. Hyaluronan in morphogenesis and tissue remodelling. Science of hyaluronan today [online] <http://www.glycoforum.gr.jp/science/hyaluronan/HA08/HA08E.html> (1998).

Download references

Acknowledgements

The author thanks the many colleagues, especially S. Misra and S. Ghatak, who contributed to the work described in this review and provided a critique of the manuscript and many helpful suggestions. He also apologizes to the authors of many interesting studies that were omitted due to limited space.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

bladder cancer

brain cancer

breast cancer

colorectal cancer

gastric cancer

head and neck cancer

kidney cancer

lung cancer

melanoma

non-small-cell lung cancer

ovarian cancer

prostate cancer

Entrez Gene

AKT

CD44

EMMPRIN

ERBB1

ERBB2

ERBB3

ERBB4

ezrin

FAK

HAS1

HAS2

HAS3

HYAL1

MMP2

MMP9

PI3K

RHAMM

FURTHER INFORMATION

The Seikagaku Science of Hyaluronan Today web site

Glossary

PROTEOGLYCANS

Specialized glycoproteins with polysaccharide side chains known as glycosaminoglycans. Glycosaminoglycans — such as chondroitin sulphate, heparin and hyaluronan — are composed of repeating disaccharides, which are highly negatively charged as they contain carboxyl and/or sulphate groups. Proteoglycans are characteristic components of extracellular matrices and the cell surface.

STROMA

Most organs are composed of two associated compartments — the parenchyma and stroma. In adult organisms, the stroma is composed of connective tissue and contains fibroblasts, cells derived from the circulation, blood vessels, nerves and associated extracellular matrices. Carcinomas usually contain an extensive stromal compartment.

PARENCHYMA

The parenchyma is regarded as the 'business' part of an organ. It is composed of epithelial or epithelial-like cells that produce the characteristic structures of the differentiated organ.

ASCITES

When tumour cells accumulate in the peritoneal cavity, a voluminous fluid exudate forms — known as ascites —in which the cancer cells are suspended. This phenomenon is common in ovarian carcinomas and mesotheliomas.

EPITHELIAL–MESENCHYMAL TRANSITION

Conversion from an epithelial to a mesenchymal phenotype, which is a normal process of embryonic development. In carcinomas, this transformation results in altered cell morphology, the expression of mesenchymal proteins and increased invasiveness.

MUCINS

Large extracellular and cell-surface glycoproteins with numerous oligosaccharide side-groups. Mucins have several physiological functions, including signal transduction. Their expression and glycosylation are altered in cancer cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toole, B. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4, 528–539 (2004). https://doi.org/10.1038/nrc1391

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1391

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing