Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Indirect activation of naïve CD4+ T cells by dendritic cell–derived exosomes

Abstract

Dendritic cells (DCs) secrete vesicles of endosomal origin, called exosomes, that bear major histocompatibility complex (MHC) and T cell costimulatory molecules. Here, we found that injection of antigen- or peptide-bearing exosomes induced antigen-specific naïve CD4+ T cell activation in vivo. In vitro, exosomes did not induce antigen-dependent T cell stimulation unless mature CD8α DCs were also present in the cultures. These mature DCs could be MHC class II–negative, but had to bear CD80 and CD86. Therefore, in addition to carrying antigen, exosomes promote the exchange of functional peptide-MHC complexes between DCs. Such a mechanism may increase the number of DCs bearing a particular peptide, thus amplifying the initiation of primary adaptive immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exosomes from male BMDCs induce activation of Marilyn T cells in vivo and in vitro.
Figure 2: Exosomes produced by H-Y peptide–pulsed D1 cells induce early activation markers on Marilyn T cells in vivo.
Figure 3: H-Y–exosomes induce up-regulation of late activation markers and proliferation of Marilyn T cells in vivo.
Figure 4: Marilyn T cell stimulation by H-Y–exosomes in vitro requires the presence of DCs and MHC molecules on exosomes.
Figure 5: Only DCs can efficiently stimulate Marilyn T cells with H-Y peptide or H-Y–exosomes.
Figure 6: CD8α DCs are more efficient than CD8α+ DCs in stimulating Marilyn T cells with H-Y peptide or H-Y–exosomes.
Figure 7: H-Y–I-Ab complexes harbored by H-Y–exosomes and CD80 and CD86 costimulatory molecules present on recipient DCs are necessary to induce Marilyn T cell proliferation in vitro.

Similar content being viewed by others

References

  1. Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nature Rev. Immunol. 2, 569–579 (2002).

    Article  CAS  Google Scholar 

  2. Stoorvogel, W., Kleijmeer, M.J., Geuze, H.J. & Raposo, G. The biogenesis and functions of exosomes. Traffic 3, 321–330 (2002).

    Article  CAS  Google Scholar 

  3. Thery, C. et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166, 7309–7318 (2001).

    Article  CAS  Google Scholar 

  4. Thery, C. et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147, 599–610 (1999).

    Article  CAS  Google Scholar 

  5. Boucheix, C. & Rubinstein, E. Tetraspanins. Cell. Mol. Life Sci. 58, 1189–1205 (2001).

    Article  CAS  Google Scholar 

  6. Gahmberg, C.G. Leukocyte adhesion: CD11/CD18 integrins and intercellular adhesion molecules. Curr. Opin. Cell Biol. 9, 643–650 (1997).

    Article  CAS  Google Scholar 

  7. Stubbs, J.D. et al. cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences. Proc. Natl. Acad. Sci. USA 87, 8417–8421 (1990).

    Article  CAS  Google Scholar 

  8. Srivastava, P. Interaction of heat shock proteins with peptides and antigen presenting cells: Chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 20, 395–425 (2002).

    Article  CAS  Google Scholar 

  9. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).

    Article  CAS  Google Scholar 

  10. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Med. 4, 594–600 (1998).

    Article  CAS  Google Scholar 

  11. Lantz, O., Grandjean, I., Matzinger, P. & Di Santo, J.P. γ chain required for naive CD4+ T cell survival but not for antigen proliferation. Nature Immunol. 1, 54–58 (2000).

    Article  CAS  Google Scholar 

  12. Scott, D. et al. Dendritic cells permit identification of genes encoding MHC class II-restricted epitopes of transplantation antigens. Immunity 12, 711–720 (2000).

    Article  CAS  Google Scholar 

  13. Winzler, C. et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med. 185, 317–328 (1997).

    Article  CAS  Google Scholar 

  14. Wolfers, J. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Med. 7, 297–303 (2001).

    Article  CAS  Google Scholar 

  15. Shortman, K. & Liu, Y.J. Mouse and human dendritic cell subtypes. Nature Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  Google Scholar 

  16. Maldonado-Lopez, R. & Moser, M. Dendritic cell subsets and the regulation of Th1/Th2 responses. Semin. Immunol. 13, 275–282 (2001).

    Article  CAS  Google Scholar 

  17. De Smedt, T. et al. CD8α and CD8α+ subclasses of dendritic cells undergo phenotypic and functional maturation in vitro and in vivo. J. Leukoc. Biol. 69, 951–958 (2001).

    CAS  PubMed  Google Scholar 

  18. Gray, D., Kosco, M. & Stockinger, B. Novel pathways of antigen presentation for the maintenance of memory. Int. Immunol. 3, 141–148 (1991).

    Article  CAS  Google Scholar 

  19. Sharrow, S.O., Mathieson, B.J. & Singer, A. Cell surface appearance of unexpected host MHC determinants on thymocytes from radiation bone marrow chimeras. J. Immunol. 126, 1327–1335 (1981).

    CAS  PubMed  Google Scholar 

  20. Zimmer, J., Ioannidis, V. & Held, W. H-2D ligand expression by Ly49A+ natural killer (NK) cells precludes ligand uptake from environmental cells: implications for NK cell function. J. Exp. Med. 194, 1531–1539 (2001).

    Article  CAS  Google Scholar 

  21. Sjostrom, A. et al. Acquisition of external major histocompatibility complex class I molecules by natural killer cells expressing inhibitory Ly49 receptors. J. Exp. Med. 194, 1519–1530 (2001).

    Article  CAS  Google Scholar 

  22. Mack, M. et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nature Med. 6, 769–775 (2000).

    Article  CAS  Google Scholar 

  23. Greco, V., Hannus, M. & Eaton, S. Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106, 633–645 (2001).

    Article  CAS  Google Scholar 

  24. Denzer, K. et al. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J. Immunol. 165, 1259–1265 (2000).

    Article  CAS  Google Scholar 

  25. Andre, F. et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360, 295–305 (2002).

    Article  CAS  Google Scholar 

  26. Wulfing, C. et al. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nature Immunol. 3, 42–47 (2002).

    Article  CAS  Google Scholar 

  27. Kumaraguru, U., Rouse, R.J., Nair, S.K., Bruce, B.D. & Rouse, B.T. Involvement of an ATP-dependent peptide chaperone in cross-presentation after DNA immunization. J. Immunol. 165, 750–759 (2000).

    Article  CAS  Google Scholar 

  28. Turley, S.J. et al. Transport of peptide-MHC class II complexes in developing dendritic cells. Science 288, 522–527 (2000).

    Article  CAS  Google Scholar 

  29. Moron, G., Rueda, P., Casal, I. & Leclerc, C. CD8α CD11b+ dendritic cells present exogenous virus-like particles to CD8+ T cells and subsequently express CD8α and CD205 molecules. J. Exp. Med. 195, 1233–1245 (2002).

    Article  CAS  Google Scholar 

  30. Prina, E., Lang, T., Glaichenhaus, N. & Antoine, J.-C. Presentation of the protective parasite antigen LACK by Leishmania-infected macrophages. J. Immunol. 156, 4318–4327 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Z. Maciorowski for help with cell sorting, C. Hivroz and A. Sarukhan for critical reading of the manuscript, G. Raposo and L. Zitvogel for helpful discussions and P. Ricciardi-Castagnoli for the D1 cell line. Supported by Institut Curie, INSERM and Anosys Inc. with grants from Association pour la Recherche sur le Cancer (grant number 5913), Ministère de la Recherche (ACI number 4219) and European Community (grant number QoL-2001-00093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Amigorena.

Ethics declarations

Competing interests

S. A. is a consultant for and shareholder of the company ANOSYS, which is developing the use of exosomes for immunotherapy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Théry, C., Duban, L., Segura, E. et al. Indirect activation of naïve CD4+ T cells by dendritic cell–derived exosomes. Nat Immunol 3, 1156–1162 (2002). https://doi.org/10.1038/ni854

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni854

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing