Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of monolayer integrity enables activation of a cystic fibrosis “bypass” channel in human airway epithelia

Abstract

Cystic fibrosis (CF) is a genetic disease characterized by marked reduction in Cl conductance across many epithelia. Two kinds of Cl channels have been associated with CF. One channel, termed the cystic fibrosis transmembrane conductance regulator (CFTR), is directly coded by the CF gene1–3. The other channel is an outwardly rectifying depolarization induced Cl channel (ORDIC) that is distinguished from other outwardly rectifying chloride channels (ORCCs) because its activity is induced most reliably by patch excision and depolarization4–7. An issue in current CF research is whether ORDIC channels are indirectly activated by CFTR to contribute a significant portion of apical membrane Cl conductance in airway cells6. We now show that ORDIC channels are readily activated in patches excised and depolarized from isolated cells, but are rarer or refractory to activation in patches from the apical membranes of confluent human airway epithelia. These findings have important implications for proposed therapies that would bypass the CFTR conductance by activating ORDIC channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Riordan, J.R. et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA [erratum appears in Science 245, 1437; 1989]. Science 245, 1066–1073 (1989).

    Article  CAS  Google Scholar 

  2. Anderson, M.P. et al. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253, 202–205 (1991).

    Article  CAS  Google Scholar 

  3. Bear, C.E. et al. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68, 809–818 (1992).

    Article  CAS  Google Scholar 

  4. Welsh, M.J. An apical-membrane chloride channel in human tracheal epithelium. Science 232, 1648–1650 (1986).

    Article  CAS  Google Scholar 

  5. Egan, M. et al. Defective regulation of outwardly rectifying Cl− channels by protein kinase A corrected by insertion of CFTR. Nature 358, 581–584 (1992).

    Article  CAS  Google Scholar 

  6. Schwiebert, E.M. et al. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81, 1063–1073 (1995).

    Article  CAS  Google Scholar 

  7. Tabcharani, J.A. & Hanrahan, J.W. On the activation of outwardly rectifying anion channels in excised patches. Am. J. Physiol. 261, G992–G999 (1991).

    CAS  PubMed  Google Scholar 

  8. Finkbeiner, W.E., Carrier, S.D. & Teresi, C.E. Reverse transcription-polymerase chain reaction (RT-PCR) phenotypic analysis of cell cultures of human tracheal epithelium, tracheobronchial glands, and lung carcinomas. Am. J. Respir. Cell Mol. Biol. 9, 547–556 (1993).

    Article  CAS  Google Scholar 

  9. Shen, B.Q. et al. Calu-3: A human airway epithelial cell line that shows cAMP-dependent Cl− secretion. Am. J. Physiol. 266, L493–L501 (1994).

    CAS  PubMed  Google Scholar 

  10. Haws, C., Finkbeiner, W.E., Widdicombe, J.H. & Wine, J.J. CFTR in Calu-3 human airway cells: Channel properties and role in cAMP-activated Cl− conductance. Am. J. Physiol. 266, L502–L512 (1994).

    CAS  PubMed  Google Scholar 

  11. Cozens, A.L. et al. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 10, 38–47 (1994).

    Article  CAS  Google Scholar 

  12. Haws, C. et al. CFTR channels in immortalized human airway cells. Am. J. Physiol. 263, L692–L707 (1992).

    CAS  PubMed  Google Scholar 

  13. Armitage, W.J., Juss, B.K. & Easty, D.L. Response of epithelial (MDCK) cell junctions to calcium removal and osmotic stress is influenced by temperature. Cryobiology 31, 453–460 (1994).

    Article  CAS  Google Scholar 

  14. Gray, M.A. et al. Two types of chloride channel on duct cells cultured from human fetal pancreas. Am. J. Physiol. 257, C240–C251 (1989).

    Article  CAS  Google Scholar 

  15. Volberg, T., Geiger, B., Kartenbeck, J. & Franke, W.W. Changes in membrane-microfilament interaction in intercellular adherens junctions upon removal of extracellular Ca2+ ions. J Cell Biol. 102, 1832–1842 (1986).

    Article  CAS  Google Scholar 

  16. Shoemaker, R.L., Frizzell, R.A., Dwyer, T.M. & Farley, J.M. Single chloride channel currents from canine tracheal epithelial cells. Biochem. Biophys. Acta 858, 235–242 (1986).

    Article  CAS  Google Scholar 

  17. Gabriel, S.E., Clarke, L.L., Boucher, R.C. & Stutts, M.J. CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature 363, 263–268 (1993).

    Article  CAS  Google Scholar 

  18. Schwiebert, E.M., Flotte, T., Cutting, G.R. & Guggino, W.B. Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents. Am. J. Physiol. 266, C1464–C1477 (1994).

    Article  CAS  Google Scholar 

  19. Bridges, R.J., Worrell, R.T., Frizzell, R.A. & Benos, D.J. Stilbene disulfonate blockade of colonic secretory Cl− channels in planar lipid bilayers. Am. J. Physiol. 256, C902–C912 (1989).

    Article  CAS  Google Scholar 

  20. Shen, B.Q., Mrsny, R.J., Finkbeiner, W.E. & Widdicombe, J.H. Role of CFTR in chloride secretion across human tracheal epithelium. Am. J. Physiol. 269, L561–L566 (1995).

    CAS  PubMed  Google Scholar 

  21. Brayden, D.J., Krouse, M.E., Law, T. & Wine, J.J. Stilbenes stimulate T84 Cl− secretion by elevating Ca2+. Am. J. Physiol. 264, G325G–333 (1993).

    Google Scholar 

  22. Bijman, J. et al. Characterization of human sweat duct chloride conductance by chloride channel blockers. Pfluegers Arch. 408, 511–514 (1987).

    Article  CAS  Google Scholar 

  23. Grub, B.R., Paradise, A.M. & Boucher, R.C. Anomalies in ion transport in CF mouse tracheal epithelium. Am. J. Physiol. 267, C293–C300 (1994).

    Article  Google Scholar 

  24. Knolls, M.R., Clarke, L.L. & Boucher, R.C. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N. Engl. J. Med. 325, 533–538 (1991).

    Article  Google Scholar 

  25. Stutts, M.J. et al. Regulation of Cl− channels in normal and cystic fibrosis airway epithelial cells by extracellular ATP. Proc. Natl. Acad. Sci. USA 89, 1621–1625 (1992).

    Article  CAS  Google Scholar 

  26. Stutts, M.J., Fitz, J.G., Paradiso, A.M. & Boucher, R.C. Multiple modes of regulation of airway epithelial chloride secretion by extracellular ATP. Am. J. Physiol. 267, C1442–C1451 (1994).

    Article  CAS  Google Scholar 

  27. Anderson, M.P. & Welsh, M.J. Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc. Natl. Acad. Sci. USA 88, 6003–6007 (1991).

    Article  CAS  Google Scholar 

  28. Morris, A.P., Cunningham, S.A., Benos, D.J. & Frizzell, R.A. Cellular differentiation is required for cAMP but not Ca2+-dependent Cl− secretion in colonic epithelial cells expressing high levels of cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 267, 5575–5583 (1992).

    CAS  PubMed  Google Scholar 

  29. Anderson, M.P., Sheppard, D.N., Berger, H.A. & Welsh, M.J. Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia. Am. J. Physiol. 263, L1–L14 (1992).

    CAS  Google Scholar 

  30. Pisam, M. & Ripoche, P. Redistribution of surface macromolecules in dissociated epithelial cells. J. Cell Biol. 71, 907–920 (1976).

    Article  CAS  Google Scholar 

  31. Graham, A., Steel, D.M., Alton, E.W. & Geddes, D.M. Second-messenger regulation of sodium transport in mammalian airway epithelia. J. Physiol. (Lond.) 453, 475–491 (1992).

    Article  CAS  Google Scholar 

  32. Cammack, J.N. & Schwartz, E.A. Channel behavior in a gamma-aminobutyrate transporter. Proc. Natl. Acad. Sci. USA 93, 723–727 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Y., Haws, C. & Wine, J. Disruption of monolayer integrity enables activation of a cystic fibrosis “bypass” channel in human airway epithelia. Nat Med 3, 802–805 (1997). https://doi.org/10.1038/nm0797-802

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0797-802

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing