Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NOD2 is a negative regulator of Toll-like receptor 2–mediated T helper type 1 responses

Abstract

The mechanism by which mutations in CARD15, which encodes nucleotide-binding oligomerization domain 2 (NOD2), cause Crohn disease is poorly understood. Because signaling via mutated NOD2 proteins leads to defective activation of the transcription factor NF-κB, one proposal is that mutations cause deficient NF-κB-dependent T helper type 1 (TH1) responses and increased susceptibility to infection. However, this idea is inconsistent with the increased TH1 responses characteristic of Crohn disease. Here we used Card15−/− mice to show that intact NOD2 signaling inhibited Toll-like receptor 2–driven activation of NF-κB, particularly of the NF-κB subunit c-Rel. Moreover, NOD2 deficiency or the presence of a Crohn disease–like Card15 mutation increased Toll-like receptor 2–mediated activation of NF-κB–c-Rel, and TH1 responses were enhanced. Thus, CARD15 mutations may lead to disease by causing excessive TH1 responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Splenocytes from Card15−/− mice show enhanced IL-12 and IFN-γ production after stimulation with PGN.
Figure 2: Splenocytes from wild-type mice but not Card15−/− mice show decreased TH1 cytokine production after costimulation with TLR2 and NOD2 agonists.
Figure 3: TH1 cytokine production and TLR2 and IL-12R expression by purified spleen subpopulations from wild-type and Card15−/− mice.
Figure 4: Wild-type spleen macrophages show dose-dependent suppression of TLR2-induced IL-12 production mediated by MDP costimulation and a lack of effect of costimulation on IL-12 production induced by stimulants of other TLRs.
Figure 5: Card15−/− mice show enhanced IL-12 production after systemic administration of PGN.
Figure 6: Stimulation of splenic adherent cells with PGN enhances translocation of c-Rel into the nucleus.
Figure 7: Neutralization of c-Rel by siRNA inhibits TLR2-mediated IL-12 production by splenic CD11b+ cells from Card15−/− mice.
Figure 8: CD11b+ cells from Card15−/− mice expressing transfected Card15 with a frameshift mutation show enhanced PGN-induced IL-12 production.

Similar content being viewed by others

References

  1. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  Google Scholar 

  2. Hugot, J.P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  Google Scholar 

  3. Cuthbert, A.P. et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122, 867–874 (2002).

    Article  CAS  Google Scholar 

  4. Hampe, J. et al. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet 357, 1925–1928 (2001).

    Article  CAS  Google Scholar 

  5. Inohara, N. & Nunez, G. NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol. 3, 371–382 (2003).

    Article  CAS  Google Scholar 

  6. Chamaillard, M., Girardin, S.E., Viala, J. & Philpott, D.J. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell. Microbiol. 5, 581–592 (2003).

    Article  CAS  Google Scholar 

  7. Harton, J.A., Linhoff, M.W., Zhang, J. & Ting, J.P. Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J. Immunol. 169, 4088–4093 (2002).

    Article  CAS  Google Scholar 

  8. Gutierrez, O. et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-κB activation. J. Biol. Chem. 277, 41701–41705 (2002).

    Article  CAS  Google Scholar 

  9. Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278, 5509–5512 (2003).

    Article  CAS  Google Scholar 

  10. Girardin, S.E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    Article  CAS  Google Scholar 

  11. Kobayashi, K. et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416, 194–199 (2002).

    Article  CAS  Google Scholar 

  12. Ogura, Y. et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J. Biol. Chem. 276, 4812–4818 (2001).

    Article  CAS  Google Scholar 

  13. Girardin, S.E. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    Article  CAS  Google Scholar 

  14. Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4, 702–707 (2003).

    Article  CAS  Google Scholar 

  15. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680 (2001).

    Article  CAS  Google Scholar 

  16. Akira, S. Toll-like receptor signaling. J. Biol. Chem. 278, 38105–38108 (2003).

    Article  CAS  Google Scholar 

  17. Chamaillard, M. et al. Gene-environment interaction modulated by allelic heterogeneity in inflammatory diseases. Proc. Natl. Acad. Sci. USA 100, 3455–3460 (2003).

    Article  CAS  Google Scholar 

  18. Bonen, D.K. et al. Crohn's disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology 124, 140–146 (2003).

    Article  CAS  Google Scholar 

  19. Bouma, G. & Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3, 521–533 (2003).

    Article  CAS  Google Scholar 

  20. Strober, W., Fuss, I.J. & Blumberg, R.S. The immunology of mucosal models of inflammation. Annu. Rev. Immunol. 20, 495–549 (2002).

    Article  CAS  Google Scholar 

  21. Monteleone, G. et al. Interleukin 12 is expressed and actively released by Crohn's disease intestinal lamina propria mononuclear cells. Gastroenterology 112, 1169–1178 (1997).

    Article  CAS  Google Scholar 

  22. Kanai, T. et al. Interleukin 18 is a potent proliferative factor for intestinal mucosal lymphocytes in Crohn's disease. Gastroenterology 119, 1514–1523 (2000).

    Article  CAS  Google Scholar 

  23. Neurath, M.F. et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J. Exp. Med. 195, 1129–1143 (2002).

    Article  CAS  Google Scholar 

  24. Fuss, I.J. et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-γ, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J. Immunol. 157, 1261–1270 (1996).

    CAS  PubMed  Google Scholar 

  25. Parronchi, P. et al. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn's disease. Am. J. Pathol. 150, 823–832 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pauleau, A.L. & Murray, P.J. Role of nod2 in the response of macrophages to toll-like receptor agonists. Mol. Cell. Biol. 23, 7531–7539 (2003).

    Article  CAS  Google Scholar 

  27. Nakayama, K. et al. Involvement of IRAK-M in peptidoglycan-induced tolerance in macrophages. J.Biol. Chem. 279, 6629–6634 (2004).

    Article  CAS  Google Scholar 

  28. Liu, J. & Beller, D.I. Distinct pathways for NF-κB regulation are associated with aberrant macrophage IL-12 production in lupus- and diabetes-prone mouse strains. J. Immunol. 170, 4489–4496 (2003).

    Article  CAS  Google Scholar 

  29. Hilliard, B.A. et al. Critical roles of c-Rel in autoimmune inflammation and helper T cell differentiation. J. Clin. Invest. 110, 843–850 (2002).

    Article  CAS  Google Scholar 

  30. Hisamatsu, T. et al. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124, 993–1000 (2003).

    Article  CAS  Google Scholar 

  31. Cario, E. et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J. Immunol. 164, 966–972 (2000).

    Article  CAS  Google Scholar 

  32. Smith, M.F. Jr. et al. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-κB activation and chemokine expression by epithelial cells. J. Biol. Chem. 278, 32552–32560 (2003).

    Article  CAS  Google Scholar 

  33. Fisette, P.L., Ram, S., Andersen, J.M., Guo, W. & Ingalls, R.R. The Lip lipoprotein from Neisseria gonorrhoeae stimulates cytokine release and NF-κB activation in epithelial cells in a Toll-like receptor 2-dependent manner. J. Biol. Chem. 278, 46252–46260 (2003).

    Article  CAS  Google Scholar 

  34. Campbell, I.K., Gerondakis, S., O'Donnell, K. & Wicks, I.P. Distinct roles for the NF-κB1 (p50) and c-Rel transcription factors in inflammatory arthritis. J. Clin. Invest. 105, 1799–1806 (2000).

    Article  CAS  Google Scholar 

  35. Sanjabi, S., Hoffmann, A., Liou, H.C., Baltimore, D. & Smale, S.T. Selective requirement for c-Rel during IL-12 P40 gene induction in macrophages. Proc. Natl. Acad. Sci. USA 97, 12705–12710 (2000).

    Article  CAS  Google Scholar 

  36. Grumont, R. et al. c-Rel regulates interleukin 12 p70 expression in CD8+ dendritic cells by specifically inducing p35 gene transcription. J. Exp. Med. 194, 1021–1032 (2001).

    Article  CAS  Google Scholar 

  37. Kobayashi, M. et al. Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. J. Clin. Invest. 111, 1297–1308 (2003).

    Article  CAS  Google Scholar 

  38. Obermeier, F. et al. CpG motifs of bacterial DNA exacerbate colitis of dextran sulfate sodium-treated mice. Eur. J. Immunol. 32, 2084–2092 (2002).

    Article  CAS  Google Scholar 

  39. Yang, S. et al. Synergistic effect of muramyldipeptide with lipopolysaccharide or lipoteichoic acid to induce inflammatory cytokines in human monocytic cells in culture. Infect. Immun. 69, 2045–2053 (2001).

    Article  CAS  Google Scholar 

  40. Takada, H., Yokoyama, S. & Yang, S. Enhancement of endotoxin activity by muramyldipeptide. J. Endotoxin. Res. 8, 337–342 (2002).

    CAS  PubMed  Google Scholar 

  41. Wolfert, M.A., Murray, T.F., Boons, G.J. & Moore, J.N. The origin of the synergistic effect of muramyl dipeptide with endotoxin and peptidoglycan. J. Biol. Chem. 277, 39179–39186 (2002).

    Article  CAS  Google Scholar 

  42. Targan, S.R. et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor α for Crohn's disease. Crohn's Disease cA2 Study Group. N. Engl. J. Med. 337, 1029–1035 (1997).

    Article  CAS  Google Scholar 

  43. Girardin, S.E., Hugot, J.P. & Sansonetti, P.J. Lessons from Nod2 studies: towards a link between Crohn's disease and bacterial sensing. Trends. Immunol. 24, 652–658 (2003).

    Article  CAS  Google Scholar 

  44. Watanabe, T. et al. Administration of an antigen at a high dose generates regulatory CD4+ T cells expressing CD95 ligand and secreting IL-4 in the liver. J. Immunol. 168, 2188–2199 (2002).

    Article  CAS  Google Scholar 

  45. Nishikomori, R., Ehrhardt, R.O. & Strober, W. T helper type 2 cell differentiation occurs in the presence of interleukin 12 receptor β2 chain expression and signaling. J. Exp. Med. 191, 847–858 (2000).

    Article  CAS  Google Scholar 

  46. O'Sullivan, B.J. & Thomas, R. CD40 ligation conditions dendritic cell antigen-presenting function through sustained activation of NF-κB. J. Immunol. 168, 5491–5498 (2002).

    Article  CAS  Google Scholar 

  47. Kitani, A. et al. Transforming growth factor (TGF)-β1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-β1-mediated fibrosis. J. Exp. Med. 198, 1179–1188 (2003).

    Article  CAS  Google Scholar 

  48. Shimamura, M. et al. HVJ-envelope vector for gene transfer into central nervous system. Biochem. Biophys. Res. Commun. 300, 464–471 (2003).

    Article  CAS  Google Scholar 

  49. Iwanaga, Y. et al. Cloning, sequencing and expression analysis of the mouse NOD2/CARD15 gene. Inflamm. Res. 52, 272–276 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.T. Rosenbaum and M.P. Davey (Casey Eye Institute, Oregon Health and Science University) for providing us with the plasmid expressing mouse Card15; and C. Ma and S. Fichtner (Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases) for comments and technical assistance. Supported in part by the Cancer Center CORE (P30 CA21765) and the American Lebanese Associated Charities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren Strober.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, T., Kitani, A., Murray, P. et al. NOD2 is a negative regulator of Toll-like receptor 2–mediated T helper type 1 responses. Nat Immunol 5, 800–808 (2004). https://doi.org/10.1038/ni1092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1092

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing