Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induction of T helper type 1–like regulatory cells that express Foxp3 and protect against airway hyper-reactivity

Abstract

The range of regulatory T cell (TR cell) types that control immune responses is poorly understood. We describe here a population of TR cells that developed in vivo from naive CD4+CD25 T cells during a T helper type 1 (TH1)–polarized response, distinct from CD25+ TR cells. These antigen-specific TR cells were induced by CD8α+ DCs, produced both interleukin 10 and interferon-γ, and potently inhibited the development of airway hyper-reactivity. These TR cells expressed the transcription factors Foxp3 and T-bet, indicating that these TR cells are related to TH1 cells. Thus, adaptive TR cells are heterogeneous and comprise TH1-like TR cells as well as previously described TH2-like TR cells, which express Foxp3 and are induced during the development of respiratory tolerance by CD8α DCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD11c+ CD8α+ DCs protect against AHR.
Figure 2: T cells induced by the regulatory CD8α+ DC express IL-10 and IFN-γ.
Figure 3: IL-10-producing T cells express CD25, ICOS, Foxp3 and T-bet.
Figure 4: TR cells inhibit AHR and airway inflammation.
Figure 5: The regulatory effects of the TR cells depend on IL-10 but not IFN-γ.
Figure 6: TR cells suppress naive and effector T cells.

Similar content being viewed by others

References

  1. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). J. Immunol. 160, 1151–1164 (1995).

    Google Scholar 

  2. Bluestone, J.A. & Abbas, A.K. Natural versus adaptive regulatory T cells. Nat. Rev. Immunol. 3, 253–257 (2003).

    Article  CAS  Google Scholar 

  3. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  Google Scholar 

  4. Barrat, F.J. et al. In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J. Exp. Med. 195, 603–616 (2002).

    Article  CAS  Google Scholar 

  5. Bynoe, M.S., Evans, J.T., Viret, C. & Janeway, C.A. Jr. Epicutaneous immunization with autoantigenic peptides induces T suppressor cells that prevent experimental allergic encephalomyelitis. Immunity 19, 317–328 (2003).

    Article  CAS  Google Scholar 

  6. Akbari, O. et al. Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med. 8, 1024–1032 (2002).

    Article  CAS  Google Scholar 

  7. Chen, Y., Kuchroo, V.K., Inobe, J., Hafler, D.A. & Weiner, H.L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    Article  CAS  Google Scholar 

  8. Hansen, G., Yeung, V.P., Berry, G., Umetsu, D.T. & DeKruyff, R.H. Vaccination with heat killed listeria as adjuvant reverses established allergen-induced airway hyperreactivity and inflammation: role of CD8+ T cells and IL-18. J. Immunol. 164, 223–230 (2000).

    Article  CAS  Google Scholar 

  9. Hsieh, C.-S. et al. Development of Th1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

    Article  CAS  Google Scholar 

  10. Hsieh, C.S., Macatonia, S.E., O'Garra, A. & Murphy, K.M. Pathogen-induced Th1 phenotype development in CD4+ αβ-TCR transgenic T cells is macrophage dependent. Int. Immunol. 5, 371–382 (1993).

    Article  CAS  Google Scholar 

  11. Hansen, G., Berry, G., DeKruyff, R.H. & Umetsu, D.T. Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J. Clin. Invest. 103, 175–183 (1999).

    Article  CAS  Google Scholar 

  12. Randolph, D.A., Carruthers, C.J., Szabo, S.J., Murphy, K.M. & Chaplin, D.D. Modulation of airway inflammation by passive transfer of allergen-specific Th1 and Th2 cells in a mouse model of asthma. J. Immunol. 162, 2375–2383 (1999).

    CAS  PubMed  Google Scholar 

  13. Akbari, O., DeKruyff, R.H. & Umetsu, D.T. Pulmonary dendritic cells secreting IL-10 mediate T cell tolerance induced by respiratory exposure to antigen. Nat. Immunol. 2, 725–731 (2001).

    Article  CAS  Google Scholar 

  14. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    CAS  PubMed  Google Scholar 

  15. Lohning, M. et al. Expression of ICOS in vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of interleukin 10. J. Exp. Med. 197, 181–193 (2003).

    Article  CAS  Google Scholar 

  16. Coyle, A.J. et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13, 95–105 (2000).

    Article  CAS  Google Scholar 

  17. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  Google Scholar 

  18. McAdam, A.J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102–105 (2001).

    Article  CAS  Google Scholar 

  19. Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001).

    Article  CAS  Google Scholar 

  20. McAdam, A.J. et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J. Immunol. 165, 5035–5040 (2000).

    Article  CAS  Google Scholar 

  21. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  Google Scholar 

  22. Yeung, V.P., Gieni, R.S., Umetsu, D.T. & DeKruyff, R.H. Heat killed Listeria monocytogenes as an adjuvant converts established Th2-dominated immune responses into Th1-dominated responses. J. Immunol. 161, 4146–4152 (1998).

    CAS  PubMed  Google Scholar 

  23. Campbell, D., DeKruyff, R.H. & Umetsu, D.T. Allergen immunotherapy: novel approaches in the management of allergic diseases and asthma. Clin. Immunol. 97, 193–202 (2000).

    Article  CAS  Google Scholar 

  24. Stock, P. et al. CD8+ T cells regulate immune responses in a murine model of allergen-induced sensitization and airway inflammation. Eur. J. Immunol. 34, 1817–1827 (2004).

    Article  CAS  Google Scholar 

  25. Marsland, B.J. et al. Bystander suppression of allergic airway inflammation by lung resident memory CD8+ T cells. Proc. Natl. Acad. Sci. USA 101, 6116–6121 (2004).

    Article  CAS  Google Scholar 

  26. Oh, J.W. et al. CD4 T helper cells engineered to produce IL-10 reverse allergen-induced airway hyperreactivity and inflammation. J. Allergy Clin. Immunol. 110, 460–468 (2002).

    Article  CAS  Google Scholar 

  27. Hansen, G. et al. CD4+ Th cells engineered To produce latent TGF-β1 reverse allergen-induced airway hyperreactivity and inflammation. J. Clin. Invest. 11, 89–96 (2000).

    Google Scholar 

  28. Gerosa, F. et al. Interleukin-12 primes human CD4 and CD8 T cell clones for high production of both interferon-γ and interleukin-10. J. Exp. Med. 183, 2559–2569 (1996).

    Article  CAS  Google Scholar 

  29. Trinchieri, G. Regulatory role of T cells producing both interferon γ and interleukin 10 in persistent infection. J. Exp. Med. 194, F53–57 (2001).

    Article  CAS  Google Scholar 

  30. Belkaid, Y. et al. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J. Exp. Med. 194, 1497–1506 (2001).

    Article  CAS  Google Scholar 

  31. Pohl-Koppe, A., Balashov, K.E., Steere, A.C., Logigian, E.L. & Hafler, D.A. Identification of a T cell subset capable of both IFN-γ and IL-10 secretion in patients with chronic Borrelia burgdorferi infection. J. Immunol. 160, 1804–1810 (1998).

    CAS  PubMed  Google Scholar 

  32. Gerosa, F. et al. Interleukin-12 primes human CD4 and CD8 T cell clones for high production of both interferon-γ and interleukin-10. J. Exp. Med. 183, 2559–2569 (1996).

    Article  CAS  Google Scholar 

  33. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A.H. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222 (2000).

    Article  CAS  Google Scholar 

  34. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    Article  CAS  Google Scholar 

  35. Steinman, R.M. & Nussenzweig, M.C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl. Acad. Sci. USA 99, 351–358 (2002).

    Article  CAS  Google Scholar 

  36. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196, 1627–1638 (2002).

    Article  CAS  Google Scholar 

  37. Inaba, K. et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J. Exp. Med. 188, 2163–2173 (1998).

    Article  CAS  Google Scholar 

  38. Belz, G.T. et al. The CD8α+ dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J. Exp. Med. 196, 1099–1104 (2002).

    Article  CAS  Google Scholar 

  39. Iyoda, T. et al. The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J. Exp. Med. 195, 1289–1302 (2002).

    Article  CAS  Google Scholar 

  40. Liu, K. et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med. 196, 1091–1097 (2002).

    Article  CAS  Google Scholar 

  41. Asselin-Paturel, C. et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol. 2, 1144–1150 (2001).

    Article  CAS  Google Scholar 

  42. Wakkach, A. et al. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18, 605–617 (2003).

    Article  CAS  Google Scholar 

  43. Krug, A. et al. Interferon-producing cells fail to induce proliferation of naive T cells but can promote expansion and T helper 1 differentiation of antigen-experienced unpolarized T cells. J. Exp. Med. 197, 899–906 (2003).

    Article  CAS  Google Scholar 

  44. Martin, P. et al. Characterization of a new subpopulation of mouse CD8α+ B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 100, 383–390 (2002).

    Article  CAS  Google Scholar 

  45. McGuirk, P., McCann, C. & Mills, K.H. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J. Exp. Med. 195, 221–231 (2002).

    Article  CAS  Google Scholar 

  46. Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl. Acad. Sci. USA 96, 1036–1041 (1999).

    Article  CAS  Google Scholar 

  47. Maldonado-Lopez, R. et al. CD8α+ and CD8α subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189, 587–592 (1999).

    Article  CAS  Google Scholar 

  48. Vieira, P.L. et al. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells. J. Immunol. 172, 5986–5993 (2004).

    Article  CAS  Google Scholar 

  49. Apostolou, I. & Von Boehmer, H. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 199, 1401–1408 (2004).

    Article  CAS  Google Scholar 

  50. Bennett, C.L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  Google Scholar 

  51. Wildin, R.S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    Article  CAS  Google Scholar 

  52. Chatila, T.A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 106, R75–81 (2000).

    Article  CAS  Google Scholar 

  53. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  54. Lyons, A.B. & Parish, C.R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–137 (1994).

    Article  CAS  Google Scholar 

  55. Assenmacher, M., Schmitz, J. & Radbruch, A. Flow cytometric determination of cytokines in activated murine T helper lymphocytes: expression of interleukin-10 in interferon-γ and in interleukin-4-expressing cells. Eur. J. Immunol. 24, 1097–2010 (1994).

    Article  CAS  Google Scholar 

  56. Sander, B., Cardell, S. & Möller, E. Interleukin 4 and interferon γ production in restimulated CD4+ and CD8+ cells indicates memory type responsiveness. Scand. J. Immunol. 33, 287–296 (1991).

    Article  CAS  Google Scholar 

  57. Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  Google Scholar 

  58. Hamelmann, E. et al. Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am. J. Respir. Crit. Care Med. 156, 766–775 (1997).

    Article  CAS  Google Scholar 

  59. Martin, T.R., Gerard, N.P., Galli, S.J. & Drazen, J.M. Pulmonary responses to bronchoconstrictor agonists in the mouse. J. Appl. Physiol. 64, 2318–2323 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Public Health Service (AI26322 to D.T.U., HL62348 to D.T.U., HL69507 to R.H.D. and CA84500 and AI39671 to G.J.F.), Deutsche Forschungsgemeinschaft (STO 467/2-1 to P.S.) and American Lung Association of California (O.A.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale T Umetsu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

CD8α+ DCs from mice immunized with OVA + HKL show a mature phenotype. (PDF 163 kb)

Supplementary Fig. 2

TH1-like Regulatory cells secrete IL-10. (PDF 490 kb)

Supplementary Table 1

The Number of DO11.10 T Cells Producing IL-10 and IFN-γ Recovered from Recipient Mice (PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stock, P., Akbari, O., Berry, G. et al. Induction of T helper type 1–like regulatory cells that express Foxp3 and protect against airway hyper-reactivity. Nat Immunol 5, 1149–1156 (2004). https://doi.org/10.1038/ni1122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1122

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing