Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Basophils: what they 'can do' versus what they 'actually do'

Abstract

Basophils, the least abundant granulocytes, have poorly understood functions. They have been linked to the development of T helper type 2 immunity during parasite infection and allergic inflammation. Emerging evidence has not only shown the critical involvement of basophils in the development of T helper type 2 immunity but also provided useful animal models with which basophil functions can be further examined. However, distinctions must be made between what basophils 'can do' after in vitro manipulation and what they 'actually do' during in vivo immune responses; these may be very different. In this review, the functions of basophils determined on the basis of analysis of in vitro and in vivo systems and their potential involvement in clinical settings are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gating strategy for mouse basophils.
Figure 2: Functions of basophils.
Figure 3: Proposed models of basophil function during parasite infection.

Similar content being viewed by others

References

  1. Iwasaki, H. & Akashi, K. Myeloid lineage commitment from the hematopoietic stem cell. Immunity 26, 726–740 (2007).

    CAS  PubMed  Google Scholar 

  2. Arinobu, Y. et al. Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc. Natl. Acad. Sci. USA 102, 18105–18110 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mitre, E. & Nutman, T.B. Basophils, basophilia and helminth infections. Chem. Immunol. Allergy 90, 141–156 (2006).

    CAS  PubMed  Google Scholar 

  4. Min, B. & Paul, W.E. Basophils and type 2 immunity. Curr. Opin. Hematol. 15, 59–63 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Falcone, F.H., Zillikens, D. & Gibbs, B.F. The 21st century renaissance of the basophil? Current insights into its role in allergic responses and innate immunity. Exp. Dermatol. 15, 855–864 (2006).

    CAS  PubMed  Google Scholar 

  6. Mukai, K. et al. Basophils play a critical role in the development of IgE-mediated chronic allergic inflammation independently of T cells and mast cells. Immunity 23, 191–202 (2005). An elegant study showing that basophils are critical mediators of chronic allergic inflammation.

    CAS  PubMed  Google Scholar 

  7. Mack, M. et al. Identification of antigen-capturing cells as basophils. J. Immunol. 174, 735–741 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Min, B. et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J. Exp. Med. 200, 507–517 (2004). The first study that identified mouse basophils as the main IL-4-producing cells during parasite infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sokol, C.L., Barton, G.M., Farr, A.G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat. Immunol. 9, 310–318 (2008). Study demonstrating basophil production of T H 2-inducing cytokines such as IL-4 and thymic stromal lymphopoietin and their involvement in in vivo T H 2 differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Denzel, A. et al. Basophils enhance immunological memory responses. Nat. Immunol. 9, 733–742 (2008).

    CAS  PubMed  Google Scholar 

  11. Tsujimura, Y. et al. Basophils play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated systemic anaphylaxis. Immunity 28, 581–589 (2008).

    CAS  PubMed  Google Scholar 

  12. Lee, J.J. & McGarry, M.P. When is a mouse basophil not a basophil? Blood 109, 859–861 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kennedy Norton, S. et al. IL-10 suppresses mast cell IgE receptor expression and signaling in vitro and in vivo. J. Immunol. 180, 2848–2854 (2008).

    CAS  PubMed  Google Scholar 

  14. Lantz, C.S. et al. IgE regulates mouse basophil FcɛRI expression in vivo. J. Immunol. 158, 2517–2521 (1997).

    CAS  PubMed  Google Scholar 

  15. Yamaguchi, M. et al. Regulation of mouse mast cell surface FcɛRI expression by dexamethasone. Int. Immunol. 13, 843–851 (2001).

    CAS  PubMed  Google Scholar 

  16. Voehringer, D., Shinkai, K. & Locksley, R.M. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20, 267–277 (2004).

    CAS  PubMed  Google Scholar 

  17. Voehringer, D., van Rooijen, N. & Locksley, R.M. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages. J. Leukoc. Biol. 81, 1434–1444 (2007).

    CAS  PubMed  Google Scholar 

  18. Schroeder, J.T., MacGlashan, D.W., Jr & Lichtenstein, L.M. Human basophils: mediator release and cytokine production. Adv. Immunol. 77, 93–122 (2001).

    CAS  PubMed  Google Scholar 

  19. Paul, W.E. Interleukin-4 production by FcɛR+ cells. Skin Pharmacol. 4 Suppl 1, 8–14 (1991).

    PubMed  Google Scholar 

  20. Le Gros, G. et al. IL-3 promotes production of IL-4 by splenic non-B, non-T cells in response to Fc receptor cross-linkage. J. Immunol. 145, 2500–2506 (1990).

    CAS  PubMed  Google Scholar 

  21. Kurimoto, Y., de Weck, A.L. & Dahinden, C.A. Interleukin 3-dependent mediator release in basophils triggered by C5a. J. Exp. Med. 170, 467–479 (1989).

    CAS  PubMed  Google Scholar 

  22. MacDonald, S.M., Schleimer, R.P., Kagey-Sobotka, A., Gillis, S. & Lichtenstein, L.M. Recombinant IL-3 induces histamine release from human basophils. J. Immunol. 142, 3527–3532 (1989).

    CAS  PubMed  Google Scholar 

  23. Brunner, T., Heusser, C.H. & Dahinden, C.A. Human peripheral blood basophils primed by interleukin 3 (IL-3) produce IL-4 in response to immunoglobulin E receptor stimulation. J. Exp. Med. 177, 605–611 (1993).

    CAS  PubMed  Google Scholar 

  24. Dahinden, C.A. et al. The neutrophil-activating peptide NAF/NAP-1 induces histamine and leukotriene release by interleukin 3-primed basophils. J. Exp. Med. 170, 1787–1792 (1989).

    CAS  PubMed  Google Scholar 

  25. Phillips, C., Coward, W.R., Pritchard, D.I. & Hewitt, C.R. Basophils express a type 2 cytokine profile on exposure to proteases from helminths and house dust mites. J. Leukoc. Biol. 73, 165–171 (2003).

    CAS  PubMed  Google Scholar 

  26. Falcone, F.H. et al. Human basophils release interleukin-4 after stimulation with Schistosoma mansoni egg antigen. Eur. J. Immunol. 26, 1147–1155 (1996).

    CAS  PubMed  Google Scholar 

  27. Bieneman, A.P., Chichester, K.L., Chen, Y.H. & Schroeder, J.T. Toll-like receptor 2 ligands activate human basophils for both IgE-dependent and IgE-independent secretion. J. Allergy Clin. Immunol. 115, 295–301 (2005).

    CAS  PubMed  Google Scholar 

  28. Sabroe, I., Jones, E.C., Usher, L.R., Whyte, M.K. & Dower, S.K. Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in leukocyte lipopolysaccharide responses. J. Immunol. 168, 4701–4710 (2002).

    CAS  PubMed  Google Scholar 

  29. Yoshimoto, T. & Nakanishi, K. Roles of IL-18 in basophils and mast cells. Allergol. Int. 55, 105–113 (2006).

    CAS  PubMed  Google Scholar 

  30. Oh, K., Shen, T., Le Gros, G. & Min, B. Induction of Th2 type immunity in a mouse system reveals a novel immunoregulatory role of basophils. Blood 109, 2921–2927 (2007).

    CAS  PubMed  Google Scholar 

  31. Hida, S., Tadachi, M., Saito, T. & Taki, S. Negative control of basophil expansion by IRF-2 critical for the regulation of Th1/Th2 balance. Blood 106, 2011–2017 (2005).

    CAS  PubMed  Google Scholar 

  32. Lantz, C.S. et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392, 90–93 (1998). Study identifying critical functions for IL-3 in increasing basophil production in response to parasite infection and demonstrating that IL-3 is paradoxically dispensable for maintaining homeostatic basophil numbers in the absence of parasite infection.

    CAS  PubMed  Google Scholar 

  33. Wang, Y.H. et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J. Exp. Med. 204, 1837–1847 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hurst, S.D. et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J. Immunol. 169, 443–453 (2002).

    CAS  PubMed  Google Scholar 

  35. Tamachi, T., Maezawa, Y., Ikeda, K., Iwamoto, I. & Nakajima, H. Interleukin 25 in allergic airway inflammation. Int. Arch. Allergy Immunol. 140 Suppl 1, 59–62 (2006).

    CAS  PubMed  Google Scholar 

  36. Yanagihara, Y. et al. Induction of human IgE synthesis in B cells by a basophilic cell line, KU812. Clin. Exp. Immunol. 108, 295–301 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yanagihara, Y. et al. Cultured basophils but not cultured mast cells induce human IgE synthesis in B cells after immunologic stimulation. Clin. Exp. Immunol. 111, 136–143 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gauchat, J.F. et al. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365, 340–343 (1993).

    CAS  PubMed  Google Scholar 

  39. Galli, S.J. & Franco, C.B. Basophils are back! Immunity 28, 495–497 (2008).

    CAS  PubMed  Google Scholar 

  40. Min, B. & Paul, W.E. Basophils: in the spotlight at last. Nat. Immunol. 9, 223–225 (2008).

    CAS  PubMed  Google Scholar 

  41. Shinkai, K., Mohrs, M. & Locksley, R.M. Helper T cells regulate type-2 innate immunity in vivo. Nature 420, 825–829 (2002).

    CAS  PubMed  Google Scholar 

  42. Hu-Li, J. et al. Regulation of expression of IL-4 alleles: analysis using a chimeric GFP/IL-4 gene. Immunity 14, 1–11 (2001).

    CAS  PubMed  Google Scholar 

  43. Gessner, A., Mohrs, K. & Mohrs, M. Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. J. Immunol. 174, 1063–1072 (2005).

    CAS  PubMed  Google Scholar 

  44. Gibbs, B.F. et al. Purified human peripheral blood basophils release interleukin-13 and preformed interleukin-4 following immunological activation. Eur. J. Immunol. 26, 2493–2498 (1996).

    CAS  PubMed  Google Scholar 

  45. Haas, H. et al. Early interleukin-4: its role in the switch towards a Th2 response and IgE-mediated allergy. Int. Arch. Allergy Immunol. 119, 86–94 (1999).

    CAS  PubMed  Google Scholar 

  46. Stetson, D.B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198, 1069–1076 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mohrs, K., Wakil, A.E., Killeen, N., Locksley, R.M. & Mohrs, M. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity 23, 419–429 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brown, S.J., Galli, S.J., Gleich, G.J. & Askenase, P.W. Ablation of immunity to Amblyomma americanum by anti-basophil serum: cooperation between basophils and eosinophils in expression of immunity to ectoparasites (ticks) in guinea pigs. J. Immunol. 129, 790–796 (1982).

    CAS  PubMed  Google Scholar 

  49. Kemp, D.H. & Bourne, A. Boophilus microplus: the effect of histamine on the attachment of cattle-tick larvae–studies in vivo and in vitro. Parasitology 80, 487–496 (1980).

    CAS  PubMed  Google Scholar 

  50. Kierszenbaum, F., Ackerman, S.J. & Gleich, G.J. Destruction of bloodstream forms of Trypanosoma cruzi by eosinophil granule major basic protein. Am. J. Trop. Med. Hyg. 30, 775–779 (1981).

    CAS  PubMed  Google Scholar 

  51. Butterworth, A.E., Wassom, D.L., Gleich, G.J., Loegering, D.A. & David, J.R. Damage to schistosomula of Schistosoma mansoni induced directly by eosinophil major basic protein. J. Immunol. 122, 221–229 (1979).

    CAS  PubMed  Google Scholar 

  52. Obata, K. et al. Basophils are essential initiators of a novel type of chronic allergic inflammation. Blood 110, 913–920 (2007).

    CAS  PubMed  Google Scholar 

  53. Kojima, T. et al. Mast cells and basophils are selectively activated in vitro and in vivo through CD200R3 in an IgE-independent manner. J. Immunol. 179, 7093–7100 (2007).

    CAS  PubMed  Google Scholar 

  54. Aoki, I., Kinzer, C., Shirai, A., Paul, W.E. & Klinman, D.M. IgE receptor-positive non-B/non-T cells dominate the production of interleukin 4 and interleukin 6 in immunized mice . Proc. Natl. Acad. Sci. USA 92, 2534–2538 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Khodoun, M.V., Orekhova, T., Potter, C., Morris, S. & Finkelman, F.D. Basophils initiate IL-4 production during a memory T-dependent response. J. Exp. Med. 200, 857–870 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Falcone, F.H., Morroll, S. & Gibbs, B.F. Lack of protease activated receptor (PAR) expression in purified human basophils. Inflamm. Res. 54 Suppl 1, S13–S14 (2005).

    CAS  PubMed  Google Scholar 

  57. Schulz, O., Sewell, H.F. & Shakib, F. Proteolytic cleavage of CD25, the alpha subunit of the human T cell interleukin 2 receptor, by Der p 1, a major mite allergen with cysteine protease activity. J. Exp. Med. 187, 271–275 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Shakib, F., Schulz, O. & Sewell, H. A mite subversive: cleavage of CD23 and CD25 by Der p 1 enhances allergenicity. Immunol. Today 19, 313–316 (1998).

    CAS  PubMed  Google Scholar 

  59. Agis, H. et al. Comparative immunophenotypic analysis of human mast cells, blood basophils and monocytes. Immunology 87, 535–543 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Furmonaviciene, R. et al. The protease allergen Der p 1 cleaves cell surface DC-SIGN and DC-SIGNR: experimental analysis of in silico substrate identification and implications in allergic responses. Clin. Exp. Allergy 37, 231–242 (2007).

    CAS  PubMed  Google Scholar 

  61. Marsland, B.J., Camberis, M. & Le Gros, G. Secretory products from infective forms of Nippostrongylus brasiliensis induce a rapid allergic airway inflammatory response. Immunol. Cell Biol. 83, 40–47 (2005).

    CAS  PubMed  Google Scholar 

  62. Balic, A., Harcus, Y., Holland, M.J. & Maizels, R.M. Selective maturation of dendritic cells by Nippostrongylus brasiliensis-secreted proteins drives Th2 immune responses. Eur. J. Immunol. 34, 3047–3059 (2004).

    CAS  PubMed  Google Scholar 

  63. Schramm, G. et al. Cutting edge: IPSE/α-1, a glycoprotein from Schistosoma mansoni eggs, induces IgE-dependent, antigen-independent IL-4 production by murine basophils in vivo. J. Immunol. 178, 6023–6027 (2007).

    CAS  PubMed  Google Scholar 

  64. Shen, T. et al. T cell-derived IL-3 plays key role in parasite infection-induced basophil production but is dispensable for in vivo basophil survival. Int. Immunol. 20, 1201–1209 (2008).

    CAS  PubMed  Google Scholar 

  65. Else, K.J., Entwistle, G.M. & Grencis, R.K. Correlations between worm burden and markers of Th1 and Th2 cell subset induction in an inbred strain of mouse infected with Trichuris muris. Parasite Immunol. 15, 595–600 (1993).

    CAS  PubMed  Google Scholar 

  66. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    CAS  PubMed  Google Scholar 

  67. Kondo, Y. et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int. Immunol. 20, 791–800 (2008).

    CAS  PubMed  Google Scholar 

  68. Gibbs, B.F., Papenfuss, K. & Falcone, F.H. A rapid two-step procedure for the purification of human peripheral blood basophils to near homogeneity. Clin. Exp. Allergy 38, 480–485 (2008).

    CAS  PubMed  Google Scholar 

  69. Nielsen, B.W. et al. Immune responses to nematode exoantigens: sensitizing antibodies and basophil histamine release. Allergy 49, 427–435 (1994).

    CAS  PubMed  Google Scholar 

  70. Gonzalez-Munoz, M., Garate, T., Puente, S., Subirats, M. & Moneo, I. Induction of histamine release in parasitized individuals by somatic and cuticular antigens from Onchocerca volvulus. Am. J. Trop. Med. Hyg. 60, 974–979 (1999).

    CAS  PubMed  Google Scholar 

  71. Genta, R.M. et al. Specific allergic sensitization to Strongyloides antigens in human strongyloidiasis. Lab. Invest. 48, 633–638 (1983).

    CAS  PubMed  Google Scholar 

  72. Mitre, E., Taylor, R.T., Kubofcik, J. & Nutman, T.B. Parasite antigen-driven basophils are a major source of IL-4 in human filarial infections. J. Immunol. 172, 2439–2445 (2004).

    CAS  PubMed  Google Scholar 

  73. Haisch, K. et al. A glycoprotein from Schistosoma mansoni eggs binds non-antigen-specific immunoglobulin E and releases interleukin-4 from human basophils. Parasite Immunol. 23, 427–434 (2001).

    CAS  PubMed  Google Scholar 

  74. Mitre, E. & Nutman, T.B. Lack of basophilia in human parasitic infections. Am. J. Trop. Med. Hyg. 69, 87–91 (2003).

    PubMed  Google Scholar 

  75. Marone, G., Florio, G., Petraroli, A., Triggiani, M. & de Paulis, A. Role of human FcɛRI+ cells in HIV-1 infection. Immunol. Rev. 179, 128–138 (2001). An excellent review proposing a new function for basophils during HIV-1 infection in human.

    CAS  PubMed  Google Scholar 

  76. Marone, G., Florio, G., Petraroli, A., Triggiani, M. & de Paulis, A. Human mast cells and basophils in HIV-1 infection. Trends Immunol. 22, 229–232 (2001).

    CAS  PubMed  Google Scholar 

  77. Karray, S. & Zouali, M. Identification of the B cell superantigen-binding site of HIV-1 gp120. Proc. Natl. Acad. Sci. USA 94, 1356–1360 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Florio, G., Petraroli, A., Patella, V., Triggiani, M. & Marone, G. The immunoglobulin superantigen-binding site of HIV-1 gp120 activates human basophils. Aids 14, 931–938 (2000).

    CAS  PubMed  Google Scholar 

  79. Ensoli, B., Barillari, G., Salahuddin, S.Z., Gallo, R.C. & Wong-Staal, F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature 345, 84–86 (1990).

    CAS  PubMed  Google Scholar 

  80. de Paulis, A. et al. Tat protein is an HIV-1-encoded beta-chemokine homolog that promotes migration and up-regulates CCR3 expression on human FcɛRI+ cells. J. Immunol. 165, 7171–7179 (2000).

    CAS  PubMed  Google Scholar 

  81. Jinquan, T. et al. Chemokine stromal cell-derived factor 1α activates basophils by means of CXCR4. J. Allergy Clin. Immunol. 106, 313–320 (2000).

    CAS  PubMed  Google Scholar 

  82. Moore, J.P. Coreceptors: implications for HIV pathogenesis and therapy. Science 276, 51–52 (1997).

    CAS  PubMed  Google Scholar 

  83. Li, Y. et al. Mast cells/basophils in the peripheral blood of allergic individuals who are HIV-1 susceptible due to their surface expression of CD4 and the chemokine receptors CCR3, CCR5, and CXCR4. Blood 97, 3484–3490 (2001).

    CAS  PubMed  Google Scholar 

  84. Marone, G., Triggiani, M. & de Paulis, A. Mast cells and basophils: friends as well as foes in bronchial asthma? Trends Immunol. 26, 25–31 (2005).

    CAS  PubMed  Google Scholar 

  85. Macfarlane, A.J. et al. Basophils, eosinophils, and mast cells in atopic and nonatopic asthma and in late-phase allergic reactions in the lung and skin. J. Allergy Clin. Immunol. 105, 99–107 (2000).

    CAS  PubMed  Google Scholar 

  86. Gauvreau, G.M. et al. Increased numbers of both airway basophils and mast cells in sputum after allergen inhalation challenge of atopic asthmatics. Am. J. Respir. Crit. Care Med. 161, 1473–1478 (2000).

    CAS  PubMed  Google Scholar 

  87. Koshino, T. et al. Airway basophil and mast cell density in patients with bronchial asthma: relationship to bronchial hyperresponsiveness. J. Asthma 33, 89–95 (1996).

    CAS  PubMed  Google Scholar 

  88. Irani, A.M. et al. Immunohistochemical detection of human basophils in late-phase skin reactions. J. Allergy Clin. Immunol. 101, 354–362 (1998).

    CAS  PubMed  Google Scholar 

  89. Kepley, C.L., Craig, S.S. & Schwartz, L.B. Identification and partial characterization of a unique marker for human basophils. J. Immunol. 154, 6548–6555 (1995).

    CAS  PubMed  Google Scholar 

  90. Nouri-Aria, K.T. et al. Basophil recruitment and IL-4 production during human allergen-induced late asthma. J. Allergy Clin. Immunol. 108, 205–211 (2001).

    CAS  PubMed  Google Scholar 

  91. Devouassoux, G., Foster, B., Scott, L.M., Metcalfe, D.D. & Prussin, C. Frequency and characterization of antigen-specific IL-4- and IL-13- producing basophils and T cells in peripheral blood of healthy and asthmatic subjects. J. Allergy Clin. Immunol. 104, 811–819 (1999).

    CAS  PubMed  Google Scholar 

  92. Juhlin, L. & Michaelsson, G. A new syndrome characterised by absence of eosinophils and basophils. Lancet 1, 1233–1235 (1977).

    CAS  PubMed  Google Scholar 

  93. Tracey, R. & Smith, H. An inherited anomaly of human eosinophils and basophils. Blood Cells 4, 291–300 (1978).

    CAS  PubMed  Google Scholar 

  94. Youssef, L.A. et al. Histamine release from the basophils of control and asthmatic subjects and a comparison of gene expression between “releaser” and “nonreleaser” basophils. J. Immunol. 178, 4584–4594 (2007).

    CAS  PubMed  Google Scholar 

  95. Buhring, H.J., Streble, A. & Valent, P. The basophil-specific ectoenzyme E-NPP3 (CD203c) as a marker for cell activation and allergy diagnosis. Int. Arch. Allergy Immunol. 133, 317–329 (2004).

    PubMed  Google Scholar 

  96. Eberlein-Konig, B. et al. Comparison of basophil activation tests using CD63 or CD203c expression in patients with insect venom allergy. Allergy 61, 1084–1085 (2006).

    CAS  PubMed  Google Scholar 

  97. Boumiza, R. et al. Marked improvement of the basophil activation test by detecting CD203c instead of CD63. Clin. Exp. Allergy 33, 259–265 (2003).

    CAS  PubMed  Google Scholar 

  98. Ansel, K.M., Djuretic, I., Tanasa, B. & Rao, A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol. 24, 607–656 (2006).

    CAS  PubMed  Google Scholar 

  99. Yagi, R., Tanaka, S., Motomura, Y. & Kubo, M. Regulation of the Il4 gene is independently controlled by proximal and distal 3′ enhancers in mast cells and basophils. Mol. Cell. Biol. 27, 8087–8097 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank W.E. Paul for review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Booki Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, B. Basophils: what they 'can do' versus what they 'actually do'. Nat Immunol 9, 1333–1339 (2008). https://doi.org/10.1038/ni.f.217

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.f.217

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing